

Faculty of Science

From Infinitary Term Rewriting to Cyclic Term Graph Rewriting and back

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

6th International Workshop on Computing with Terms and Graphs Saarbrücken, Germany, April 2nd, 2011

Outline

- 🔟 Infinitary Term Rewriting
- 2 Term Graph Rewriting
 - Partial Order Model of Infinitary Rewriting
 - Convergence on Term Graphs

Outline

Infinitary Term Rewriting

Term Graph Rewriting

- Partial Order Model of Infinitary Rewriting
- Convergence on Term Graphs

3 Outlook

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

from(0)

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow 0: from(1)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^2 0:1:from(2)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^3 0: 1: 2: from(3)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^4 0: 1: 2: 3: from(4)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow 50: 1: 2: 3: 4: from(5)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6) \rightarrow \ldots$$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6) \rightarrow \ldots$

intuitively this converges to the infinite list 0:1:2:3:4:5:....

Infinitary Rewriting

What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with (potentially) infinite terms

Infinitary Rewriting

What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with (potentially) infinite terms

Why consider infinitary rewriting?

- model for lazy functional programming
- semantics for non-terminating systems
- semantics for process algebras
- arises in cyclic term graph rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

 $\mathbf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

 $\mathbf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

 $\mathbf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

 $\mathbf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathsf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathsf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathsf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathsf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

 $\mathsf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$

- sim(s, t) = minimum depth ds.t. s and t differ at depth d
- sim(s, t) = maximum depth d
 s.t. truncated at depth d, s and
 t are equal

Weak Convergence of Transfinite Reductions

Weak convergence via metric d

- convergence in the metric space $(\mathcal{T}^\infty(\Sigma,\mathcal{V}),d)$
- depth of the differences between the terms has to tend to infinity

$$from(x) \rightarrow x : from(s(x))$$

$$from(x) \rightarrow x : from(s(x))$$

$$from(x) \rightarrow x : from(s(x))$$

$$from(x) \rightarrow x : from(s(x))$$

$$from(x) \rightarrow x : from(s(x))$$

$$from(x) \rightarrow x : from(s(x))$$

Example: Weak Convergence

 $from(x) \rightarrow x : from(s(x))$

$$\mathcal{R}_{zip} = \begin{cases} zip(nil, y) \rightarrow nil \\ zip(x, nil) \rightarrow nil \\ zip(x : x', y : y') \rightarrow (x, y) : zip(x', y') \end{cases}$$

$$\mathcal{R}_{zip} = \begin{cases} zip(nil, y) \rightarrow nil \\ zip(x, nil) \rightarrow nil \\ zip(x : x', y : y') \rightarrow (x, y) : zip(x', y') \end{cases}$$

$$\mathcal{R}_{zip} = \begin{cases} zip(nil, y) \rightarrow nil \\ zip(x, nil) \rightarrow nil \\ zip(x : x', y : y') \rightarrow (x, y) : zip(x', y') \end{cases}$$

$$zip(from(0), a: b: c: nil) \rightarrow^{\omega} zip(0: 1: 2: 3: 4..., a: b: c: nil)$$

$$\mathcal{R}_{zip} = \begin{cases} zip(nil, y) \rightarrow nil \\ zip(x, nil) \rightarrow nil \\ zip(x : x', y : y') \rightarrow (x, y) : zip(x', y') \end{cases}$$

$$\begin{aligned} zip(\textit{from}(0), a: b: c: \textit{nil}) \twoheadrightarrow^{\omega} zip(0: 1: 2: 3: 4..., a: b: c: \textit{nil}) \\ \rightarrow (0, a): zip(1: 2: 3: 4: ..., b: c: \textit{nil}) \end{aligned}$$

$$\mathcal{R}_{zip} = \begin{cases} zip(nil, y) \rightarrow nil \\ zip(x, nil) \rightarrow nil \\ zip(x : x', y : y') \rightarrow (x, y) : zip(x', y') \end{cases}$$

$$\begin{aligned} zip(from(0), a:b:c:nil) \twoheadrightarrow^{\omega} zip(0:1:2:3:4...,a:b:c:nil) \\ \to (0,a): zip(1:2:3:4:...,b:c:nil) \\ \to (0,a): (1,b): zip(2:3:4:...,c:nil) \end{aligned}$$

$$\mathcal{R}_{zip} = \left\{ egin{array}{c} zip(nil,y)
ightarrow nil \ zip(x,nil)
ightarrow nil \ zip(x:x',y:y')
ightarrow (x,y): zip(x',y') \end{array}
ight.$$

$$\begin{aligned} zip(from(0), a: b: c: nil) & \twoheadrightarrow^{\omega} zip(0: 1: 2: 3: 4..., a: b: c: nil) \\ & \to (0, a): zip(1: 2: 3: 4: ..., b: c: nil) \\ & \to (0, a): (1, b): zip(2: 3: 4: ..., c: nil) \\ & \to (0, a): (1, b): (2, c): zip(3: 4: ..., nil) \end{aligned}$$

$$\mathcal{R}_{zip} = \begin{cases} zip(nil, y) \rightarrow nil \\ zip(x, nil) \rightarrow nil \\ zip(x : x', y : y') \rightarrow (x, y) : zip(x', y') \end{cases}$$

$$\begin{aligned} zip(from(0), a : b : c : nil) & \twoheadrightarrow^{\omega} zip(0 : 1 : 2 : 3 : 4 ..., a : b : c : nil) \\ & \to (0, a) : zip(1 : 2 : 3 : 4 : ..., b : c : nil) \\ & \to (0, a) : (1, b) : zip(2 : 3 : 4 : ..., c : nil) \\ & \to (0, a) : (1, b) : (2, c) : zip(3 : 4 : ..., nil) \\ & \to (0, a) : (1, b) : (2, c) : nil \end{aligned}$$

Example (Infinite lists)

$$\mathcal{R}_{zip} = \begin{cases} zip(nil, y) \rightarrow nil \\ zip(x, nil) \rightarrow nil \\ zip(x : x', y : y') \rightarrow (x, y) : zip(x', y') \end{cases}$$

$$\begin{aligned} zip(from(0), a : b : c : nil) & \twoheadrightarrow^{\omega} zip(0 : 1 : 2 : 3 : 4 ..., a : b : c : nil) \\ & \to (0, a) : zip(1 : 2 : 3 : 4 : ..., b : c : nil) \\ & \to (0, a) : (1, b) : zip(2 : 3 : 4 : ..., c : nil) \\ & \to (0, a) : (1, b) : (2, c) : zip(3 : 4 : ..., nil) \\ & \to (0, a) : (1, b) : (2, c) : nil \end{aligned}$$

final outcome is a finite term!

Strong Convergence of Transfinite Reductions

Weak convergence is hard to deal with

- ullet there might be terms only reachable after more than ω steps
- orthogonal systems are not confluent
- not necessarily normalising

Strong Convergence of Transfinite Reductions

Weak convergence is hard to deal with

- ullet there might be terms only reachable after more than ω steps
- orthogonal systems are not confluent
- not necessarily normalising

Strong convergence via increasing redex depth

- conservative underapproximation of convergence in the metric space
- rewrite rules have to be applied at (eventually) increasingly large depth
- the limit is then defined by the metric space
- \rightsquigarrow for strong convergence the depth of redexes has to tend to infinity

 $f(g(x)) \rightarrow f(g(g(x)))$

 $f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging (f) (f)(f)

$$f(g(x)) \rightarrow f(g(g(x)))$$

C

Example: Weakly but not Strongly Converging (f) (f) (f) (f) (f) (f) (f) (f) (f) (g) (g)(g)

$$\begin{array}{c|c} & \downarrow \\ \hline & c \\ \hline & c \\ \hline & c \\ \end{array}$$

$$f(g(x)) \to f(g(g(x)))$$

Example: Weakly but not Strongly Converging \widehat{f} f g g С g

$$f(g(x)) \rightarrow f(g(g(x)))$$

$$f(g(x)) \rightarrow f(g(g(x)))$$

C

$$g(c) \rightarrow g(g(c))$$

$$g(c) \rightarrow g(g(c))$$

$$g(c) \rightarrow g(g(c))$$

$$g(c) \rightarrow g(g(c))$$

 $g(c) \rightarrow g(g(c))$

С

g

С

$$g(c) \rightarrow g(g(c))$$

С

$$g(c) \rightarrow g(g(c))$$

C

 $g(c) \rightarrow g(g(c))$

$$g(c) \rightarrow g(g(c))$$

Outline

Infinitary Term Rewriting

2 Term Graph Rewriting

- Partial Order Model of Infinitary Rewriting
- Convergence on Term Graphs

Moving to Term Graphs - Why?

Simulating infinitary term rewriting

- term graphs allow to finitely represent rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting ⇔ cyclic term graph rewriting?

Moving to Term Graphs - Why?

Simulating infinitary term rewriting

- term graphs allow to finitely represent rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting ⇔ cyclic term graph rewriting?

Calculi with explicit sharing and recursion

- adding letrec to λ -calculus breaks confluence
- however: unique infinite normal forms can be defined [Ariola & Blom]
- infinitary confluence?

Moving to Term Graphs - Why?

Simulating infinitary term rewriting

- term graphs allow to finitely represent rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting ⇔ cyclic term graph rewriting?

Calculi with explicit sharing and recursion

- adding letrec to λ -calculus breaks confluence
- however: unique infinite normal forms can be defined [Ariola & Blom]
- infinitary confluence?

We need a infinitary rewriting counterpart on term graphs!

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

15

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms "more structure"

- the metric on terms is beautifully simple
- it is just enough for convergence on terms

16

Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms "more structure"

- the metric on terms is beautifully simple
- it is just enough for convergence on terms

More structure on term graphs

- for term graphs, we need more structure
- but: maybe we can obtain a metric space in the end

Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms "more structure"

- the metric on terms is beautifully simple
- it is just enough for convergence on terms

More structure on term graphs

- for term graphs, we need more structure
- but: maybe we can obtain a metric space in the end

Infinitary term rewriting with more structure

- borrowing from domain theory
- partial orders have been widely used to obtain a more structure view on terms

Partial Order Model of Infinitary Rewriting

Described on the example of terms

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial Order Model of Infinitary Rewriting

Described on the example of terms

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_\iota = \bigsqcup_{\beta < \alpha} \prod_{\beta \le \iota < \alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction

18

An Example

Reduction sequence for $f(x,y) \rightarrow f(y,x)$

Weak convergence

Properties of the Partial Order Model on Terms

Benefits

- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model

Properties of the Partial Order Model on Terms

Benefits

- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model

Theorem (total *p*-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

2
$$S: s \xrightarrow{p} t$$
 is total iff $S: s \xrightarrow{m} t$.

(weak convergence)

(strong convergence)

A Partial Order on Term Graphs - How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?
- We need a means to substitute ' \perp 's.

A Partial Order on Term Graphs – How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?
- We need a means to substitute ' \perp 's.

\perp -homomorphisms $arphi \colon g \to_{\perp} h$

- homomorphism condition suspended on ⊥-nodes
- ullet allow mapping of ot-nodes to arbitrary nodes

A \perp -Homomorphism

A \perp -Homomorphism

⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

$\textit{For all } s,t\in\mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s\leq_{\perp}t \quad \textit{iff} \quad \exists\varphi \text{:} \ s\rightarrow_{\perp}t$

\perp -Homomorphisms as a Partial Order

Proposition (partial order on terms)

 $\textit{For all } s,t \in \mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s \leq_{\perp} t \quad \textit{iff} \quad \exists \varphi \text{:} \ s \rightarrow_{\perp} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$.

The pair $(\mathcal{G}^\infty_\mathcal{C}(\Sigma_\perp),\leq^1_\perp)$ forms a complete semilattice.

⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

 $\textit{For all } s,t \in \mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s \leq_{\perp} t \quad \textit{iff} \quad \exists \varphi \text{:} \ s \rightarrow_{\perp} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$.

The pair $(\mathcal{G}^\infty_\mathcal{C}(\Sigma_\perp),\leq^1_\perp)$ forms a complete semilattice.

 \checkmark

Alas, \leq^1_1 has some quirks!

 $\begin{array}{c} & & \\ & \swarrow & \\ & \swarrow & \\ & & \\$

⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

 $\textit{For all } s,t \in \mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s \leq_{\perp} t \quad \textit{iff} \quad \exists \varphi \text{:} \ s \rightarrow_{\perp} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$.

The pair $(\mathcal{G}^\infty_\mathcal{C}(\Sigma_\perp),\leq^1_\perp)$ forms a complete semilattice.

Alas, \leq^1_1 has some quirks!

\perp -Homomorphisms as a Partial Order

Proposition (partial order on terms)

 $\textit{For all } s,t \in \mathcal{T}^{\infty}(\Sigma_{\perp}) \text{:} \quad s \leq_{\perp} t \quad \textit{iff} \quad \exists \varphi \text{:} \ s \rightarrow_{\perp} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$.

The pair $(\mathcal{G}^\infty_\mathcal{C}(\Sigma_\perp),\leq^1_\perp)$ forms a complete semilattice.

Alas, \leq_{\perp}^{1} has some quirks!

- introduces sharing
- total term graphs not necessarily maximal

- $\bigwedge_{c}^{f} \bigvee_{c} \leq_{\perp}^{1} \begin{pmatrix} f \\ f \\ c \end{pmatrix}$
- but: we should not dismiss it too fast!

Avoiding Sharing

Definition (injective *L*-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ injective on all (non- \perp -) nodes.

23
Definition (injective *L*-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ injective on all (non- \perp -) nodes.

Definition (injective *L*-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ injective on all (non- \perp -) nodes.

$$\bigwedge_{c}^{f} \bigcap_{c} \Pi_{\perp}^{2} \quad \begin{pmatrix} f \\ c \end{pmatrix} = ?$$

Definition (injective *_*-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ injective on all (non- \perp -) nodes.

Definition (injective *L*-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ injective on all (non- \perp -) nodes.

Definition (injective *L*-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ injective on all (non- \perp -) nodes.

Greatest lower bounds w.r.t. \leq^2_{\perp}

In particular, \leq_{\perp}^{2} is not a complete semilattice!

Definition (injective *L*-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ injective on all (non- \perp -) nodes.

Greatest lower bounds w.r.t. \leq^2_{\perp}

In particular, \leq_{\perp}^{2} is not a complete semilattice!

Theorem

The pair $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^2_{\perp})$ forms a complete partial order.

Goal

Goal

Goal

Goal

Goal

Goal

Goal

 $g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

What is sharing?

• a node *n* is shared if it is reachable via multiple paths from the root

• the set of all paths $\mathcal{P}_g(n)$ to a node describes its sharing

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

$$\begin{array}{ccc} h & & h \\ \downarrow & & \downarrow \\ h & \leq^{3}_{\perp} & h \end{array}$$

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_g^a(n)$ of minimal paths to n.

Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_g^a(n)$ of minimal paths to n.

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{4} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{g}(\varphi(n))$ for all non- \perp -nodes n in g.

Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_g^a(n)$ of minimal paths to n.

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{4} h$ be defined iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{g}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- ullet all discussed partial orders specialise to \leq_{\perp} on terms

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- all discussed partial orders specialise to \leq_{\perp} on terms

complete semilattices induce a complete metric space

- complete semilattices induce a canonical metric (except for \leq_{\perp}^{1})
- common structure of two term graphs g and h: $g \sqcap_{\perp} h$
- metric distance $d(g, h) = 2^{-d}$, where $d = \bot$ -depth $(g \sqcap_{\perp} h)$
- resulting complete metric specialises to the metric d on terms

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- ullet all discussed partial orders specialise to \leq_{\perp} on terms

complete semilattices induce a complete metric space

- complete semilattices induce a canonical metric (except for \leq_{\perp}^{1})
- common structure of two term graphs g and h: $g \sqcap_{\perp} h$
- metric distance $d(g,h) = 2^{-d}$, where $d = \bot$ -depth $(g \sqcap_{\perp} h)$
- resulting complete metric specialises to the metric d on terms

Theorem (total *p*-convergence = *m*-convergence)

For every reduction S in a GRS the following equivalence holds:

$$S: g \xrightarrow{p} h$$
 is total iff $S: g \xrightarrow{m} h$

(weak convergence)

Partial order \leq^1_{\perp} based on \perp -homomorphisms

• it behaves weired but it might still be suited for convergence e.g.

Partial order \leq^1_{\perp} based on \perp -homomorphisms

• it behaves weired but it might still be suited for convergence, e.g.

from

0

Partial order \leq^1_{\perp} based on \perp -homomorphisms

• it behaves weired but it might still be suited for convergence, e.g.

Partial order \leq^1_{\perp} based on \perp -homomorphisms

• it behaves weired but it might still be suited for convergence, e.g.

Partial order \leq^1_{\perp} based on \perp -homomorphisms

• it behaves weired but it might still be suited for convergence, e.g.

Partial order \leq_{\perp}^{1} based on \perp -homomorphisms

- it behaves weired but it might still be suited for convergence, e.g.
- is there a metric space counterpart?

28

Partial order \leq_{\perp}^{1} based on \perp -homomorphisms

- it behaves weired but it might still be suited for convergence e.g.
- is there a metric space counterpart?

Partial order \leq_{\perp}^{1} based on \perp -homomorphisms

- it behaves weired but it might still be suited for convergence e.g.
- is there a metric space counterpart?

Partial order \leq^1_{\perp} based on \perp -homomorphisms

- it behaves weired but it might still be suited for convergence e.g.
- is there a metric space counterpart?

Strong convergence on term graphs

- what is a proper notion of strong convergence?
- using the partial order approach might again be helpful

Outline

Infinitary Term Rewriting

Term Graph Rewriting
Partial Order Model of Infinitary Rewriting
Convergence on Term Graphs

Back to Term Graph Rewriting

Partial order approach to infinitary term rewriting

- more fine grained notion of convergence
- reductions always converge → semantics
- naturally captures meaningless terms

Strong Convergence on Orthogonal System

Metric convergence

- normal forms are unique
- however: terms might have no normal forms (only reductions that do not converge)

31

Strong Convergence on Orthogonal System

Metric convergence

- normal forms are unique
- however: terms might have no normal forms (only reductions that do not converge)
- With partial order model, we gainnormalisation and thus confluence.

Infinitary normalisation

$$t$$
 -----» $\overline{t} \not\rightarrow$

Every term has a normal form reachable by a possibly infinite reduction.

Strong Convergence on Orthogonal System

Metric convergence

- normal forms are unique
- however: terms might have no normal forms (only reductions that do not converge)
- With partial order model, we gainnormalisation and thus confluence.

Infinitary normalisation

$$t$$
 -----» $\overline{t} \not\rightarrow$

Every term has a normal form reachable by a possibly infinite reduction.

Unique normal forms!

Meaningless Terms

Böhm extensions

Given a TRS \mathcal{R} , its Böhm extension $\mathcal{B}_{\mathcal{R}}$ is obtained by adding rules of the form $r \to \bot$, where r are root-active terms

Meaningless Terms

Böhm extensions

Given a TRS \mathcal{R} , its Böhm extension $\mathcal{B}_{\mathcal{R}}$ is obtained by adding rules of the form $r \to \bot$, where r are root-active terms

Unique normal forms

- Böhm extensions are used to obtain unique normal forms (Böhm trees)
- $\bullet \ \mathcal{B}_{\mathcal{R}}$ is infinitary normalising and confluent

Meaningless Terms

Böhm extensions

Given a TRS \mathcal{R} , its Böhm extension $\mathcal{B}_{\mathcal{R}}$ is obtained by adding rules of the form $r \to \bot$, where r are root-active terms

Unique normal forms

- Böhm extensions are used to obtain unique normal forms (Böhm trees)
- $\mathcal{B}_{\mathcal{R}}$ is infinitary normalising and confluent

Theorem (*m*-convergence + Böhm extension = p-convergence)

If ${\cal R}$ is an orthogonal TRS and ${\cal B}$ the Böhm extension of ${\cal R},$ then

$$s \xrightarrow{p}_{\mathcal{R}} t$$
 iff $s \xrightarrow{m}_{\mathcal{B}} t$.

Further Steps

Strong convergence on term graphs

- unique normal forms ~> Böhm-graphs
- correspondence infinitary term rewriting \Leftrightarrow cyclic term graph rewriting

Further Steps

Strong convergence on term graphs

- unique normal forms ~> Böhm-graphs
- correspondence infinitary term rewriting \Leftrightarrow cyclic term graph rewriting

Higher-Order Systems

• application to λ -calculus with letrec?

