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Non-Terminating Rewriting Systems
Termination guarantees that every reduction sequence leads to a normal
form, i.e. a �nal outcome.

Non-terminating systems can be meaningful

modelling reactive systems, e.g. by process calculi

approximation algorithms which enhance the accuracy of the
approximation with each iteration, e.g. computing π

speci�cation of in�nite data structures, e.g. streams

Example (In�nite lists)

Rnats =
{

from(x)→ x : from(s(x))

from(0)

intuitively this converges to the in�nite list 0 : 1 : 2 : 3 : 4 : 5 : . . . .
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In�nitary Rewriting

What is in�nitary rewriting?

formalises the outcome of an in�nite reduction sequence

allows reduction sequences of any ordinal number length

deals with (potentially) in�nite terms

Why consider in�nitary rewriting?

model for lazy functional programming

semantics for non-terminating systems

semantics for process algebras

arises in cyclic term graph rewriting
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Formalising In�nitary Term Rewriting

Complete metric on terms

terms are endowed with a
complete metric in order to
formalise the convergence of
in�nite reductions.

metric distance between terms:

d(s, t) = 2−sim(s,t)

sim(s, t) = minimum depth d

s.t. s and t di�er at depth d

sim(s, t) = maximum depth d

s.t. truncated at depth d , s and
t are equal

Example

1 level

f

a f

b c

f

a g

a

s td( , ) = 2−1

2 levels

f

a g

a

f

a g

b

u vd( , ) = 2−2
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Weak Convergence of Trans�nite Reductions

Weak convergence via metric d

convergence in the metric space (T ∞(Σ,V),d)

depth of the di�erences between the terms has to tend to in�nity

7



Example: Weak Convergence
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Trans�nite Reductions

Example (In�nite lists)

Rzip =


zip(nil , y)→ nil

zip(x , nil)→ nil

zip(x : x ′, y : y ′)→ (x , y) : zip(x ′, y ′)

zip(from(0), a : b : c : nil)

�ω zip(0 : 1 : 2 : 3 : 4 . . . , a : b : c : nil)

→ (0, a) : zip(1 : 2 : 3 : 4 : . . . , b : c : nil)

→ (0, a) : (1, b) : zip(2 : 3 : 4 : . . . , c : nil)

→ (0, a) : (1, b) : (2, c) : zip(3 : 4 : . . . , nil)

→ (0, a) : (1, b) : (2, c) : nil

�nal outcome is a �nite term!
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Strong Convergence of Trans�nite Reductions

Weak convergence is hard to deal with

there might be terms only reachable after more than ω steps

orthogonal systems are not con�uent

not necessarily normalising

Strong convergence via increasing redex depth

conservative underapproximation of convergence in the metric space

rewrite rules have to be applied at (eventually) increasingly large depth

the limit is then de�ned by the metric space

 for strong convergence the depth of redexes has to tend to in�nity
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Example: Weakly but not Strongly Converging

f (g(x))→ f (g(g(x)))

f

g

c
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Moving to Term Graphs � Why?

Simulating in�nitary term rewriting

term graphs allow to �nitely represent rational terms

certain in�nite term reductions can be represented as �nite term graph
reductions [Kennaway et al.]

in�nitary term rewriting ⇔ cyclic term graph rewriting?

Calculi with explicit sharing and recursion

adding letrec to λ-calculus breaks con�uence

however: unique in�nite normal forms can be de�ned [Ariola & Blom]

in�nitary con�uence?

We need a in�nitary rewriting counterpart on term graphs!
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Convergence on Term Graph Reductions � How?

A metric on term graphs?

a metric seems too �unstructured� for the rich structure of term graphs

how should sharing be captured by the metric?

what is an appropriate notion of depth in a term graph?

Example

n

m

d

d ′ < d

15
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Reconsidering In�nitary Term Rewriting

In�nitary rewriting on terms �more structure�

the metric on terms is beautifully simple

it is just enough for convergence on terms

More structure on term graphs

for term graphs, we need more structure

but: maybe we can obtain a metric space in the end

In�nitary term rewriting with more structure

borrowing from domain theory

partial orders have been widely used to obtain a more structure view
on terms
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Partial Order Model of In�nitary Rewriting
Described on the example of terms

Partial order on terms

partial terms: terms with additional constant ⊥ (read as �unde�ned�)

partial order ≤⊥ reads as: �is less de�ned than�

≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms

weak convergence: limit inferior of the terms of the reduction

strong convergence: limit inferior of the contexts of the reduction
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An Example
Reduction sequence for f (x , y)→ f (y , x)

f

a f

g

a

g

b

f

a f

g

b

g

a

f

a f

g

a

g

b

Weak convergence

f

a f

g

⊥

g

⊥

Strong convergence

f

a ⊥
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Properties of the Partial Order Model on Terms

Bene�ts

more �ne-grained than the metric model

more intuitive than the metric model

subsumes metric model

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

1 S : s ↪→p t is total i� S : s ↪→m t. (weak convergence)

2 S : s �p t is total i� S : s �m t. (strong convergence)

19



Properties of the Partial Order Model on Terms

Bene�ts

more �ne-grained than the metric model

more intuitive than the metric model

subsumes metric model

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

1 S : s ↪→p t is total i� S : s ↪→m t. (weak convergence)

2 S : s �p t is total i� S : s �m t. (strong convergence)

19



A Partial Order on Term Graphs � How?

Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)

How to de�ne the partial order ≤⊥ on term trees?

We need a means to substitute '⊥'s.

⊥-homomorphisms ϕ : g →⊥ h

homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes

20
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A ⊥-Homomorphism

g

f

⊥

g

g

⊥ ⊥

g

f

f

a

g

g

ϕ : g h⊥
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g
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g

g
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⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t i� ∃ϕ : s →⊥ t

Theorem

For all g , h ∈ G∞(Σ⊥), let g ≤1
⊥ h be de�ned i� there is some ϕ : g →⊥ h.

The pair (G∞C (Σ⊥),≤1
⊥) forms a complete semilattice.

Alas, ≤1
⊥ has some quirks!

introduces sharing

total term graphs not necessarily
maximal

but: we should not dismiss it too fast!

f

c c

f

c

≤1
⊥

22
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Avoiding Sharing

De�nition (injective ⊥-homomorphisms)

For all g , h ∈ G∞(Σ⊥), let g ≤2
⊥ h be de�ned i� there is some ϕ : g →⊥ h

injective on all (non-⊥-) nodes.

Greatest lower bounds w.r.t. ≤2
⊥

f

c c

f

c

u2⊥ = ?

f

⊥ c

f

c ⊥
, ,≥2

⊥

In particular, ≤2
⊥ is not a complete semilattice!

Theorem

The pair (G∞C (Σ⊥),≤2
⊥) forms a complete partial order.
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Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥ ⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing

24



Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥ ⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing

24



Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥ ⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing

24



Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥

⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing

24



Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥

⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing

24



Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥

⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing

24



Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥

⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing

24



Sharing-Preserving ⊥-homomorphisms
De�nition

For all g , h ∈ G∞(Σ⊥), let g ≤3
⊥ h be de�ned i� there is some ϕ : g →⊥ h

with Pg (n) = Ph(ϕ(n)) for all non-⊥-nodes n in g .

Theorem

The pair (G∞C (Σ⊥),≤3
⊥) forms a complete semilattice.

≤3
⊥ is quite restrictive!

h

h

⊥

h

h

≤3
⊥
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Acyclic Sharing

Acyclic Paths

We only consider the set Pa
g (n) of minimal paths to n.

De�nition

For all g , h ∈ G∞(Σ⊥), let g ≤4
⊥ h be de�ned i� there is some ϕ : g →⊥ h

with Pg (n) = Pg (ϕ(n)) for all non-⊥-nodes n in g .

Theorem

The pair (G∞C (Σ⊥),≤4
⊥) forms a complete semilattice.

26



Acyclic Sharing

Acyclic Paths

We only consider the set Pa
g (n) of minimal paths to n.

De�nition

For all g , h ∈ G∞(Σ⊥), let g ≤4
⊥ h be de�ned i� there is some ϕ : g →⊥ h

with Pg (n) = Pg (ϕ(n)) for all non-⊥-nodes n in g .

Theorem

The pair (G∞C (Σ⊥),≤4
⊥) forms a complete semilattice.

26



Acyclic Sharing

Acyclic Paths

We only consider the set Pa
g (n) of minimal paths to n.

De�nition

For all g , h ∈ G∞(Σ⊥), let g ≤4
⊥ h be de�ned i� there is some ϕ : g →⊥ h

with Pg (n) = Pg (ϕ(n)) for all non-⊥-nodes n in g .

Theorem

The pair (G∞C (Σ⊥),≤4
⊥) forms a complete semilattice.

26



What Have We Gained?

Insight into convergence over term graphs

partial orders honour the rich structure of term graphs

all discussed partial orders specialise to ≤⊥ on terms

complete semilattices induce a complete metric space

complete semilattices induce a canonical metric (except for ≤1
⊥)

common structure of two term graphs g and h: g u⊥ h

metric distance d(g , h) = 2−d , where d = ⊥-depth(g u⊥ h)

resulting complete metric specialises to the metric d on terms

Theorem (total p-convergence = m-convergence)

For every reduction S in a GRS the following equivalence holds:

S : g ↪→p h is total i� S : g ↪→m h. (weak convergence)
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Next Steps

Partial order ≤1
⊥ based on ⊥-homomorphisms

it behaves weired but it might still be suited for convergence

,

e.g.

Strong convergence on term graphs

what is a proper notion of strong convergence?

using the partial order approach might again be helpful
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Back to Term Graph Rewriting

Partial order approach to in�nitary term rewriting

more �ne grained notion of convergence

reductions always converge  semantics

naturally captures meaningless terms

30



Strong Convergence on Orthogonal System

Metric convergence

normal forms are unique

however: terms might have no normal forms (only reductions that do
not converge)

With partial order model, we gainnormalisation and thus con�uence.

In�nitary con�uence

t

t1

t2

t3

In�nitary normalisation

t t 6→

Every term has a normal form
reachable by a possibly in�nite
reduction.

Unique normal forms!
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Meaningless Terms

Böhm extensions

Given a TRS R, its Böhm extension BR is obtained by adding rules of the
form r → ⊥, where r are root-active terms

Unique normal forms

Böhm extensions are used to obtain unique normal forms (Böhm trees)

BR is in�nitary normalising and con�uent

Theorem (m-convergence + Böhm extension = p-convergence)

If R is an orthogonal TRS and B the Böhm extension of R, then

s �p R t i� s �m B t.
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Further Steps

Strong convergence on term graphs

unique normal forms  Böhm-graphs

correspondence in�nitary term rewriting ⇔ cyclic term graph rewriting

Higher-Order Systems

application to λ-calculus with letrec?
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