
Compositional Data Types

Patrick Bahr Tom Hvitved

Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen, Denmark

{paba,hvitved}@diku.dk

Abstract

Building on Wouter Swierstra’s Data types à la carte, we present a
comprehensive Haskell library of compositional data types suitable
for practical applications. In this framework, data types and func-
tions on them can be defined in a modular fashion. We extend the
existing work by implementing a wide array of recursion schemes
including monadic computations. Above all, we generalise recur-
sive data types to contexts, which allow us to characterise a special
yet frequent kind of catamorphisms. The thus established notion of
term homomorphisms allows for flexible reuse and enables short-
cut fusion style deforestation which yields considerable speedups.
We demonstrate our framework in the setting of compiler con-
struction, and moreover, we compare compositional data types with
generic programming techniques and show that both are compara-
ble in run-time performance and expressivity while our approach
allows for stricter types. We substantiate this conclusion by lifting
compositional data types to mutually recursive data types and gen-
eralised algebraic data types. Lastly, we compare the run-time per-
formance of our techniques with traditional implementations over
algebraic data types. The results are surprisingly good.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Data Types
and Structures; F.3.3 [Logics and Meanings of Programs]: Studies
of Program Constructs—Program and Recursion Schemes

General Terms Design, Languages, Performance

Keywords algebraic programming, reusability, deforestation, mu-
tual recursion

1. Introduction

Static typing provides a valuable tool for expressing invariants of a
program. Yet, all too often, this tool is not leveraged to its full extent
because it is simply not practical. Vice versa, if we want to use the
full power of a type system, we often find ourselves writing large
chunks of boilerplate code or—even worse—duplicating code. For
example, consider the type of non-empty lists. Even though having
such a type at your disposal is quite useful, you would rarely find it
in use since—in a practical type system such as Haskell’s—it would

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WGP’11, September 18, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0861-8/11/09. . . $10.00

require the duplication of functions which work both on general and
non-empty lists.

The situation illustrated above is an ubiquitous issue in com-
piler construction: In a compiler, an abstract syntax tree (AST)
is produced from a source file, which then goes through different
transformation and analysis phases, and is finally transformed into
the target code. As functional programmers, we want to reflect the
changes of each transformation step in the type of the AST. For ex-
ample, consider the desugaring phase of a compiler which reduces
syntactic sugar to the core syntax of the object language. To prop-
erly reflect this structural change also in the types, we have to create
and maintain a variant of the data type defining the AST for the core
syntax. Then, however, functions have to be defined for both types
independently, i.e. code cannot be readily reused for both types! If
we add annotations in an analysis step of the compiler, the type of
the AST has to be changed again. But some functions should ig-
nore certain annotations while being aware of others. And it gets
even worse if we allow extensions to the object language that can
be turned on and off independently, or if we want to implement sev-
eral domain-specific languages which share a common core. This
quickly becomes a nightmare with the choice of either duplicating
lots of code or giving up static type safety by using a huge AST
data type that covers all cases.

The essence of this problem can be summarised as the Expres-
sion Problem, i.e. “the goal [. . .] to define a datatype by cases,
where one can add new cases to the datatype and new functions
over the datatype, without recompiling existing code, and while
retaining static type safety” [25]. Wouter Swierstra [20] elegantly
addressed this problem using Haskell and its type classes machin-
ery. While Swierstra’s approach exhibits invaluable simplicity and
clarity, it lacks abilities necessary to apply it in a practical setting
beyond the confined simplicity of the expression problem.

The goal of this paper is to extend Swierstra’s work in order
to enhance its flexibility, improve its performance and broaden its
scope of applications. In concrete terms, our contributions are:

• We implement recursion schemes other than catamorphisms
(Section 4.5) and also account for recursion schemes over
monadic computations (Section 3.2).

• We show how generic programming techniques can be effi-
ciently implemented on top of the compositional data types
framework (Section 3.1), providing a performance competitive
with top-performing dedicated generic programming libraries.

• By generalising terms—i.e. recursive data types—to contexts—
i.e. recursive data types with holes—we are able to capture
the notion of term homomorphisms (Section 4.4), a special
but common case of term algebras. In contrast to general al-
gebras, term homomorphisms can easily be lifted to different
data types, readily reused, and composed (also with algebras).
The latter allows us to perform optimisations via short-cut fu-
sion rules that provide considerable speedups (Section 6.2).

83

• We further extend the scope of applications by capturing com-
positional mutually recursive data types and GADTs via the
construction of Johann and Ghani [6] (Section 5).

• Finally, we show the practical competitiveness of compositional
data types by reducing their syntactic overhead using Template
Haskell [18] (Section 6.1), and by comparing the run-time of
typical functions with corresponding implementations over or-
dinary recursive data types (Section 6.2).

The framework of compositional data types that we present here
is available from Hackage1. It contains the complete source code,
numerous examples, and the benchmarks whose results we present
in this paper. All code fragments presented throughout the paper
are written in Haskell [9].

2. Data Types à la Carte

This section serves as an introduction to Swierstra’s Data types à
la carte [20] (from here on, compositional data types), using our
slightly revised notation and terminology. We demonstrate the ap-
plication of compositional data types to a setting consisting of a
family of expression languages that pairwise share some sublan-
guage, and operations that provide transformations between some
of them. We illustrate the merits of this method on two examples:
expression evaluation and desugaring.

2.1 Evaluating Expressions

Consider a simple language of expressions over integers and tuples,
together with an evaluation function:

data Exp = Const Int | Mult Exp Exp

| Pair Exp Exp | Fst Exp | Snd Exp

data Value = VConst Int | VPair Value Value

eval :: Exp → Value

eval (Const n) = VConst n

eval (Mult x y) = let VConst m = eval x

VConst n = eval y

in VConst (m ∗ n)
eval (Pair x y) = VPair (eval x) (eval y)
eval (Fst x) = let VPair v = eval x in v

eval (Snd x) = let VPair v = eval x in v
In order to statically guarantee that the evaluation function pro-

duces values—a sublanguage of the expression language—we are
forced to replicate parts of the expression structure in order to rep-
resent values. Consequently, we are also forced to duplicate com-
mon functionality such as pretty printing. Compositional data types
provide a solution to this problem by relying on the well-known
technique [11] of separating the recursive structure of terms from
their signatures (functors). Recursive functions, in the form of cata-
morphisms, can then be specified by algebras on these signatures.

For our example, it suffices to define the following two signa-
tures in order to separate values from general expressions:

data Val e = Const Int | Pair e e

data Op e = Mult e e | Fst e | Snd e
The novelty of compositional data types then is to combine

signatures—and algebras defined on them—in a modular fashion,
by means of a formal sum of functors:

data (f :+: g) a = Inl (f a) | Inr (g a)
It is easy to show that f :+: g is a functor whenever f and g are
functors. We thus obtain the combined signature for expressions:

type Sig = Op :+:Val
Finally, the type of terms over a (potentially compound) signa-

ture f can be constructed as the fixed point of the signature f :

1 See http://hackage.haskell.org/package/compdata.

data Term f = Term {unTerm :: (f (Term f))}

We then have that Term Sig ∼= Exp and Term Val ∼= Value .2

However, using compound signatures constructed by formal
sums means that we have to explicitly tag constructors with the
right injections. For instance, the term 1 ∗ 2 has to be written as

e :: Term Sig

e = Term $ Inl $Mult (Term $ Inr $ Const 1)
(Term $ Inr $ Const 2)

Even worse, if we want to embed the term e into a type over an
extended signature, say with syntactic sugar, then we have to add
another level of injections throughout its definition. To overcome
this problem, injections are derived using a type class:

class sub :≺: sup where

inj :: sub a → sup a

proj :: sup a → Maybe (sub a)
Using overlapping instance declarations, the sub-signature rela-

tion :≺: can be constructively defined. However, due to restrictions
of the type class system, we have to restrict ourselves to instances
of the form f :≺:g where f is atomic, i.e. not a sum, and g is a right-
associative sum, e.g. g1 :+: (g2 :+: g3) but not (g1 :+: g2) :+: g3.3

Using the carefully defined instances for :≺:, we can then define
injection and projection functions:

inject :: (g :≺: f)⇒ g (Term f)→ Term f

inject = Term . inj

project :: (g :≺: f)⇒ Term f → Maybe (g (Term f))
project = proj . unTerm

Additionally, in order to reduce the syntactic overhead, we use
smart constructors—which can be derived automatically, cf. Sec-
tion 6.1—that already comprise the injection:

iMult :: (Op :≺: f)⇒ Term f → Term f → Term f

iMult x y = inject $Mult x y
The term 1 ∗ 2 can now be written without syntactic overhead

e :: Term Sig

e = iConst 1 ‘iMult ‘ iConst 2
and we can even give e the open type (Val :≺: f ,Op :≺: f) ⇒
Term f . That is, e can be used as a term over any signature
containing at least values and operators.

Next, we want to define the evaluation function, i.e. a function
of type Term Sig → Term Val . To this end, we define the
following algebra class Eval :

type Alg f a = f a → a

class Eval f v where evalAlg :: Alg f (Term v)

instance (Eval f v ,Eval g v)⇒ Eval (f :+: g) v where

evalAlg (Inl x) = evalAlg x

evalAlg (Inr x) = evalAlg x
The instance declaration for sums is crucial, as it defines how to
combine instances for the different signatures—yet the structure
of its declaration is independent from the particular algebra class,
and it can be automatically derived for any algebra. Thus, we will
omit the instance declarations lifting algebras to sums from now on.
The actual evaluation function can then be obtained from instances
of this algebra class as a catamorphism. In order to perform the
necessary recursion, we require the signature f to be an instance of
Functor providing the method fmap :: (a → b)→ f a → f b:

cata :: Functor f ⇒ Alg f a → Term f → a

cata f = f . fmap (cata f) . unTerm

eval :: (Functor f ,Eval f v)⇒ Term f → Term v

eval = cata evalAlg

2 For clarity, we have omitted the strictness annotation to the constructor
Term which is necessary in order to obtain the indicated isomorphisms.
3 We encourage the reader to consult Swierstra’s original paper [20] for the
proper definition of the :≺: relation.

84

What remains is to define the algebra instances for Val and
Op. One approach is to define instances Eval Val Val and
Eval Op Val , however such definitions are problematic if we
later want to add a signature to the language which also extends
the signature for values, say with Boolean values. We could hope
to achieve such extendability by defining the instance

instance (Eval f v , v :≺: v ′)⇒ Eval f v ′

but this is problematic for two reasons: First, the relation :≺: only
works for atomic left-hand sides, and second, we can in fact not
define this instance because the function evalAlg :: f (Term v)→
Term v cannot be lifted to the type f (Term v ′) → Term v ′, as
the type of the domain also changes. Instead, the correct approach
is to leave the instance declarations open in the target signature:

instance (Val :≺: v)⇒ Eval Val v where

evalAlg = inject

instance (Val :≺: v)⇒ Eval Op v where

evalAlg (Mult x y) = iConst $ projC x ∗ projC y

evalAlg (Fst x) = fst $ projP x

evalAlg (Snd x) = snd $ projP x

projC :: (Val :≺: v)⇒ Term v → Int

projC v = case project v of Just (Const n)→ n

projP :: (Val :≺: v)⇒ Term v → (Term v ,Term v)
projP v = case project v of Just (Pair x y)→ (x , y)

Notice how the constructors Const and Pair are treated with a
single inject , as these are already part of the value signature.

2.2 Adding Sugar on Top

We now consider an extension of the expression language with
syntactic sugar, exemplified via negation and swapping of pairs:

data Sug e = Neg e | Swap e

type Sig ′ = Sug :+: Sig
Defining a desugaring function Term Sig ′ → Term Sig then

amounts to instantiating the following algebra class:
class Desug f g where

desugAlg ::Alg f (Term g)

desug :: (Functor f ,Desug f g)⇒ Term f → Term g

desug = cata desugAlg
Using overlapping instances, we can define a default translation

for Val and Op, so we only have to write the “interesting” cases:
instance (f :≺: g)⇒ Desug f g where

desugAlg = inject

instance (Val :≺: f ,Op :≺: f)⇒ Desug Sug f where

desugAlg (Neg x) = iConst (−1) ‘iMult ‘ x
desugAlg (Swap x) = iSnd x ‘iPair ‘ iFst x

Note how the context of the last instance reveals that desugaring
of the extended syntax requires a target signature with at least base
values, Val :≺: f , and operators, Op :≺: f . By composing desug and
eval , we get an evaluation function for the extended language:

eval ′ :: Term Sig ′ → Term Val

eval ′ = eval . (desug :: Term Sig ′ → Term Sig)
The definition above shows that there is a small price to pay for
leaving the algebra instances open: We have to annotate the desug-
aring function in order to pin down the intermediate signature Sig .

3. Extensions

In this section, we introduce some rather straightforward extensions
to the compositional data types framework: Generic programming
combinators, monadic computations, and annotations.

3.1 Generic Programming

Most of the functions that are definable in the common generic
programming frameworks [14] can be categorised as either query

functions d → r , which analyse a data structure of type d by
extracting some relevant information of type r from parts of the
input and compose them, or as transformation functions d → d ,
which recursively apply some type preserving functions to parts of
the input. The benefit that generic programming frameworks offer
is that programmers only need to specify the “interesting” parts of
the computation. We will show how we can easily reproduce this
experience on top of compositional data types.

Applying a type-preserving function recursively throughout a
term can be implemented easily. The function below applies a given
function in a bottom-up manner:

trans :: Functor f ⇒ (Term f → Term f)
→ (Term f → Term f)

trans f = cata (f . Term)
Other recursion schemes can be implemented just as easily.

In order to implement generic querying functions, we need a
means to combine the result of querying a functorial value. The
standard type class Foldable generalises folds over lists and thus
provides us with exactly the interface we need:4

class Foldable f where

foldl :: (a → b → a)→ a → f b → a
For example, an appropriate instance for the functor Val can be

defined like this:
instance Foldable Val where

foldl a (Const) = a

foldl f a (Pair x y) = (a ‘f ‘ x) ‘f ‘ y
With Foldable , a generic querying function can be implemented

easily. It takes a function q :: Term f → r to query a single node
of the term and a function c :: r → r → r to combine two results:

query :: Foldable f ⇒ (Term f → r)
→ (r → r → r)→ Term f → r

query q c t =
foldl (λr x → r ‘c‘ query q c x) (q t) (unTerm t)

We can instantiate this scheme, for example, to implement a
generic size function:

gsize :: Foldable f ⇒ Term f → Int

gsize = query (const 1) (+)
A very convenient scheme of query functions introduced by

Mitchell and Runciman [12], in the form of the universe com-
binator, simply returns a list of all subterms. Specific queries can
then be written rather succinctly using list comprehensions. Such a
combinator can be implemented easily via query :

subs :: Foldable f ⇒ Term f → [Term f]
subs = query (λx → [x]) (++)
However, in order to make the pattern matching in list com-

prehensions work, we need to project the terms to the functor that
contains the constructor we want to match against:

subs ′ :: (Foldable f , g :≺: f)⇒ Term f → [g (Term f)]
subs ′ = mapMaybe project . subs
With this in place we can for example easily sum up all integer

literals in an expression:
sumInts :: (Val :≺: f)⇒ Term f → Int

sumInts t = sum [i | Const i ← subs ′ t]
This shows that we can obtain functionality similar to what

dedicated generic programming frameworks offer. In contrast to
generic programming, however, the compositional data type ap-
proach provides additional tools that allow us to define functions
with a stricter type that reflects the underlying transformation.
For example, we could have defined the desugaring function in
terms of trans , but that would have resulted in the “weaker” type
Term Sig ′ → Term Sig ′ instead of Term Sig ′ → Term Sig .
The latter type witnesses that indeed all syntactic sugar is removed!

4 Foldable also has other fold functions, but they are derivable from foldl
and are not relevant for our purposes.

85

Nevertheless, the examples show that at least the querying com-
binators query and subs ′ provide an added value to our frame-
work. Moreover, by applying standard optimisation techniques we
can obtain run-time performance comparable with top-performing
generic programming libraries (cf. Section 6.2). In contrast to com-
mon generic programming libraries [14], we only considered com-
binators that work on a single recursive data type. This restriction is
lifted in Section 5 when we move to mutually recursive data types.

3.2 Monadic Computations

We saw in Section 2 how to realise a modular evaluation function
for a small expression language in terms of catamorphisms defined
by algebras. In order to deal with type mismatches, we employed
non-exhaustive case expressions. Clearly, it would be better to use
a monad instead. However, a monadic carrier type m a would
yield an algebra f (m a) → m a which means that we have
to explicitly sequence the nested monadic values of the argument.
What we would rather like to do is to write a monadic algebra [3]

type AlgM m f a = f a → m a
where the nested sequencing is done automatically and thus the
monadic type only occurs in the codomain. Again we are looking
for a function that we already know from lists:

sequence ::Monad m ⇒ [m a]→ m [a]
The standard type class Traversable [10] provides the appropriate
generalisation to functors:

class (Functor f ,Foldable f)⇒ Traversable f where

sequence ::Monad m ⇒ f (m a)→ m (f a)
mapM ::Monad m ⇒ (a → m b)→ f a → m (f b)

Here, mapM is simply the composition of sequence and fmap.
The definition of a monadic variant of catamorphisms can then

be derived by replacing fmap with mapM and function composi-
tion with monadic function composition <=<:

cataM :: (Traversable f ,Monad m)⇒ AlgM m f a

→ Term f → m a

cataM f = f <=<mapM (cataM f) . unTerm
The following definitions illustrate how monadic catamor-

phisms can be used to define a safe version of the evaluation func-
tion from Section 2, which properly handles errors when applied to
a bad term (using the Maybe monad for simplicity):

class EvalM f v where

evalAlgM ::AlgM Maybe f (Term v)

evalM :: (Traversable f ,EvalM f v)⇒ Term f

→ Maybe (Term v)
evalM = cataM evalAlgM

instance (Val :≺: v)⇒ EvalM Val v where

evalAlgM = return . inject

instance (Val :≺: v)⇒ EvalM Op v where

evalAlgM (Mult x y) =
liftM iConst $ liftM2 (∗) (projCM x) (projCM y)

evalAlgM (Fst x) = liftM fst $ projPM x

evalAlgM (Snd x) = liftM snd $ projPM x

projCM :: (Val :≺: v)⇒ Term v → Maybe Int

projCM v = case project v of

Just (Const n)→ return n; → Nothing

projPM :: (Val :≺: v)⇒ Term v

→ Maybe (Term v ,Term v)
projPM v = case project v of

Just (Pair x y)→ return (x , y); → Nothing

3.3 Products and Annotations

We have seen in Section 2 how the sum :+: can be used to combine
signatures. This inevitably leads to the dual construction:

data (f :∗: g) a = f a :∗: g a

In its general form, the product :∗: seems of little use: Each con-
structor of f can be paired with each constructor of g . The special
case, however, where g is a constant functor, is easy to comprehend
yet immensely useful:

data (f :&: c) a = f a :&: c
Now, every value of type (f :&: c) a is value from f a annotated
with a value in c. On the term level, this means that a term over
f :&: c is a term over f in which each subterm is annotated with a
value in c.

This addresses a common problem in compiler implementa-
tions: How to deal with annotations of AST nodes such as source
positions or type information which have only a limited lifespan or
are only of interest for some parts of the compiler?

Given the signature Sig for our simple expression language and
a type Pos which represents source position information such as a
file name and a line number, we can represent ASTs with source
position annotations as Term (Sig :&:Pos) and write a parser that
provides such annotations [22].

The resulting representation yields a clean separation between
the actual data—the AST—and the annotation data—the source
positions—which is purely supplemental for supplying better error
messages. The separation allows us to write a generic function that
strips off annotations when they are not needed:

remA :: (f :&: p) a → f a

remA (v :&:) = v

stripA :: Functor f ⇒ Term (f :&: p)→ Term f

stripA = cata (Term . remA)
With this in place, we can provide a generic combinator that lifts

a function on terms to a function on terms with annotations
liftA :: Functor f ⇒ (Term f → t)→ Term (f :&: p)→ t

liftA f = f . stripA
which works for instance for the evaluation function:

liftA eval :: Term (Sig :&: Pos)→ Term Val
But how do we actually define an algebra that uses the position

annotations? We are faced with the problem that the product :&: is
applied to a sum, viz. Sig =Op :+:Val . When defining the algebra
for one of the summands, say Val , we do not have immediate
access to the factor Pos which is outside of the sum.

We can solve this issue in two ways: (a) Propagating the anno-
tation using a Reader monad or (b) providing operations that allow
us to make use of the right-distributivity of :&: over :+:. For the first
approach, we only need to move from algebras Alg f a to monadic
algebras AlgM (Reader p) f a , for p the type of the annotations.
Given an algebra class, e.g. for type inference

class Infer f where

inferAlg :: AlgM (Reader Pos) f Type

we can lift it to annotated signatures:5

instance Infer f ⇒ Infer (f :&: Pos) where

inferAlg (v :&: p) = local (const p) (inferAlg v)
When defining the other instances of the class, we can use the
monadic function ask :: Reader Pos Pos to query the annota-
tion of the current subterm. This provides a clean interface to the
annotations. It requires, however, that we define a monadic algebra.

The alternative approach is to distribute the annotations over the
sum, i.e. instead of Sig :&: Pos we use the type

type SigP = Op :&: Pos :+:Val :&: Pos
Now, we are able to define a direct instance of the form

instance Infer (Val :&: Pos) where

inferAlg (v :&: p) = ...
where we have direct access to the position annotation p. However,
now we have the dual problem: We do not have immediate access
to the annotation at the outermost level of the sum. Hence, we

5 The standard function local :: (r → r) → Reader r a → Reader r a
updates the environment by the function given as first argument.

86

cannot use the function liftA to lift functions to annotated terms.
Yet, this direction—propagating annotations outwards—is easier to
deal with. We have to generalise the function remA to also deal
with annotations distributed over sums. This is an easy exercise:

class RemA f g | f → g where

remA :: f a → g a

instance RemA (f :&: p) f where

remA (v :&:) = v

instance RemA f f ′

⇒ RemA (g :&: p :+: f) (g :+: f ′) where

remA (Inl (v :&:)) = Inl v

remA (Inr v) = Inr (remA v)
Now the function remA works as before, but it can also deal with
signatures such as SigP , and the type of liftA becomes:

(Functor f ,RemA f g)⇒ (Term g → t)→ Term f → t
Both approaches have their share of benefits and drawbacks.

The monadic approach provides a cleaner interface but necessi-
tates a monadic style. The explicit distribution is more flexible
as it both allows us to access the annotations directly by pattern
matching or to thread them through a monad if that is more con-
venient. On the other hand, it means that adding annotations is not
straightforwardly compositional anymore. The annotation :&:A has
to be added to each summand—just like compound signatures are
not straightforwardly compositional, e.g. we have to write the sum
f :+: g , for a signature f = f1 :+: f2, explicitly as f1 :+: f2 :+: g .

4. Context Matters

In this section, we will discuss two problems that arise when defin-
ing term algebras, i.e. algebras with a carrier of the form Term f .
These problems occur when we want to lift term algebras to alge-
bras on annotated terms, and when trying to compose term alge-
bras. We will show how these problems can be addressed by term
homomorphisms, a quite common special case of term algebras. In
order to make this work, we shall generalise terms to contexts by
using generalised algebraic data types (GADTs) [17].

4.1 Propagating Annotations

As we have seen in Section 3.3, it is easy to lift functions on terms
to functions on annotated terms. It only amounts to removing all
annotations before passing the term to the original function.

But what if we do not want to completely ignore the annotation
but propagate it in a meaningful way to the output? Take for ex-
ample the desugaring function desug we have defined in Section 2
and which transforms terms over Sig ′ to terms over Sig . How do
we lift this function easily to a function of type

Term (Sig ′ :&: Pos)→ Term (Sig :&: Pos)
which propagates the annotations such that each annotation of
a subterm in the result is taken from the subterm it originated?
For example, in the desugaring of a term iSwap x to the term
iSnd x ‘iPair ‘ iFst x , the top-most Pair -term, as well as the
two terms Snd x and Fst x should get the same annotation as the
original subterm iSwap x .

This propagation is independent of the transformation function.
The same scheme can also be used for the type inference function
in order to annotate the inferred type terms with the positions of the
code that is responsible for each part of the type terms.

It is clear that we will not be able provide a combinator of type
(Term f → Term g)→ Term (f :&: p)→ Term (g :&: p)

that lifts any function to one that propagates annotations meaning-
fully. We cannot tell from a plain function of type Term f →
Term g where the subterms of the result term are originated in the
input term. However, restricting ourselves to term algebras will not
be sufficient either. That is, also a combinator of type

Alg f (Term g)→ Alg (f :&: p) (Term (g :&: p))

is out of reach. While we can tell from a term algebra, i.e. a function
of type f (Term g)→ Term g , that some initial parts of the result
term originate from the f -constructor at the root of the input, we do
not know which parts. The term algebra only returns a uniform term
of type Term g which provides no information as to which parts
were constructed from the f -part of the f (Term g) argument and
which were copied from the (Term g)-part.

Term algebras are still too general! We need to move to a
function type that clearly states which parts are constructed from
the “current” top-level symbol in f and which are copied from its
arguments in Term g . In order to express that certain parts are just
copied, we can make use of parametric polymorphism.

Instead of an algebra, we can define a function on terms also by
a natural transformation, a function of type ∀ a . f a → g a . Such
a function can only transform an f -constructor into a g-constructor
and copy its arguments around. Since the copying is made explicit
in the type, defining a function that propagates annotations through
natural transformations is straightforward:

prop :: (f a → g a)→ (f :&: p) a → (g :&: p) a
prop f (v :&: p) = f v :&: p
Unfortunately, natural transformations are also quite limited.

They only allow us to transform each constructor of the original
term to exactly one constructor in the target term. This is for ex-
ample not sufficient for the desugaring function, which translates a
constructor application iSwap x into three constructor applications
iSnd x ‘iPair ‘ iFst x . In order to lift this restriction, we need to
be able to define a function of type ∀ a . f a → Context g a
which transforms an f -constructor application to a g-context appli-
cation, i.e. several nested applications of g-constructors potentially
with some “holes” filled by values of type a .

We shall return to this idea in Section 4.4.

4.2 Composing Term Algebras

The benefit of having a desugaring function desug ::Term Sig ′ →
Term Sig , which is able to reduce terms over the richer signature
Sig ′ to terms over the core signature Sig , is that it allows us to
easily lift functions that are defined on terms over Sig—such as
evaluation and type inference—to terms over Sig ′:

eval ′ :: Term Sig ′ → Term Val

eval ′ = eval . (desug :: Term Sig ′ → Term Sig)
However, looking at how eval and desug are defined, viz. as
catamorphisms, we notice a familiar pattern:

eval ′ = cata evalAlg . cata desugAlg
This looks quite similar to the classic example of short-cut fusion:

map f .map g map (f . g)

An expression that traverses a data structure twice is transformed
into one that only does this once.

To replicate this on terms, we need an appropriately defined
composition operator ⊚ on term algebras that allows us to perform
a similar semantics-preserving transformation:

cata f . cata g cata (f ⊚ g)

As a result, the input term only needs to be traversed once instead
of twice and the composition and decomposition of an intermediate
term is avoided. The type of ⊚ should be

Alg g (Term h)→ Alg f (Term g)→ Alg f (Term h)
Since term algebras are functions, the only way to compose

them is by first making them compatible and then performing func-
tion composition. Given two term algebras a :: Alg g (Term h)
and b :: Alg f (Term g), we can turn them into compatible func-
tions by lifting a to terms via cata . The problem now is that the
composition cata a . b has type f (Term g) → Term h , which
is only an algebra if g = h . This issue arises due to the simple
fact that the carrier of an algebra occurs in both the domain and

87

the codomain of the function! Instead of a term algebra of type
f (Term g) → Term g , we need a function type in which the
domain is more independent from the codomain in order to allow
composition. Again, a type of the form ∀ a . f a → Context g a
provides a solution.

4.3 From Terms to Contexts and back

We have seen in the two preceding sections that we need an appro-
priate notion of contexts, i.e. a term which can also contain “holes”
filled with values of a certain type. Starting from the definition of
terms, we can easily generalise it to contexts by simply adding an
additional case:

data Context f a = Context (f (Context f a))
| Hole a

Note that we can obtain a type isomorphic to the one above using
summation: Context f a ∼= Term (f :+:K a) for a type

data K a b = K a
Since we will use contexts quite often, we will use the direct rep-
resentation. Moreover, this allows us to tightly integrate contexts
into our framework. Since contexts are terms with holes, we also
want to go the other way around by defining terms as contexts with-
out holes! This will allow us to lift functions defined on terms—
catamorphisms, injections etc.—to functions on contexts that pro-
vide the original term-valued function as a special case.

The idea of defining terms as contexts without holes can be
encoded in Haskell quite easily as a generalised algebraic data type
(GADT) [17] with a phantom type Hole:

data Cxt :: ∗ → (∗ → ∗)→ ∗ → ∗ where

Term :: f (Cxt h f a)→ Cxt h f a

Hole :: a → Cxt Hole f a

data Hole
In this representation, we add an additional type argument that

indicates whether the context might contain holes or not. A context
that does have a hole must have a type of the form Cxt Hole f a .
Our initial definition of contexts can be recovered by defining:

type Context = Cxt Hole
That is, contexts may contain holes. On the other hand, terms must
not contain holes. This can be defined by:

type Term f = ∀ h a . Cxt h f a
While this is a natural representation of terms as a special

case of the more general concept of contexts, this usually causes
some difficulties because of the impredicative polymorphism. We
therefore prefer an approximation of this type that will do fine in
almost any relevant case. Instead of universal quantification, we use
empty data types NoHole and Nothing :

type Term f = Cxt NoHole f Nothing
In practice, this does not pose any restriction whatsoever. Both

NoHole and Nothing are phantom types and do not contribute
to the internal representation of values. For the former this is ob-
vious, for the latter this follows from the fact that the phantom
type NoHole witnesses that the context has indeed no holes which
would otherwise enforce the type Nothing . Hence, we can trans-
form a term to any context type over any type of holes:

toCxt :: Functor f ⇒ Term f → ∀ h a . Cxt h f a

toCxt (Term t) = Term (fmap toCxt t)
In fact, toCxt does not change the representation of the input term.
Looking at its definition, toCxt is operationally equivalent to the
identity. Thus, we can safely use the function unsafeCoerce ::a →
b in order to avoid run-time overhead:

toCxt :: Functor f ⇒ Term f → ∀ h a . Cxt h f a

toCxt = unsafeCoerce
This representation of contexts and terms allows us to uniformly

define functions which work on both types. The function inject can
be defined as before, but now has the type

inject :: (g :≺: f)⇒ g (Cxt h f a)→ Cxt h f a

and thus works for both terms and proper contexts. The projection
function has to be extended slightly to accommodate for holes:

project :: (g :≺: f)⇒ Cxt h f a → Maybe (g (Cxt h f a))
project (Term t) = proj t

project (Hole) = Nothing
The relation between terms and contexts can also be illustrated

algebraically: If we ignore for a moment the ability to define infinite
terms due to Haskell’s non-strict semantics, the type Term F
represents the initial F-algebra which has the carrier T (F), the
terms over signature F . The type of contexts Context F X on the
other hand represents the freeF-algebra generated by X which has
the carrier T (F ,X), the terms over signature F and variables X .

Thus, for recursion schemes, we can move naturally from cata-
morphisms, i.e. initial algebra semantics, to free algebra semantics:

free :: Functor f ⇒ Alg f b → (a → b)→ Cxt h f a → b

free alg v (Term t) = alg (fmap (free alg v) t)
free v (Hole x) = v x

freeM :: (Traversable f ,Monad m)⇒
AlgM m f b → (a → m b)→ Cxt h f a → m b

freeM alg v (Term t) = alg =<<mapM (freeM alg v) t
freeM v (Hole x) = v x

This yields the central function for working with contexts:
appCxt :: Functor f ⇒ Context f (Cxt h f a)

→ Cxt h f a

appCxt = free Term id
This function takes a context whose holes are terms (or contexts)
and returns the term (respectively context) that is obtained by merg-
ing the two—essentially by removing each constructor Hole . No-
tice how the type variables h and a are propagated from the input
context’s holes to the return type. In this way, we can uniformly
treat both terms and contexts.

4.4 Term Homomorphisms

The examples from Sections 4.1 and 4.2 have illustrated the need
for defining functions on terms by functions of the form ∀ a .f a →
Context g a . Such functions can then be transformed to term
algebras via appCxt and, thus, be lifted to terms:

termHom :: (Functor f ,Functor g)⇒
(∀ a . f a → Context g a)→ Term f → Term g

termHom f = cata (appCxt . f)
In fact, the polymorphism in the type ∀ a . f a → Context g a

guarantees that arguments of the functor f can only be copied—
not inspected or modified. This restriction captures a well-known
concept from tree automata theory:

Definition 1 (term homomorphisms6 [2, 21]). Let F and G be two
sets of function symbols, possibly not disjoint. For each n > 0, let
Xn = {x1, . . . , xn} be a set of variables disjoint fromF and G. Let
hF be a mapping which, with f ∈ F of arity n, associates a context
tf ∈ T (G,Xn). The term homomorphism h : T (F) → T (G)
determined by hF is defined as follows:

h(f(t1, . . . , tn)) = tf {x1 7→ h(t1), . . . , xn 7→ h(tn)}

The term homomorphism h is called symbol-to-symbol if, for
each f ∈ F , tf = g(y1, . . . , ym) with g ∈ G, y1, . . . , ym ∈ Xn,
i.e. each tf is a context of height 1. It is called ε-free if, for each
f ∈ F , tf 6∈ Xn, i.e. each tf is a context of height at least 1.

Applying the placeholders-via-naturality principle of Hasuo et
al. [5], term homomorphisms are captured by the following type:

type TermHom f g = ∀ a . f a → Context g a
As we did for other functions on terms, we can generalise the

application of term homomorphism uniformly to contexts:

6 Actually, Thatcher [21] calls them “tree homomorphisms”. But we prefer
the notion “term” over “tree” in our context.

88

termHom :: (Functor f ,Functor g)
⇒ TermHom f g → Cxt h f a → Cxt h g a

termHom f (Term t) =
appCxt (f (fmap (termHom f) t))

termHom (Hole b) = Hole b
The use of explicit pattern matching in lieu of defining the func-
tion as a free algebra homomorphism free (appCxt . f) Hole
is essential in order to obtain this general type. In particular, the
use of the proper GADT constructor Hole , which has result type
Context g a , makes this necessary.

Of course, the polymorphic type of term homomorphisms re-
stricts the class of functions that can be defined in this way. It can be
considered as a special form of term algebra: appCxt . f is the term
algebra corresponding to the term homomorphism f . But not every
catamorphism is also a term homomorphism. For certain term al-
gebras we actually need to inspect the arguments of the functor in-
stead of only shuffling them around. For example, we cannot hope
to define the evaluation function eval as a term homomorphism.

Some catamorphisms, however, can be represented as term ho-
momorphisms, e.g. the desugaring function desug :

class (Functor f ,Functor g)⇒ Desug f g where

desugHom :: TermHom f g
Lifting term homomorphisms to sums is standard. The instances for
the functors that do not need to be desugared can be implemented
by turning a single functor application to a context of height 1, and
using overlapping instances:

simpCxt :: Functor f ⇒ f a → Context f a

simpCxt = Term . fmap Hole

instance (f :≺: g ,Functor g)⇒ Desug f g where

desugHom = simpCxt . inj
Turning to the instance for Sug , we can see why a term homomor-
phism suffices for implementing desug . In the original catamorphic
definition, we had for example

desugAlg (Neg x) = iConst (−1) ‘iMult ‘ x
Here we only need to copy the argument x of the constructor Neg
and define the appropriate context around it. This definition can be
copied almost verbatim for the term homomorphism:

desugHom (Neg x) = iConst (−1) ‘iMult‘ Hole x
We only need to embed the x as a hole. The same also applies to
the other defining equation. In order to make the definitions more
readable we add a convenience function to the class Desug :

class (Functor f ,Functor g)⇒ Desug f g where

desugHom :: TermHom f g

desugHom = desugHom ′ . fmap Hole

desugHom ′ :: Alg f (Context g a)
desugHom ′ x = appCxt (desugHom x)

Now we can actually copy the catamorphic definition one-to-one:
instance (Op :≺: f ,Val :≺: f ,Functor f)
⇒ Desug Sug f where

desugHom ′ (Neg x) = iConst (−1) ‘iMult‘ x
desugHom ′ (Swap x) = iSnd x ‘iPair ‘ iFst x

In the next two sections, we will show what we actually gain
by adopting the term homomorphism approach. We will reconsider
and address the issues that we identified in Sections 4.1 and 4.2.

4.4.1 Propagating Annotations through Term
Homomorphisms

The goal is now to take advantage of the structure of term homo-
morphisms in order to automatically propagate annotations. This
boils down to transforming a function of type TermHom f g to a
function of type TermHom (f :&: p) (g :&: p). In order to do this,
we need a function that is able to annotate a context with a fixed
annotation. Such a function is in fact itself a term homomorphism:

ann :: Functor f ⇒ p → Cxt h f a → Cxt h (f :&: p) a
ann p = termHom (simpCxt . (:&:p))

To be more precise, this function is a symbol-to-symbol term
homomorphism—(:&:p) is of type ∀ a . f a → (f :&: p) a—that
maps each constructor to exactly one constructor. The composition
with simpCxt lifts it to the type of general term homomorphisms.

The propagation of annotations is now simple:
propAnn :: Functor g ⇒ TermHom f g

→ TermHom (f :&: p) (g :&: p)
propAnn f (t :&: p) = ann p (f t)

The annotation of the current subterm is propagated to the context
created by the original term homomorphism.

This definition can now be generalised—as we did in Sec-
tion 3.3—such that it can also deal with annotations that have been
distributed over a sum of signatures. Unfortunately, the type class
RemA that we introduced for dealing with such distributed annota-
tions is not enough for this setting as we need to extract and inject
annotations now:

class DistAnn f p f ′ | f ′ → f , f ′ → p where

injectA :: p → f a → f ′ a

projectA :: f ′ a → (f a, p)
An instance of DistAnn f p f ′ indicates that signature f ′ is a
variant of f annotated with values of type p. The relevant instances
are straightforward:

instance DistAnn f p (f :&: p) where

injectA c v = v :&: c
projectA (v :&: p) = (v , p)

instance DistAnn f p f ′

⇒ DistAnn (g :+: f) p ((g :&: p) :+: f ′) where

injectA c (Inl v) = Inl (v :&: c)
injectA c (Inr v) = Inr (injectA c v)

projectA (Inl (v :&: p)) = (Inl v , p)
projectA (Inr v) = let (v ′, p) = projectA v

in (Inr v ′, p)
We can then make use of this infrastructure in the definition of

ann and propAnn :
ann :: (DistAnn f p g ,Functor f ,Functor g)
⇒ p → Cxt h f a → Cxt h g a

ann p = termHom (simpCxt . injectA p)

propAnn :: (DistAnn f p f ′,DistAnn g p g ′,Functor g ,

Functor g ′)⇒ TermHom f g → TermHom f ′ g ′

propAnn f t ′ = let (t , p) = projectA t ′ in ann p (f t)
We can now use propAnn to propagate source position infor-

mation from a full AST to its desugared version:
type SigP ′ = Sug :&: Pos :+: SigP

desugHom ′ :: TermHom SigP ′ SigP

desugHom ′ = propAnn desugHom

4.4.2 Composing Term Homomorphisms

Another benefit of the function type of term homomorphisms over
term algebras is the simple fact that its domain f a is independent
of the target signature g :

type TermHom f g = ∀ a . f a → Context g a
This enables us to compose term homomorphisms:
(⊚) :: (Functor g ,Functor h)⇒
TermHom g h → TermHom f g → TermHom f h

f ⊚ g = termHom f . g
Here we make use of the fact that termHom also allows us to apply
a term homomorphism to a proper context—termHom f has type
∀ a . Context g a → Context h a .

Although the occurrence of the target signature in the domain of
term algebras prevents them from being composed with each other,
the composition with a term homomorphism is still possible:

89

(�) :: Functor g ⇒ Alg g a → TermHom f g → Alg f a

alg � talg = free alg id . talg
The ability to compose term homomorphisms with term alge-

bras or other term homomorphisms allows us to perform program
transformations in the vein of short-cut fusion [4]. For an example,
recall that we have extended the evaluation to terms over Sig ′ by
precomposing the evaluation function with the desugaring function:

eval ′ :: Term Sig ′ → Term Val

eval ′ = eval . desug
The same can be achieved by composing on the level of algebras
respectively term homomorphisms instead of the level of functions:

eval ′ :: Term Sig ′ → Term Val

eval ′ = cata (evalAlg � desugHom)
Using the rewrite mechanism of GHC [7], we can make this

optimisation automatic, by including the following rewrite rule:
"cata/termHom" ∀ (a :: Alg g d) (h :: TermHom f g) x .

cata a (termHom h x) = cata (a � h) x
One can easily show that this transformation is sound. Moreover,
a similar rule can be devised for composing two term homomor-
phisms. The run-time benefits of these optimisation rules are con-
siderable as we will see in Section 6.2.

4.4.3 Monadic Term Homomorphisms

Like catamorphisms, we can also easily lift term homomorphisms
to monadic computations. We only need to lift the computations to
a monadic type and use mapM instead of fmap for the recursion
respectively use monadic function composition <=< instead of pure
function composition:

type TermHomM m f g = ∀ a . f a → m (Context g a)

termHomM :: (Traversable f ,Functor g ,Monad m)
⇒ TermHomM m f g → Cxt h f a → m (Cxt h g a)

termHomM f (Term t) =
liftM appCxt . f <=<mapM (termHomM f) t

termHomM (Hole b) = return (Hole b)
The same strategy yields monadic variants of ⊚ and �

(⊚̂) :: (Traversable g ,Functor h,Monad m)⇒
TermHomM m g h → TermHomM m f g

→ TermHomM m f h

f ⊚̂ g = termHomM f <=< g

(�̂) :: (Traversable g ,Monad m)⇒
AlgM m g a → TermHomM m f g → AlgM m f a

alg �̂ talg = freeM alg return <=< talg
In contrast to pure term homomorphisms, one has to be careful
when applying these composition operators: The fusion equation

termHomM (f ⊚̂ g) = termHomM f <=< termHomM g
does not hold in general! However, Fokkinga [3] showed that for
monads satisfying a certain distributivity law, the above equation
indeed holds. An example of such a monad is the Maybe monad.
Furthermore, the equation is also true whenever one of the term
homomorphisms is in fact pure, i.e. of the form return . h for a
non-monadic term homomorphism h . The same also applies to the
fusion equation for �̂. Nevertheless, it is still possible to devise
rewrite rules that perform short-cut fusion under these restrictions.

An example of a monadic term homomorphism is the following
function that recursively coerces a term to a sub-signature:

deepProject :: (Functor g ,Traversable f , g :≺: f)
⇒ Term f → Maybe (Term g)

deepProject = termHomM (liftM simpCxt . proj)
As proj is, in fact, a monadic symbol-to-symbol term homomor-
phism we have to compose it with simpCxt to obtain a general
monadic term homomorphism.

4.5 Beyond Catamorphisms

So far we have only considered (monadic) algebras and their
(monadic) catamorphisms. It is straightforward to implement the
machinery for programming in coalgebras and their anamorphisms:

type Coalg f a = a → f a

ana :: Functor f ⇒ Coalg f a → a → Term f

ana f x = Term (fmap (ana f) (f x))
In fact, also more advanced recursion schemes can be accounted
for in our framework: This includes paramorphisms and histomor-
phisms as well as their dual notions of apomorphisms and futu-
morphisms [23]. Similarly, monadic variants of these recursion
schemes can be derived using the type class Traversable .

As an example of the abovementioned recursion schemes, we
want to single out futumorphisms, as they can be represented con-
veniently using contexts and in fact are more natural to program
than run-of-the-mill anamorphisms. The algebraic counterpart of
futumorphisms are cv-coalgebras [23]. In their original algebraic
definition they look rather cumbersome (cf. [23, Ch. 4.3]). If we
implement cv-coalgebras in Haskell using contexts, the computa-
tion they denote becomes clear immediately:

type CVCoalg f a = a → f (Context f a)
Anamorphisms only allow us to construct the target term one

layer at a time. This can be plainly seen from the type a →
f a of coalgebras. Futumorphisms on the other hand allow us
to construct an arbitrary large part of the target term. Instead of
only producing a single application of a constructor, cv-coalgebras
produce a non-empty context, i.e. a context of height at least 1.
The non-emptiness of the produced contexts guarantees that the
resulting futumorphism is productive.

For the sake of brevity, we lift this restriction to non-empty
contexts and consider generalised cv-coalgebras:

type CVCoalg f a = a → Context f a
Constructing the corresponding futumorphism is simple and almost
the same as for anamorphisms:

futu :: Functor f ⇒ CVCoalg f a → a → Term f

futu f x = appCxt (fmap (futu f) (f x))
Generalised cv-coalgebras also occur when composing a coal-

gebra and a term homomorphism, which can be implemented by
plain function composition:

compCoa :: TermHom f g → Coalg f a → CVCoalg g a

compCoa hom coa = hom . coa
This can then be lifted to the composition of a generalised cv-
coalgebra and a term homomorphism, by running the term homo-
morphism:

compCVCoalg :: (Functor f ,Functor g)
⇒ TermHom f g → CVCoalg f a → CVCoalg g a

compCVCoalg hom coa = termHom hom . coa
With generalised cv-coalgebras one has to be careful, though, as
they might not be productive. However, the above constructions
can be replicated with ordinary cv-coalgebras. Instead of general
term homomorphisms, we have to restrict ourselves to ε-free term
homomorphisms [2] which are captured by the type:

type TermHom ′ f g = ∀ a . f a → g (Context g a)
This illustrates that with the help of contexts, (generalised) futu-

morphisms provide a much more natural coalgebraic programming
model than anamorphisms.

5. Mutually Recursive Data Types and GADTs

Up to this point we have only considered the setting of a single re-
cursively defined data type. We argue that this is the most common
setting in the area we are targeting, viz. processing and analysing
abstract syntax trees. Sometimes it is, however, convenient to en-
code certain invariants of the data structure, e.g. well-typing of
ASTs, as mutually recursive data types or GADTs. In this section,

90

we will show how this can be encoded as a family of compositional
data types by transferring the construction of Johann and Ghani [6]
to compositional data types.

Recall that the idea of representing recursive data types as fixed
points of functors is to abstract from the recursive reference to the
data type that should be defined. Instead of a recursive data type

data Exp = · · · | Mult Exp Exp | Fst Exp
we define a functor

data Sig e = · · · | Mult e e | Fst e
The trick for defining mutually recursive data types is to use

phantom types as labels that indicate which data type we are cur-
rently in. As an example, reconsider our simple expression lan-
guage over integers and pairs. But now we define them in a family
of two mutually recursive data types in order to encode the expected
invariants of the expression language, e.g. the sum of two integers
yields an integer:

data IExp = Const Int | Mult IExp IExp

| Fst PExp | Snd PExp

data PExp = Pair IExp IExp
We can encode this on signatures by adding an additional type

argument which indicates the data types we are expecting as argu-
ments to the constructors:

data Pair

data ISig e l = Const Int | Mult (e Int) (e Int)
| Fst (e Pair) | Snd (e Pair)

data PSig e l = Pair (e Int) (e Int)
Notice that the type variable e that is inserted in lieu of recursion
is now of kind ∗ → ∗ as we consider a family of types. The
“label type”—Int respectively Pair—then selects the desired type
from this family. The definitions above, however, only indicate
which data type we are expecting, e.g. Mult expects two integer
expressions and Swap a pair expression. In order to also label the
result type accordingly, we rather want to define ISig and PSig as

data ISig e Int = ...

data PSig e Pair = ...
Using GADTs we can do this, although in a syntactically more
verbose way:

data ISig e l where

Const :: Int → ISig e Int

Mult :: e Int → e Int → ISig e Int

Fst ,Snd :: e Pair → ISig e Int

data PSig e l where

Pair :: e Int → e Int → PSig e Pair
Notice that signatures are not functors of kind ∗ → ∗ anymore.
Instead, they have the kind (∗ → ∗) → (∗ → ∗), thus adding one
level of indirection.

Following previous work [6, 16], we can formulate the actual
recursive definition of terms as follows:

data Term f l = Term (f (Term f) l)
The first argument f is a signature, i.e. has the kind (∗ → ∗) →
(∗ → ∗). The type constructor Term recursively applies the
signature f while propagating the label l according to the signature.
Note that Term f is of kind ∗ → ∗. A value of type Term f l
is a mutually recursive data structure with topmost label l . In the
recursive definition, Term f is applied to a signature f , i.e. in the
case of f being ISig or PSig it instantiates the type variable e in
their respective definitions. The type signatures of ISig and PSig
can thus be read as propagation rules for the labels: For example,
Fst takes a term with top-level labeling Pair and returns a term
with top-level labeling Int .

5.1 Higher-Order Functors

It is important to realise that the transition to a family of mutually
recursive data types amounts to nothing more than adding a layer

of indirection. A signature, which has previously been a functor, is
now a (generalised) higher-order functor [6]:

type f →̇ g = ∀ a . f a → g a

class HFunctor h where

hfmap :: f →̇ g → h f →̇ h g

instance HFunctor ISig where

hfmap (Const i) = Const i

hfmap f (Mult x y) = Mult (f x) (f y)
hfmap f (Fst x) = Fst (f x)

The function hfmap witnesses that a natural transformation f →̇ g
from functor f to functor g is mapped to a natural transformation
h f →̇ h g .

Observe the simplicity of the pattern that we used to lift our
representation of compositional data types to mutually recursive
types: Replace functors with higher-order functors, and instead of
the function space→ consider the natural transformation space →̇.
This simple pattern will turn out to be sufficient in order to lift most
of the concepts of compositional data types to mutually recursive
data types. Sums and injections can thus be represented as follows:

data (f :+: g) (a :: ∗ → ∗) l = Inl (f a l) | Inr (g a l)

type NatM m f g = ∀ i . f i → m (g i)

class (sub :: (∗ → ∗)→ ∗ → ∗) :≺: sup where

inj :: sub a →̇ sup a

proj ::NatM Maybe (sup a) (sub a)
Lifting HFunctor instances to sums works in the same way as we
have seen for Functor . The same goes for instances of :≺:.

With the summation :+: in place we can define the family of
data types that defines integer and pair expressions:

type Expr = Term (ISig :+: PSig)
This is indeed a family of types. We obtain the type of integer
expressions with Expr Int and the type of pair expressions as
Expr Pair .

5.2 Representing GADTs

Before we continue with lifting recursion schemes such as cata-
morphisms to the higher-order setting, we reconsider our example
of mutually recursive data types. In contrast to the representation
using a single recursive data type, the definition of IExp and PExp
does not allow nested pairs—pairs are always built from integer
expressions. The same goes for Expr Int and Expr Pair , respec-
tively. This restriction is easily lifted by using a GADT instead:

data SExp l where

Const :: Int → SExp Int

Mult :: SExp Int → SExp Int → SExp Int

Fst :: SExp (s, t)→ SExp s

Snd :: SExp (s, t)→ SExp t

Pair :: SExp s → SExp t → SExp (s, t)
This standard GADT representation can be mapped directly to our
signature definitions. However, instead of defining a single GADT,
we proceed as we did with non-mutually recursive compositional
data types. We split the signature into values and operations:

data Val e l where

Const :: Int → Val e Int

Pair :: e s → e t → Val e (s, t)
data Op e l where

Mult :: e Int → e Int → Op e Int

Fst :: e (s, t)→ Op e s

Snd :: e (s, t)→ Op e t

type Sig = Op :+:Val
Combining the above two signatures then yields the desired family
of mutually recursive data types Term Sig ∼= SExp .

This shows that the transition to higher-order functors also al-
lows us to naturally represent GADTs in a modular fashion.

91

5.3 Recursion Schemes

We shall continue to apply the pattern for shifting to mutually re-
cursive data types: Replace Functor with HFunctor and function
space → with the space of natural transformations →̇. Take, for
example, algebras and catamorphisms:

type Alg f a = f a →̇ a

cata :: HFunctor f ⇒ Alg f a → Term f →̇ a

cata f (Term t) = f (hfmap (cata f) t)
Now, an algebra has a family of types a :: ∗ → ∗ as carrier.

That is, we have to move from algebras to many-sorted algebras.
Representing many-sorted algebras comes quite natural in most
cases. For example, the evaluation algebra class can be recast as
a many-sorted algebra class as follows:

class Eval e v where

evalAlg ::Alg e (Term v)

eval :: (HFunctor e,Eval e v)⇒ Term e →̇Term v

eval = cata evalAlg
Here, we can make use of the fact that Term v is in fact a family
of types and can thus be used as a carrier of a many-sorted algebra.

Except for the slightly more precise type of projC and projP ,
the definition of Eval is syntactically equal to its non-mutually
recursive original from Section 2.1:

instance (Val :≺: v)⇒ Eval Val v where

evalAlg = inject

instance (Val :≺: v)⇒ Eval Op v where

evalAlg (Mult x y) = iConst $ projC x ∗ projC y

evalAlg (Fst x) = fst $ projP x

evalAlg (Snd x) = snd $ projP x

projC :: (Val :≺: v)⇒ Term v Int → Int

projC v = case project v of Just (Const n)→ n

projP :: (Val :≺: v)⇒ Term v (s, t)
→ (Term v s,Term v t)

projP v = case project v of Just (Pair x y)→ (x , y)
In some cases, it might be a bit more cumbersome to define and

use the carrier of a many-sorted algebra. However, most cases are
well-behaved and we can use the family of terms Term f as above
or alternatively the identity respectively the constant functor:

data I a = I {unI :: a }
data K a b = K {unK :: a }
For example, a many-sorted algebra class to evaluate expres-

sions directly into Haskell values of the corresponding types can be
defined as follows:

class EvalI f where

evalAlgI :: Alg f I

evalI :: (EvalI f ,HFunctor f)⇒ Term f t → t

evalI = unI . cata evalAlgI
The lifting of other recursion schemes whether algebraic or

coalgebraic can be achieved in the same way as illustrated for cata-
morphisms above. The necessary changes are again quite simple.
Similarly to the type class HFunctor , we can obtain lifted versions
of Foldable and Traversable which can then be used to implement
generic programming techniques and to perform monadic compu-
tations, respectively. The generalisation of terms to contexts and the
corresponding notion of term homomorphisms is also straightfor-
ward. The same short-cut fusion rules that we have considered for
simple compositional data types can be implemented without any
surprises as well.

The only real issue worth mentioning is that the generic query-
ing combinator query needs to produce result values of a fixed type
as opposed to a family of types. The propagation of types defined
by GADTs cannot be captured by the simple pattern of the querying
combinator. Thus, the querying combinator is typed as follows:

query ::HFoldable f ⇒ (∀ i . Term f i → r)
→ (r → r → r)→ Term f i → r

For the subs combinator, which produces a list of all subterms, the
issue is similar: Term f is a type family, thus [Term f] is not a
valid type. However, we can obtain the desired type of list of terms
by existentially quantifying over the index type using the GADT

data A f = ∀ i .A (f i)
The type of subs can now be stated as follows:

subs :: HFoldable f ⇒ Term f i → [A (Term f)]

6. Practical Considerations

Besides showing the expressiveness and usefulness of the frame-
work of compositional data types, we also want to showcase its
practical applicability as a software development tool. To this end,
we consider aspects of usability and performance impacts as well.

6.1 Generating Boilerplate Code

The implementation of recursion schemes depends on the signa-
tures being instances of the type class Functor . For generic pro-
gramming techniques and monadic computations, we rely on the
type classes Foldable and Traversable , respectively. Addition-
ally, higher-order functors necessitate a set of lifted variants of
the abovementioned type classes. That is a lot of boilerplate code!
Writing and maintaining this code would almost entirely defeat the
advantage of using compositional data types in the first place.

Luckily, by leveraging Template Haskell [18], instance dec-
larations of all generic type classes that we have mentioned in
this paper can be generated automatically at compile time simi-
lar to Haskell’s deriving mechanism. Even though some Haskell
packages such as derive already provide automatically derived in-
stances for some of the standard classes like Functor , Foldable
and Traversable , we chose to implement the instance generators
for these as well. The heavy use of the methods of these classes for
implementing recursion schemes means that they contribute con-
siderably to the computational overhead! Automatically deriving
instance declarations with carefully optimised implementations of
each of the class methods, have proven to yield substantial run-time
improvements, especially for monadic computations.

We already mentioned that we assume with each constructor
Constr :: t1 → · · · → tn → f a

of a signature f , a smart constructor defined by
iConstr :: f :≺: g ⇒ s1 → · · · → sn → Term g

iConstr x1 . . . xn = inject $ Constr x1 . . . xn
where the types si are the same as ti except with occurrences of the
type variable a replaced by Term g . These smart constructors can
be easily generated automatically using Template Haskell.

Another issue is the declaration of instances of type classes Eq ,
Ord and Show for types of the form Term f . This can be achieved
by lifting these type classes to functors, e.g. for Eq :

class EqF f where

eqF :: Eq a ⇒ f a → f a → Bool
From instances of this class, corresponding instances of Eq for
terms and contexts can be derived:

instance (EqF f ,Eq a)⇒ Eq (Cxt h f a) where

(≡) (Term t1) (Term t2) = t1 ‘eqF ‘ t2
(≡) (Hole h1) (Hole h2) = h1 ≡ h2

(≡) = False
Instances of EqF , OrdF and ShowF can be derived straightfor-

wardly using Template Haskell which then yield corresponding in-
stances of Eq , Ord and Show for terms and contexts. The thus ob-
tained instances are equivalent to the ones obtained from Haskell’s
deriving mechanism on corresponding recursive data types.

Figure 1 demonstrates the complete source code needed in order
to implement some of the earlier examples in our library.

92

import Data.Comp
import Data.Comp.Derive

import Data.Comp.Show ()
import Data.Comp.Desugar

data Val e = Const Int | Pair e e
data Op e = Mult e e | Fst e | Snd e

data Sug e = Neg e | Swap e
type Sig = Op :+: Val
type Sig’ = Sug :+: Sig

$(derive [makeFunctor, makeFoldable, makeTraversable,

makeShowF, smartConstructors] [’’Val, ’’Op, ’’Sug])

-- ∗ Term Evaluation
class Eval f v where evalAlg :: Alg f (Term v)

$(derive [liftSum] [’’Eval]) -- lift Eval to coproducts

eval :: (Functor f, Eval f v) ⇒ Term f → Term v
eval = cata evalAlg

instance (Val :<: v) ⇒ Eval Val v where
evalAlg = inject

instance (Val :<: v) ⇒ Eval Op v where

evalAlg (Mult x y) = iConst $ projC x ∗ projC y
evalAlg (Fst x) = fst $ projP x
evalAlg (Snd x) = snd $ projP x

projC :: (Val :<: v) ⇒ Term v → Int

projC v = case project v of Just (Const n) → n

projP :: (Val :<: v) ⇒ Term v → (Term v, Term v)
projP v = case project v of Just (Pair x y) → (x,y)

-- ∗ Desugaring
instance (Op :<: f, Val :<: f, Functor f) ⇒ Desugar Sug f where

desugHom’ (Neg x) = iConst (-1) ‘iMult‘ x
desugHom’ (Swap x) = iSnd x ‘iPair‘ iFst x

eval’ :: Term Sig’ → Term Val
eval’ = eval . (desugar :: Term Sig’ → Term Sig)

Figure 1. Example usage of the compositional data types library.

6.2 Performance Impact

In order to minimise the overhead of the recursion schemes, we
applied some simple optimisations to the implementation of the
recursion schemes themselves. For example, cata is defined as

cata :: ∀ f a . Functor f ⇒ Alg f a → Term f → a

cata f = run

where run :: Term f → a

run (Term t) = f (fmap run t)
The biggest speedup, however, can be obtained by providing auto-
matically generated, carefully optimised implementations for each
method of the type classes Foldable and Traversable .

In order to gain speedup in the implementation of generic
programming combinators, we applied the same techniques as
Mitchell and Runciman [12] by leveraging short-cut fusion [4]
via build . The subs combinator is thus defined as:

subs :: ∀ f . Foldable f ⇒ Term f → [Term f]
subs t = build (f t) where

f :: Term f → (Term f → b → b)→ b → b

f t cons nil = t ‘cons ‘
foldl (λu s → f s cons u) nil (unTerm t)

Instead of building the result list directly, we use the build combi-
nator which then can be eliminated if combined with a consumer
such as a fold or a list comprehension.

Table 1 shows the run-time performance of our framework for
various functions dealing with ASTs: Desugaring (desug), type in-

Function hand-written random (10) random (20)

desugHom 3.6 · 10−1 5.0 · 10−3 6.1 · 10−6

desugCata 1.8 · 10−1 4.41 · 10−3 5.3 · 10−6

inferDesug (3.38) 1.11 (3.45) 1.52 (3.14) 0.82
inferDesugM (2.68) 1.38 (2.87) 1.61 (2.79) 0.84
infer 2.39 2.29 2.65
inferM 1.06 1.30 1.68
evalDesug (6.40) 2.64 (3.13) 1.79 (4.74) 0.89
evalDesugM (7.32) 4.34 (6.22) 3.47 (9.69) 2.98
eval 2.58 1.84 1.64
evalDirect 6.10 3.96 3.62
evalM 3.41 4.78 7.52
evalDirectM 5.72 4.90 4.56
contVar 1.92 1.97 3.22
freeVars 1.23 1.26 1.41

contVarC 10.05 7.01 11.68
contVarU 8.24 5.64 11.21
freeVarsC 2.34 2.04 1.68
freeVarsU 2.03 1.75 1.58

Table 1. Run-time of functions on compositional data types (as
multiples of the run-time of an implementation using ordinary
algebraic data types).

ference (infer), expression evaluation (eval), and listing respec-
tively searching for free variables (freeVars , contVar). The Hom
and Cata version of desug differ in that the former is defined as
a term homomorphism, the latter as a catamorphism. For eval and
infer , the suffix Desug indicates that the computation is prefixed
by a desugaring phase (using desugHom), the suffix M indicates
monadic variants (for error handling), and Direct indicates that the
function was implemented not as a catamorphism but using explicit
recursion. The numbers in the table are multiples of the run-time
of an implementation using ordinary algebraic data types and re-
cursion. The numbers in parentheses indicate the run-time factor
if the automatic short-cut fusion described in Section 4.4.2 is dis-
abled. Each function is tested on three different inputs of increasing
size. The first is a hand-written “natural” expression consisting of
16 nodes. The other two expressions are randomly generated ex-
pressions of depth 10 and 20, respectively, which corresponds to
approximately 800 respectively 200,000 nodes. This should reveal
how the overhead of our framework scales. The benchmarks were
performed with the criterion framework using GHC 7.0.2 with op-
timisation flag -O2.

As a pleasant surprise, we observe that the penalty of using com-
positional data types is comparatively low. It is in the same ball-
park as for generic programming libraries [12, 15]. For some func-
tions we even obtain a speedup! The biggest surprise is, however,
the massive speedup gained by the desugaring function. In both
its catamorphic and term-homomorphic version, it seems to per-
form asymptotically better than the classic implementation, yield-
ing a speedup of over five orders of magnitude. We were also sur-
prised to see that (except for one case) functions programmed as
catamorphisms outperformed functions using explicit recursion! In
fact, with GHC 6.12, the situation was reversed.

Moreover, we observe that the short-cut fusion rules imple-
mented in our framework uniformly yield a considerable speedup
of up to factor five. As a setback, however, we have to recognise
that implementing desugaring as a term homomorphism yields a
slowdown of factor up to two compared to its catamorphic version.

Finally, we compared our implementation of generic program-
ming techniques with Uniplate [12], one of the top-performing
generic programming libraries. In particular, we looked at its
universe combinator which computes the list of all subexpres-

93

sions. We have implemented this combinator in our framework as
subs . In Table 1, our implementation is indicated by the suffix C ,
the Uniplate implementation, working on ordinary algebraic data
types, is indicated by U . We can see that we are able to obtain
comparable performance in all cases.

7. Discussion

Starting from Swierstra’s Data types à la carte [20], we have con-
structed a framework for representing data types in a compositional
fashion that is readily usable for practical applications. Our biggest
contribution is the generalisation of terms to contexts which allow
us to capture the notion of term homomorphisms. Term homomor-
phisms provide a rich structure that allows flexible reuse and en-
ables simple but effective optimisation techniques. Moreover, term
homomorphisms can be easily extended with a state. Depending on
how the state is propagated, this yields bottom-up respectively top-
down tree transducers [2]. The techniques for short-cut fusion and
propagation of annotations can be easily adapted.

7.1 Related Work

The definition of monadic catamorphisms that we use goes back
to Fokkinga [3]. He only considers monads satisfying a certain
distributivity law. However, this distributivity is only needed for
the fusion rules of Section 4.4.3 to be valid. Steenbergen et al. [22]
use the same approach to implement catamorphisms with errors. In
contrast, Visser and Löh [24] consider monadic catamorphism for
which the monadic effect is part of the term structure.

The construction to add annotations to functors is also employed
by Steenbergen et al. [22] to add detailed source position annota-
tions to ASTs. However, since they are considering general cata-
morphisms, they are not able to provide a means to propagate an-
notations. Moreover, since Steenbergen et al. do not account for
sums of functors, the distribution of annotations over sums is not
an issue for them. Visser and Löh [24] consider a more general form
of annotations via arbitrary functor transformations. Unfortunately,
this generality prohibits the automatic propagation of annotations
as well as their distribution over sums.

Methods to represent mutually recursive data types as fixed
points of (regular) functors have been explored to some extent [1,
8, 16, 19]. All of these techniques are limited to mutually recursive
data types in which the number of nested data types is limited up
front and are thus not compositional. However, in the representation
of Yakushev et al. [16], the restriction to mutually recursive data
types with a closed set of constituent data types was implemented
intentionally. Our representation simply removes these restrictions
which would in fact add no benefit in our setting. The resulting
notion of higher-order functors that we considered was also used
by Johann and Ghani [6] in order to represent GADTs.

7.2 Future Work

There are a number of aspects that are still missing which should be
the subject of future work: As we have indicated, the restriction of
the subtyping class :≺: hinders full compositionality of signature
summation :+:. A remedy could be provided with a richer type
system as proposed by Yorgey [26]. This would also allow us to
define the right-distributivity of annotations :&: over sums :+: more
directly by a type family. Alternatively, this issue can be addressed
with type instance-chains as proposed by Morris and Jones [13].
Another issue of Swierstra’s original work is the project function
which allows us to inspect terms ad-hoc. Unfortunately, it does not
allow us to give a complete case analysis. In order to provide this,
we need a function of type

(f :≺: g)⇒ Term g → Either (f (Term g))
((g :−: f) (Term g))

which allows us to match against the “remainder signature” g :−: f .

References

[1] R. Bird and R. Paterson. Generalised folds for nested datatypes.
Formal Aspects of Computing, 11(2):200–222, 1999.

[2] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and

Applications. 2007. Draft.

[3] M. Fokkinga. Monadic Maps and Folds for Arbitrary Datatypes. Tech-
nical report, Memoranda Informatica, University of Twente, 1994.

[4] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. In FPCA ’93, pages 223–232. ACM, 1993.

[5] I. Hasuo, B. Jacobs, and T. Uustalu. Categorical Views on Computa-
tions on Trees (Extended Abstract). In L. Arge, C. Cachin, T. Jurdzin-
ski, and A. Tarlecki, editors, Automata, Languages and Programming,
volume 4596 of LNCS, pages 619–630. Springer, 2007.

[6] P. Johann and N. Ghani. Foundations for structured programming with
GADTs. In POPL ’08, pages 297–308. ACM, 2008.

[7] S. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as
a practical optimisation technique in GHC. In Haskell Workshop ’01,
pages 203–233, 2001.

[8] G. Malcolm. Data structures and program transformation. Science of
Computer Programming, 14(2-3):255 – 279, 1990.

[9] S. Marlow. Haskell 2010 Language Report, 2010.

[10] C. McBride and R. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(01):1–13, 2008.

[11] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In FPCA ’91, pages
124–144. ACM, 1991.

[12] N. Mitchell and C. Runciman. Uniform boilerplate and list processing.
In Haskell Workshop ’07, pages 49–60. ACM, 2007.

[13] J. G. Morris and M. P. Jones. Instance chains: type class programming
without overlapping instances. In ICFP ’10, pages 375–386, 2010.

[14] A. Rodriguez Yakushev, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov,
and B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. In Haskell Workshop ’08, pages 111–122. ACM, 2008.

[15] A. Rodriguez Yakushev, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov,
and B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. Technical report, Department of Information and Comput-
ing Sciences, Utrecht University, 2008.

[16] A. Rodriguez Yakushev, S. Holdermans, A. Löh, and J. Jeur-
ing. Generic programming with fixed points for mutually recursive
datatypes. In ICFP ’09, pages 233–244. ACM, 2009.

[17] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Com-
plete and decidable type inference for GADTs. In ICFP ’09, pages
341–352. ACM, 2009.

[18] T. Sheard and S. P. Jones. Template meta-programming for Haskell.
In Haskell Workshop ’02, pages 1–16. ACM, 2002.

[19] S. Swierstra, P. Azero Alcocer, and J. Saraiva. Designing and im-
plementing combinator languages. In S. Swierstra, J. Oliveira, and
P. Henriques, editors, Advanced Functional Programming, volume
1608 of LNCS, pages 150–206. Springer, 1999.

[20] W. Swierstra. Data types à la carte. Journal of Functional Program-

ming, 18(4):423–436, 2008.

[21] J. W. Thatcher. Tree automata: an informal survey, chapter 4, pages
143–178. Prentice Hall, 1973.

[22] M. Van Steenbergen, J. P. Magalhães, and J. Jeuring. Generic selec-
tions of subexpressions. In WGP ’10, pages 37–48. ACM, 2010.

[23] V. Vene. Categorical programming with inductive and coinductive

types. Phd thesis, University of Tartu, Estonia, 2000.

[24] S. Visser and A. Löh. Generic storage in Haskell. In WGP ’10, pages
25–36. ACM, 2010.

[25] P. Wadler. The Expression Problem. http://homepages.inf.ed.
ac.uk/wadler/papers/expression/expression.txt, 1998.

[26] B. Yorgey. Typed type-level functional programming in GHC. Talk at
Haskell Implementors Workshop, 2010.

94

