From Infinitary Term Rewriting to Cyclic Term Graph Rewriting and back

Patrick Bahr
paba@diku.dk
University of Copenhagen
Department of Computer Science

6th International Workshop on Computing with Terms and Graphs Saarbrücken, Germany, April 2nd, 2011

Outline

(1) Infinitary Term Rewriting
(2) Term Graph Rewriting

- Partial Order Model of Infinitary Rewriting
- Convergence on Term Graphs
(3) Outlook

Outline

(1) Infinitary Term Rewriting
(2) Term Graph Rewriting

- Partial Order Model of Infinitary Rewriting
- Convergence on Term Graphs

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from (0)

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \text { from }(0) \rightarrow 0: \operatorname{from}(1)
\end{aligned}
$$

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{2} 0: 1: \text { from }(2)
$$

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \text { from }(0) \rightarrow^{3} 0: 1: 2: \text { from }(3)
\end{aligned}
$$

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \text { from }(0) \rightarrow^{4} 0: 1: 2: 3: \text { from }(4)
\end{aligned}
$$

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \text { from }(0) \rightarrow^{5} 0: 1: 2: 3: 4: \text { from }(5)
\end{aligned}
$$

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \operatorname{from}(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6)
\end{aligned}
$$

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, ie. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \operatorname{from}(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6) \rightarrow \ldots
\end{aligned}
$$

Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$
\begin{aligned}
& \quad \mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \operatorname{from}(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \operatorname{from}(6) \rightarrow \ldots
\end{aligned}
$$

intuitively this converges to the infinite list $0: 1: 2: 3: 4: 5$:

Infinitary Rewriting

What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with (potentially) infinite terms

Infinitary Rewriting

What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with (potentially) infinite terms

Why consider infinitary rewriting?

- model for lazy functional programming
- semantics for non-terminating systems
- semantics for process algebras
- arises in cyclic term graph rewriting

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d
s.t. s and t differ at depth d

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

Example

Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)=$ minimum depth d s.t. s and t differ at depth d

- $\operatorname{sim}(s, t)=$ maximum depth d s.t. truncated at depth d, s and t are equal

Example

Weak Convergence of Transfinite Reductions

Weak convergence via metric d

- convergence in the metric space $\left(\mathcal{T}^{\infty}(\Sigma, \mathcal{V}), \mathbf{d}\right)$
- depth of the differences between the terms has to tend to infinity

Example: Weak Convergence

from

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Example: Weak Convergence

from $(x) \rightarrow x:$ from $(s(x))$

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
\operatorname{zip}(x, n i l) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
z i p(x, \text { nil }) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

zip(from(0), a : b:c:nil)

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
\operatorname{zip}(x, n i l) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

$\operatorname{zip}($ from $(0), a: b: c: n i l) \rightarrow^{\omega} \operatorname{zip}(0: 1: 2: 3: 4 \ldots, a: b: c: n i l)$

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
\operatorname{zip}(x, n i l) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

$$
\begin{aligned}
\operatorname{zip}(\text { from(0), }: b: c: n i l) & \rightarrow^{\omega} \operatorname{zip}(0: 1: 2: 3: 4 \ldots, a: b: c: n i l) \\
& \rightarrow(0, a): \operatorname{zip}(1: 2: 3: 4: \ldots, b: c: n i l)
\end{aligned}
$$

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
\operatorname{zip}(x, n i l) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

$$
\begin{aligned}
\operatorname{zip}(\text { from }(0), a: b: c: \text { nil }) & \rightarrow^{\omega} \operatorname{zip}(0: 1: 2: 3: 4 \ldots, a: b: c: \text { nil }) \\
& \rightarrow(0, a): \operatorname{zip}(1: 2: 3: 4: \ldots, b: c: \text { nil }) \\
& \rightarrow(0, a):(1, b): \operatorname{zip}(2: 3: 4: \ldots, c: \text { nil })
\end{aligned}
$$

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
\operatorname{zip}(x, n i l) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

$\operatorname{zip}($ from $(0), a: b: c: n i l) \rightarrow{ }^{\omega} \operatorname{zip}(0: 1: 2: 3: 4 \ldots, a: b: c: n i l)$

$$
\begin{aligned}
& \rightarrow(0, a): \operatorname{zip}(1: 2: 3: 4: \ldots, b: c: \text { nil }) \\
& \rightarrow(0, a):(1, b): \operatorname{zip}(2: 3: 4: \ldots, c: \text { nil }) \\
& \rightarrow(0, a):(1, b):(2, c): \operatorname{zip}(3: 4: \ldots, \text { nil })
\end{aligned}
$$

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
\operatorname{zip}(x, n i l) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

$\operatorname{zip}($ from $(0), a: b: c: n i l) \rightarrow{ }^{\omega} \operatorname{zip}(0: 1: 2: 3: 4 \ldots, a: b: c: n i l)$

$$
\begin{aligned}
& \rightarrow(0, a): \operatorname{zip}(1: 2: 3: 4: \ldots, b: c: \text { nil }) \\
& \rightarrow(0, a):(1, b): \operatorname{zip}(2: 3: 4: \ldots, c: \text { nil }) \\
& \rightarrow(0, a):(1, b):(2, c): \operatorname{zip}(3: 4: \ldots, \text { nil }) \\
& \rightarrow(0, a):(1, b):(2, c): \text { nil }
\end{aligned}
$$

Transfinite Reductions

Example (Infinite lists)

$$
\mathcal{R}_{\text {zip }}=\left\{\begin{aligned}
\operatorname{zip}(n i l, y) & \rightarrow \text { nil } \\
\operatorname{zip}(x, n i l) & \rightarrow \text { nil } \\
\operatorname{zip}\left(x: x^{\prime}, y: y^{\prime}\right) & \rightarrow(x, y): \operatorname{zip}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}\right.
$$

$$
\begin{aligned}
\operatorname{zip}(\text { from }(0), a: b: c: n i l) & \rightarrow^{\omega} \operatorname{zip}(0: 1: 2: 3: 4 \ldots, a: b: c: \text { nil }) \\
& \rightarrow(0, a): \operatorname{zip}(1: 2: 3: 4: \ldots, b: c: \text { nil }) \\
& \rightarrow(0, a):(1, b): \operatorname{zip}(2: 3: 4: \ldots, c: \text { nil }) \\
& \rightarrow(0, a):(1, b):(2, c): \operatorname{zip}(3: 4: \ldots, \text { nil }) \\
& \rightarrow(0, a):(1, b):(2, c): \text { nil }
\end{aligned}
$$

final outcome is a finite term!

Strong Convergence of Transfinite Reductions

Weak convergence is hard to deal with

- there might be terms only reachable after more than ω steps
- orthogonal systems are not confluent
- not necessarily normalising

Strong Convergence of Transfinite Reductions

Weak convergence is hard to deal with

- there might be terms only reachable after more than ω steps
- orthogonal systems are not confluent
- not necessarily normalising

Strong convergence via increasing redex depth

- conservative underapproximation of convergence in the metric space
- rewrite rules have to be applied at (eventually) increasingly large depth
- the limit is then defined by the metric space
\rightsquigarrow for strong convergence the depth of redexes has to tend to infinity

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

$f(g(x)) \rightarrow f(g(g(x)))$

Example: Weakly but not Strongly Converging

Example: Weakly but not Strongly Converging

Example: Weakly and Strongly Converging

$g(c) \rightarrow g(g(c))$

$g(c) \rightarrow g(g(c))$

$g(c) \rightarrow g(g(c))$

$g(c) \rightarrow g(g(c))$

Example: Weakly and Strongly Converging

$g(c) \rightarrow g(g(c))$

Example: Weakly and Strongly Converging

$$
g(c) \rightarrow g(g(c))
$$

Example: Weakly and Strongly Converging

$$
g(c) \rightarrow g(g(c))
$$

Outline

(1) Infinitary Term Rewriting

(2) Term Graph Rewriting

- Partial Order Model of Infinitary Rewriting
- Convergence on Term Graphs

Moving to Term Graphs - Why?

Simulating infinitary term rewriting

- term graphs allow to finitely represent rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting \Leftrightarrow cyclic term graph rewriting?

Moving to Term Graphs - Why?

Simulating infinitary term rewriting

- term graphs allow to finitely represent rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting \Leftrightarrow cyclic term graph rewriting?

Calculi with explicit sharing and recursion

- adding letrec to λ-calculus breaks confluence
- however: unique infinite normal forms can be defined [Ariola \& Blom]
- infinitary confluence?

Moving to Term Graphs - Why?

Simulating infinitary term rewriting

- term graphs allow to finitely represent rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting \Leftrightarrow cyclic term graph rewriting?

Calculi with explicit sharing and recursion

- adding letrec to λ-calculus breaks confluence
- however: unique infinite normal forms can be defined [Ariola \& Blom]
- infinitary confluence?

We need a infinitary rewriting counterpart on term graphs!

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

Convergence on Term Graph Reductions - How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms "more structure"

- the metric on terms is beautifully simple
- it is just enough for convergence on terms

Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms "more structure"

- the metric on terms is beautifully simple
- it is just enough for convergence on terms

More structure on term graphs

- for term graphs, we need more structure
- but: maybe we can obtain a metric space in the end

Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms "more structure"

- the metric on terms is beautifully simple
- it is just enough for convergence on terms

More structure on term graphs

- for term graphs, we need more structure
- but: maybe we can obtain a metric space in the end

Infinitary term rewriting with more structure

- borrowing from domain theory
- partial orders have been widely used to obtain a more structure view on terms

Partial Order Model of Infinitary Rewriting

Described on the example of terms
Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice ($=$ cpo + glbs of non-empty sets)

Partial Order Model of Infinitary Rewriting

Described on the example of terms

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice ($=$ cpo + glbs of non-empty sets)

Convergence

- formalised by the limit inferior:

$$
\liminf _{\iota \rightarrow \alpha} t_{\iota}=\bigsqcup_{\beta<\alpha} \prod_{\beta \leq \iota<\alpha} t_{\iota}
$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

Weak convergence

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

Weak convergence

An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

Properties of the Partial Order Model on Terms

Benefits

- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model

Properties of the Partial Order Model on Terms

Benefits

- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model

Theorem (total p-convergence $=m$-convergence)
For every reduction S in a TRS the following equivalences hold:
(1) $S: s \xrightarrow{p} t$ is total iff $S: s \xrightarrow{m} t$.
(weak convergence)
(2) $S: s \xrightarrow{p} t$ is total iff $S: s \xrightarrow{m} t$.

A Partial Order on Term Graphs - How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?
- We need a means to substitute ' \perp 's.

A Partial Order on Term Graphs - How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?
- We need a means to substitute ' \perp 's.
\perp-homomorphisms $\varphi: g \rightarrow_{\perp} h$
- homomorphism condition suspended on \perp-nodes
- allow mapping of \perp-nodes to arbitrary nodes

A \perp-Homomorphism

A \perp-Homomorphism

\perp-Homomorphisms as a Partial Order

Proposition (partial order on terms)
For all $s, t \in \mathcal{T}^{\infty}\left(\Sigma_{\perp}\right): \quad s \leq_{\perp} t \quad$ iff $\quad \exists \varphi: s \rightarrow_{\perp} t$

\perp-Homomorphisms as a Partial Order

Proposition (partial order on terms)
For all $s, t \in \mathcal{T}^{\infty}\left(\Sigma_{\perp}\right): \quad s \leq_{\perp} t \quad$ iff $\quad \exists \varphi: s \rightarrow_{\perp} t$
Theorem
For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$.
The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{1}\right)$ forms a complete semilattice.

L-Homomorphisms as a Partial Order

Proposition (partial order on terms)
For all $s, t \in \mathcal{T}^{\infty}\left(\Sigma_{\perp}\right): \quad s \leq_{\perp} t \quad$ iff $\quad \exists \varphi: s \rightarrow_{\perp} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$. The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{1}\right)$ forms a complete semilattice.

Alas, \leq_{\perp}^{1} has some quirks!

L-Homomorphisms as a Partial Order

Proposition (partial order on terms)
For all $s, t \in \mathcal{T}^{\infty}\left(\Sigma_{\perp}\right): \quad s \leq_{\perp} t \quad$ iff $\quad \exists \varphi: s \rightarrow_{\perp} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$. The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{1}\right)$ forms a complete semilattice.

Alas, \leq_{\perp}^{1} has some quirks!

\perp-Homomorphisms as a Partial Order

Proposition (partial order on terms)
For all $s, t \in \mathcal{T}^{\infty}\left(\Sigma_{\perp}\right): \quad s \leq_{\perp} t \quad$ iff $\quad \exists \varphi: s \rightarrow_{\perp} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{1} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$. The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{1}\right)$ forms a complete semilattice.

Alas, \leq_{\perp}^{1} has some quirks!

- introduces sharing
- total term graphs not necessarily maximal

- but: we should not dismiss it too fast!

Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non- \perp-) nodes.

Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non- $\perp-$) nodes.

Greatest lower bounds w.r.t. \leq_{\perp}^{2}

Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non- $\perp-$) nodes.

Greatest lower bounds w.r.t. \leq_{\perp}^{2}

Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non- \perp-) nodes.

Greatest lower bounds w.r.t. \leq_{\perp}^{2}

Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non- \perp-) nodes.

Greatest lower bounds w.r.t. \leq_{\perp}^{2}

Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non- \perp-) nodes.

Greatest lower bounds w.r.t. \leq_{\perp}^{2}

In particular, \leq_{\perp}^{2} is not a complete semilattice!

Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{2} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non- $\perp-$) nodes.

Greatest lower bounds w.r.t. \leq_{\perp}^{2}

In particular, \leq_{\perp}^{2} is not a complete semilattice!
Theorem
The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{2}\right)$ forms a complete partial order.

Maintaining Sharing

Goal

$g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

Maintaining Sharing

Goal

$g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

Maintaining Sharing

Goal

$g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

Maintaining Sharing

Goal

$g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

Maintaining Sharing

Goal

$g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

Maintaining Sharing

Goal

$g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

Maintaining Sharing

Goal

$g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g

What is sharing?

- a node n is shared if it is reachable via multiple paths from the root
- the set of all paths $\mathcal{P}_{g}(n)$ to a node describes its sharing

Sharing-Preserving \perp-homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{h}(\varphi(n))$ for all non- \perp-nodes n in g.

Sharing-Preserving \perp-homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{h}(\varphi(n))$ for all non- \perp-nodes n in g.

Theorem
The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{3}\right)$ forms a complete semilattice.

Sharing-Preserving \perp-homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{h}(\varphi(n))$ for all non- \perp-nodes n in g.

Theorem

The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{3}\right)$ forms a complete semilattice.
\leq_{\perp}^{3} is quite restrictive!

Sharing-Preserving \perp-homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{h}(\varphi(n))$ for all non- \perp-nodes n in g.

Theorem

The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{3}\right)$ forms a complete semilattice.
\leq_{\perp}^{3} is quite restrictive!

Sharing-Preserving \perp-homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{h}(\varphi(n))$ for all non- \perp-nodes n in g.

Theorem

The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{3}\right)$ forms a complete semilattice.
\leq_{\perp}^{3} is quite restrictive!

Sharing-Preserving \perp-homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{h}(\varphi(n))$ for all non- \perp-nodes n in g.

Theorem

The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{3}\right)$ forms a complete semilattice.
\leq_{\perp}^{3} is quite restrictive!

Sharing-Preserving \perp-homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{3} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{h}(\varphi(n))$ for all non- \perp-nodes n in g.

Theorem

The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{3}\right)$ forms a complete semilattice.

\leq_{\perp}^{3} is quite restrictive!

Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_{g}^{a}(n)$ of minimal paths to n.

Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_{g}^{a}(n)$ of minimal paths to n.

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{4} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{g}(\varphi(n))$ for all non- \perp-nodes n in g.

Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_{g}^{a}(n)$ of minimal paths to n.

Definition

For all $g, h \in \mathcal{G}^{\infty}\left(\Sigma_{\perp}\right)$, let $g \leq_{\perp}^{4} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ with $\mathcal{P}_{g}(n)=\mathcal{P}_{g}(\varphi(n))$ for all non- \perp-nodes n in g.

Theorem
The pair $\left(\mathcal{G}_{\mathcal{C}}^{\infty}\left(\Sigma_{\perp}\right), \leq_{\perp}^{4}\right)$ forms a complete semilattice.

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- all discussed partial orders specialise to \leq_{\perp} on terms

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- all discussed partial orders specialise to \leq_{\perp} on terms
complete semilattices induce a complete metric space
- complete semilattices induce a canonical metric (except for \leq_{\perp}^{1})
- common structure of two term graphs g and $h: g \Pi_{\perp} h$
- metric distance $\mathbf{d}(g, h)=2^{-d}$, where $d=\perp$-depth $\left(g \sqcap_{\perp} h\right)$
- resulting complete metric specialises to the metric \mathbf{d} on terms

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- all discussed partial orders specialise to \leq_{\perp} on terms
complete semilattices induce a complete metric space
- complete semilattices induce a canonical metric (except for \leq_{\perp}^{1})
- common structure of two term graphs g and $h: g \Pi_{\perp} h$
- metric distance $\mathbf{d}(g, h)=2^{-d}$, where $d=\perp$-depth $\left(g \sqcap_{\perp} h\right)$
- resulting complete metric specialises to the metric \mathbf{d} on terms

Theorem (total p-convergence $=m$-convergence)

For every reduction S in a GRS the following equivalence holds:
$S: g \xrightarrow{p} h$ is total iff $S: g \xrightarrow{m} h$.

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence e.g.

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence, e.g. from
\downarrow
0

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence, e.g. from \longrightarrow

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence, e.g.

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence, e.g. from

0

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence, e.g.
- is there a metric space counterpart?

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence e.g.
- is there a metric space counterpart?

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence e.g.
- is there a metric space counterpart?

Next Steps

Partial order \leq_{\perp}^{1} based on \perp-homomorphisms

- it behaves weired but it might still be suited for convergence e.g.
- is there a metric space counterpart?

.....

Strong convergence on term graphs

- what is a proper notion of strong convergence?
- using the partial order approach might again be helpful

Outline

(1) Infinitary Term Rewriting

(2) Term Graph Rewriting

- Partial Order Model of Infinitary Rewriting
- Convergence on Term Graphs
(3) Outlook

Back to Term Graph Rewriting

Partial order approach to infinitary term rewriting

- more fine grained notion of convergence
- reductions always converge \rightsquigarrow semantics
- naturally captures meaningless terms

Strong Convergence on Orthogonal System

Metric convergence

- normal forms are unique
- however: terms might have no normal forms (only reductions that do not converge)

Strong Convergence on Orthogonal System

Metric convergence

- normal forms are unique
- however: terms might have no normal forms (only reductions that do not converge)

With partial order model, we gainnormalisation and thus confluence.

Infinitary normalisation

$$
t------------\gg \bar{t} \nrightarrow
$$

Every term has a normal form reachable by a possibly infinite reduction.

Strong Convergence on Orthogonal System

Metric convergence

- normal forms are unique
- however: terms might have no normal forms (only reductions that do not converge)

With partial order model, we gainnormalisation and thus confluence.

Infinitary normalisation

$$
t------------\gg \bar{t} \nrightarrow
$$

Every term has a normal form reachable by a possibly infinite reduction.

Unique normal forms!

Meaningless Terms

Böhm extensions

Given a TRS \mathcal{R}, its Böhm extension $\mathcal{B}_{\mathcal{R}}$ is obtained by adding rules of the form $r \rightarrow \perp$, where r are root-active terms

Meaningless Terms

Böhm extensions

Given a TRS \mathcal{R}, its Böhm extension $\mathcal{B}_{\mathcal{R}}$ is obtained by adding rules of the form $r \rightarrow \perp$, where r are root-active terms

Unique normal forms

- Böhm extensions are used to obtain unique normal forms (Böhm trees)
- $\mathcal{B}_{\mathcal{R}}$ is infinitary normalising and confluent

Meaningless Terms

Böhm extensions

Given a TRS \mathcal{R}, its Böhm extension $\mathcal{B}_{\mathcal{R}}$ is obtained by adding rules of the form $r \rightarrow \perp$, where r are root-active terms

Unique normal forms

- Böhm extensions are used to obtain unique normal forms (Böhm trees)
- $\mathcal{B}_{\mathcal{R}}$ is infinitary normalising and confluent

Theorem (m-convergence + Böhm extension $=p$-convergence) If \mathcal{R} is an orthogonal TRS and \mathcal{B} the Böhm extension of \mathcal{R}, then

$$
s \stackrel{p_{\rightarrow}}{\mathcal{R}} \text { } t \quad \text { iff } \quad s{ }^{m_{\rightarrow \mathcal{B}}} t
$$

Further Steps

Strong convergence on term graphs

- unique normal forms \rightsquigarrow Böhm-graphs
- correspondence infinitary term rewriting \Leftrightarrow cyclic term graph rewriting

Further Steps

Strong convergence on term graphs

- unique normal forms \rightsquigarrow Böhm-graphs
- correspondence infinitary term rewriting \Leftrightarrow cyclic term graph rewriting

Higher-Order Systems

- application to λ-calculus with letrec?

