
Modes of Convergence for Term Graph

Rewriting

Patrick Bahr

paba@diku.dk

University of Copenhagen

Department of Computer Science

22nd International Conference on

Rewriting Techniques and Applications,

Novi Sad, Serbia, May 30 - June 1, 2011



Goals

What is this about?

�nding appropriate notions of converging term graphs reductions

generalising convergence for term reductions

What is it for?

analysing correspondences between in�nitary term rewriting and

�nitary term graph rewriting

developing a notion of in�nitary term graph rewriting
I remember: one of the motivations for in�nitary term rewriting is lazy

functional programming
I however: lazy evaluation = non-strictness + sharing

towards a semantics for lambda calculi with letrec
I Ariola & Blom. Skew con�uence and the lambda calculus with letrec.

I the calculus is non-con�uent
I but there is a notion of in�nite normal forms
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Recap: In�nitary Term Rewriting

Complete metric on terms

terms are endowed with a complete metric in order to formalise the

convergence of in�nite reductions.

metric distance between terms:

d(s, t) = 2−sim(s,t)

sim(s, t) = minimum depth d s.t. s and t di�er at depth d

Weak convergence via metric d

convergence in the metric space (T ∞(Σ,V),d)

depth of the di�erences between the terms has to tend to in�nity
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Example: Metric Convergence

1 level

2 levels

3 levels

from

0

from(x)→ x : from(s(x))
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Convergence on Term Graph Reductions � How?

A metric on term graphs?

a metric seems too �unstructured� for the rich structure of term graphs

how should sharing be captured by the metric?

what is an appropriate notion of depth in a term graph?
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Convergence on Term Graph Reductions � How?

A metric on term graphs?

a metric seems too �unstructured� for the rich structure of term graphs

how should sharing be captured by the metric?

what is an appropriate notion of depth in a term graph?

In�nitary rewriting with more structure

It seems that, for term graphs, we need more structure�, e.g.

another (possibly non-metrizable) topological space

partial order + induced limit inferior
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Partial Order Model of In�nitary Rewriting

Partial order on terms

partial terms: terms with additional constant ⊥ (read as �unde�ned�)

partial order ≤⊥ reads as: �is less de�ned than�

≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms

convergence: limit inferior of the terms of the reduction
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Partial-Order Convergence vs. Metric Convergence

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

1 S : s ↪→p t is total i� S : s ↪→m t.. (weak convergence)
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A Partial Order on Term Graphs � How?

Specialise on terms

Consider terms as term trees (i.e. term graphs with tree structure)

How to de�ne the partial order ≤⊥ on term trees?

We need a means to substitute '⊥'s.

⊥-homomorphisms ϕ : g →⊥ h

homomorphism condition suspended on ⊥-nodes
allow mapping of ⊥-nodes to arbitrary nodes

same mechanism that formalises matching in term graph rewriting
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⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all s, t ∈ T ∞(Σ⊥): s ≤⊥ t i� ∃ϕ : s →⊥ t

De�nition

For all g , h ∈ G∞(Σ⊥), let g ≤H⊥ h i� there is some ϕ : g →⊥ h.

Theorem

The pair (G∞C (Σ⊥),≤H⊥) forms a complete semilattice.
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A Notion of Convergence Based on ≤H⊥

Alas, ≤H⊥ has some quirks!

introduces sharing

total term graphs not necessarily

maximal

f

c c

f

c

≤H⊥

This causes some weird convergence behaviours

f

c c

f

c

f

c c

f

c

f

c c

This is not possible in a topological space with unique limits.

but: we should not dismiss this order too fast!
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Maintaining Sharing

Goal

g ≤G⊥ h i� g is isomorphic to initial part of h above '⊥'s in g

g

h
⊥

⊥⊥

≤G⊥ ⊥

preserves sharing

What is sharing?

a node n is shared if it is reachable via multiple paths from the root

the set of all paths Pg (n) to a node describes its sharing
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Sharing-Preserving ⊥-Homomorphisms

Acyclic Paths

We only consider the set Pa
g (n) of acyclic paths to n.

De�nition

For all g , h ∈ G∞(Σ⊥), let g ≤G⊥ h i� there is some ϕ : g →⊥ h with

Pg (n) = Ph(ϕ(n)) for all non-⊥-nodes n in g .

Theorem

The pair (G∞C (Σ⊥),≤G⊥) forms a complete semilattice.

13
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What Have We Gained?

Insight into convergence over term graphs

partial orders honour the rich structure of term graphs

all discussed partial orders specialise to ≤⊥ on terms

complete semilattices induce a complete metric space

≤G⊥ induces a canonical metric

common structure of two term graphs g and h: g u⊥ h

metric distance d(g , h) = 2−d , where d = ⊥-depth(g u⊥ h)

resulting complete metric specialises to the metric d on terms

Theorem (total p-convergence = m-convergence)

For every reduction S in a GRS the following equivalence holds:

S : g ↪→p h is total i� S : g ↪→m h. (weak convergence)
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Example: Acyclic Sharing

Term graph rewrite rules that unravel to a : x → b : a : x

:l

a x

:r

b :

a

ρ1 :

:l

a x

:r

b

ρ2 :

Reductions

:

a

:

b :

a

:

b :

b :

a

:

b :

b :

b

:

b

ρ1 ρ1

ρ
2
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Example: Cyclic Sharing

Term graph reduction rule that unravels to from(x)→ x : from(s(x))

froml

x

:r

from

s

from

0

:

0 from

s

:

0 :

s from

s

:

:

:
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Term graph reduction rule that unravels to from(x)→ x : from(s(x))

froml

x

:r

from

s

from

0

:

0 from
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:
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s

:

⊥ :

⊥ :

⊥
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Outlook: Strong Convergence

Partial order ≤H⊥ based on ⊥-homomorphisms

it behaves weird but it might still be suited for convergence

,

e.g.

A simple metric for strong convergence

depth: length of shortest path

metric: d(s, t) = 2−d , d = maximal depth s.t. s and t are isomorphic

if truncated at depth d .
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