Faculty of Science

Modes of Convergence for Term Graph Rewriting

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

22nd International Conference on Rewriting Techniques and Applications, Novi Sad, Serbia, May 30 - June 1, 2011/

Goals

What is this about?

- finding appropriate notions of converging term graphs reductions
- generalising convergence for term reductions

2

Goals

What is this about?

- finding appropriate notions of converging term graphs reductions
- generalising convergence for term reductions

What is it for?

- analysing correspondences between infinitary term rewriting and finitary term graph rewriting
- developing a notion of infinitary term graph rewriting
 - remember: one of the motivations for infinitary term rewriting is lazy functional programming
 - however: lazy evaluation = non-strictness + sharing
- towards a semantics for lambda calculi with letrec
 - Ariola & Blom. Skew confluence and the lambda calculus with letrec.
 - the calculus is non-confluent
 - but there is a notion of infinite normal forms

Outline

Introduction

- Goals
- Infinitary Term Rewriting

2 Term Graph Rewriting

- Partial Order Model of Infinitary Rewriting
- Convergence on Term Graphs

3 Outlook

Recap: Infinitary Term Rewriting

Complete metric on terms

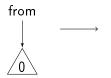
- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

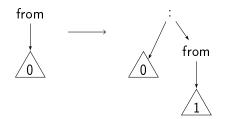
sim(s, t) = minimum depth d s.t. s and t differ at depth d

Weak convergence via metric d

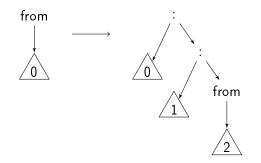
- \bullet convergence in the metric space $(\mathcal{T}^\infty(\Sigma,\mathcal{V}),d)$
- depth of the differences between the terms has to tend to infinity



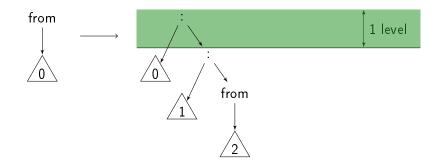
$$from(x) \rightarrow x : from(s(x))$$



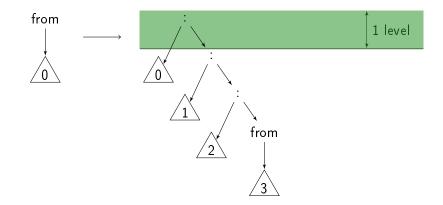
$$from(x) \rightarrow x : from(s(x))$$



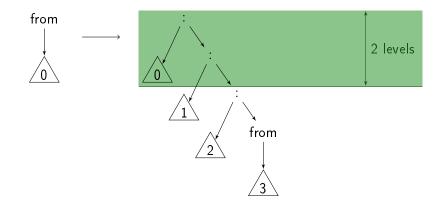
$$from(x) \rightarrow x : from(s(x))$$



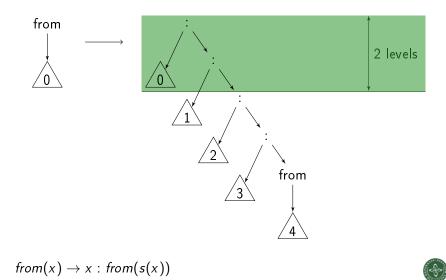
$$from(x) \rightarrow x : from(s(x))$$

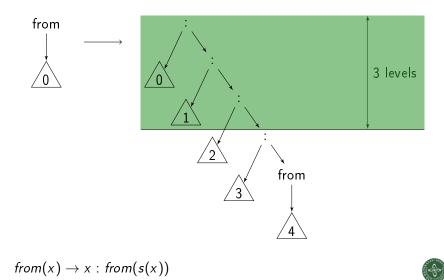


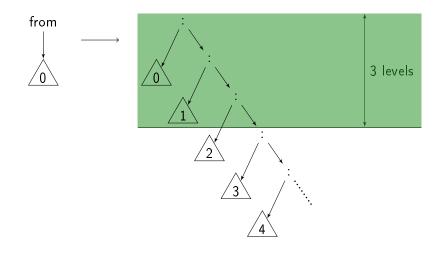
$$from(x) \rightarrow x : from(s(x))$$



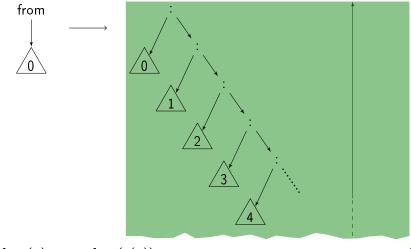
$$from(x) \rightarrow x : from(s(x))$$







 $from(x) \rightarrow x : from(s(x))$



 $from(x) \rightarrow x : from(s(x))$

A metric on term graphs?

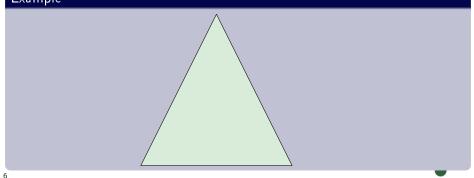
- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

6

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

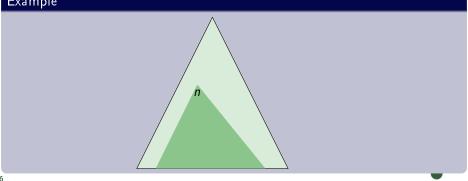
Example



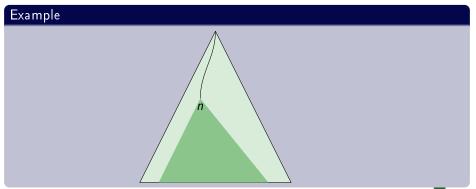
A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

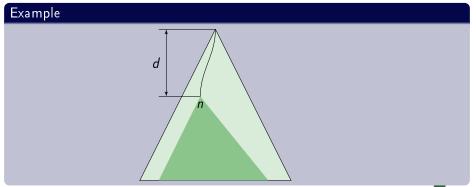
Example



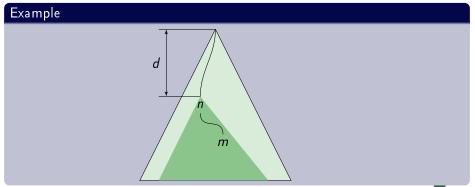
- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?



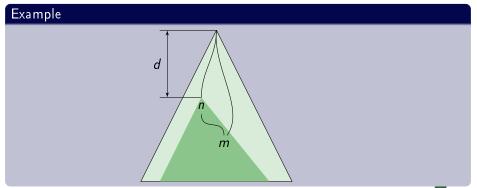
- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?



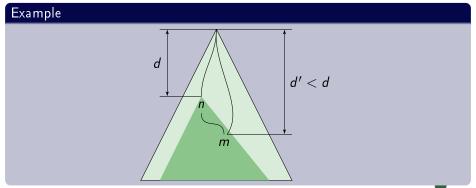
- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?



- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?



- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?



A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Infinitary rewriting with more structure

It seems that, for term graphs, we need more structureTM, e.g.

- another (possibly non-metrizable) topological space
- partial order + induced limit inferior

Partial Order Model of Infinitary Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial Order Model of Infinitary Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- convergence: limit inferior of the terms of the reduction

Partial-Order Convergence vs. Metric Convergence

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

(weak convergence)

A Partial Order on Term Graphs - How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?
- We need a means to substitute $'\perp$'s.

A Partial Order on Term Graphs - How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?
- We need a means to substitute ' \perp 's.

\perp -homomorphisms $\varphi \colon \overline{g} \to_{\perp} h$

- ullet homomorphism condition suspended on ot-nodes
- allow mapping of <u>L-nodes to arbitrary nodes</u>
- same mechanism that formalises matching in term graph rewriting

⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all $s, t \in \mathcal{T}^{\infty}(\Sigma_{\perp})$: $s \leq_{\perp} t$ iff $\exists \varphi : s \rightarrow_{\perp} t$

⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all $s, t \in \mathcal{T}^{\infty}(\Sigma_{\perp})$: $s \leq_{\perp} t$ iff $\exists \varphi : s \rightarrow_{\perp} t$

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{\mathcal{H}} h$ iff there is some $\varphi \colon g \to_{\perp} h$.

⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

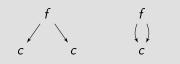
For all $s, t \in \mathcal{T}^{\infty}(\Sigma_{\perp})$: $s \leq_{\perp} t$ iff $\exists \varphi : s \rightarrow_{\perp} t$

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{\mathcal{H}} h$ iff there is some $\varphi \colon g \to_{\perp} h$.

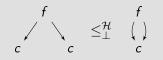
Theorem

The pair $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}),\leq^{\mathcal{H}}_{\perp})$ forms a complete semilattice.



11

Alas, $\leq_{\perp}^{\mathcal{H}}$ has some quirks!



11

Alas, $\leq^{\mathcal{H}}_{\perp}$ has some quirks!

- introduces sharing
- total term graphs not necessarily maximal

 $\leq^{\mathcal{H}}_{\perp}$

Alas, $\leq^{\mathcal{H}}_{\perp}$ has some quirks!

- introduces sharing
- total term graphs not necessarily maximal

$$\begin{array}{c} f \\ \swarrow \\ c \\ c \\ \end{array} \begin{array}{c} f \\ \varsigma \\ c \\ \end{array} \begin{array}{c} \leq \mathcal{H} \\ \varsigma \\ c \\ \end{array} \begin{array}{c} f \\ () \\ c \\ \end{array}$$

This causes some weird convergence behaviours

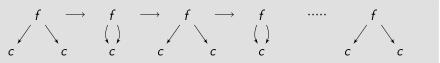
A Notion of Convergence Based on $\leq_{\perp}^{\mathcal{H}}$

Alas, $\leq^{\mathcal{H}}_{\perp}$ has some quirks!

- introduces sharing
- total term graphs not necessarily maximal

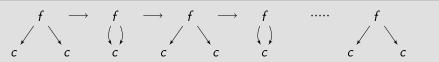
$$\begin{array}{c|c} f & f \\ \swarrow & \leq_{\perp}^{\mathcal{H}} & \begin{pmatrix} f \\ \downarrow \\ c \end{pmatrix} \\ c & c \end{array}$$

This causes some weird convergence behaviours



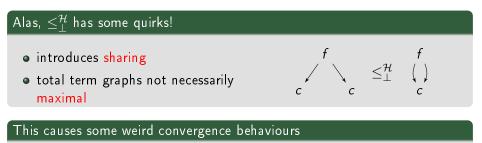
A Notion of Convergence Based on $\leq_{\perp}^{\mathcal{H}}$

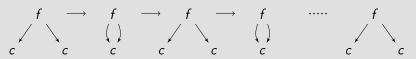
This causes some weird convergence behaviours



This is not possible in a topological space with unique limits.

A Notion of Convergence Based on $\leq_{\perp}^{\mathcal{H}}$



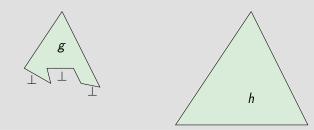


This is not possible in a topological space with unique limits.

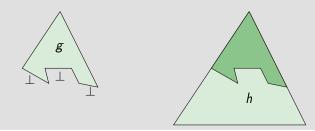
but: we should not dismiss this order too fast!

Goal

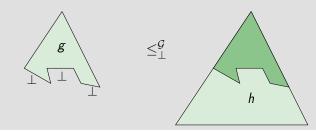
Goal



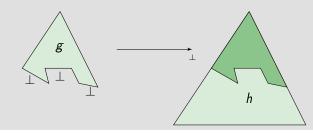
Goal



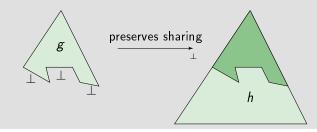
Goal



Goal

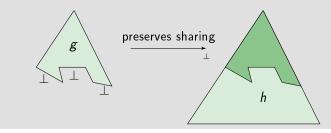


Goal



Goal

 $g \leq_{\perp}^{\mathcal{G}} h$ iff g is isomorphic to initial part of h above ' \perp 's in g



What is sharing?

- a node n is shared if it is reachable via multiple paths from the root
- the set of all paths $\mathcal{P}_g(n)$ to a node describes its sharing

Sharing-Preserving ⊥-Homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{\mathcal{G}} h$ iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Sharing-Preserving ⊥-Homomorphisms

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{\mathcal{G}} h$ iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}(n) = \mathcal{P}_{h}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

The pair $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}),\leq^{\mathcal{G}}_{\perp})$ forms a complete semilattice.

Sharing-Preserving ⊥-Homomorphisms

Acyclic Paths

We only consider the set $\mathcal{P}_g^a(n)$ of acyclic paths to n.

Definition

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^{\mathcal{G}} h$ iff there is some $\varphi \colon g \to_{\perp} h$ with $\mathcal{P}_{g}^{a}(n) = \mathcal{P}_{h}^{a}(\varphi(n))$ for all non- \perp -nodes n in g.

Theorem

The pair $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}),\leq^{\mathcal{G}}_{\perp})$ forms a complete semilattice.

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- ullet all discussed partial orders specialise to \leq_{\perp} on terms

14

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- ullet all discussed partial orders specialise to \leq_{\perp} on terms

complete semilattices induce a complete metric space

- $\leq_{\perp}^{\mathcal{G}}$ induces a canonical metric
- \bullet common structure of two term graphs g and $h \colon g \sqcap_{\perp} h$
- metric distance $d(g, h) = 2^{-d}$, where $d = \bot$ -depth $(g \sqcap_{\perp} h)$
- resulting complete metric specialises to the metric d on terms

What Have We Gained?

Insight into convergence over term graphs

- partial orders honour the rich structure of term graphs
- ullet all discussed partial orders specialise to \leq_{\perp} on terms

complete semilattices induce a complete metric space

- $\leq_{\perp}^{\mathcal{G}}$ induces a canonical metric
- common structure of two term graphs g and h: $g \sqcap_{\perp} h$
- metric distance $d(g, h) = 2^{-d}$, where $d = \bot$ -depth $(g \sqcap_{\bot} h)$
- resulting complete metric specialises to the metric d on terms

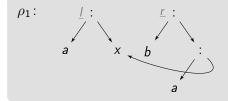
Theorem (total *p*-convergence = *m*-convergence)

For every reduction S in a GRS the following equivalence holds:

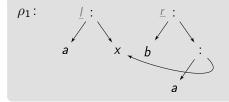
$$S: g \xrightarrow{p} h$$
 is total iff $S: g \xrightarrow{m} h$.

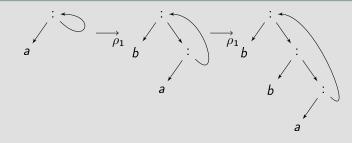
(weak convergence)

Term graph rewrite rules that unravel to $a: x \rightarrow b: a: x$

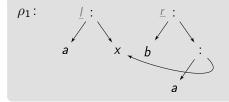


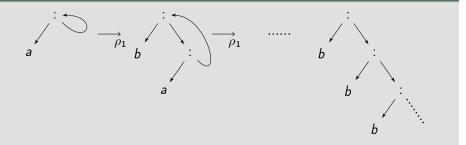
Term graph rewrite rules that unravel to $a: x \rightarrow b: a: x$



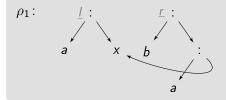


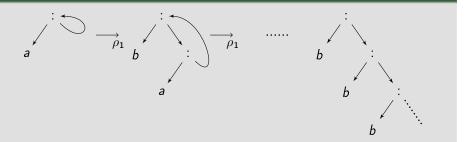
Term graph rewrite rules that unravel to $a: x \rightarrow b: a: x$



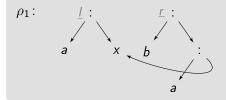


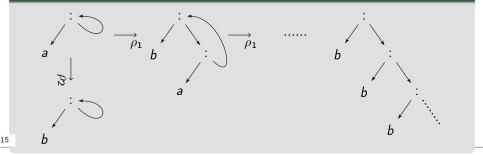
Term graph rewrite rules that unravel to a: x
ightarrow b: a: x

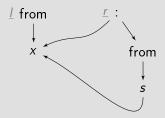




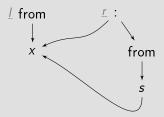
Term graph rewrite rules that unravel to $a: x \rightarrow b: a: x$



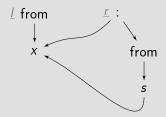


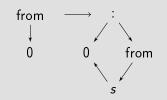


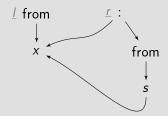
Term graph reduction rule that unravels to $from(x) \rightarrow x : from(s(x))$

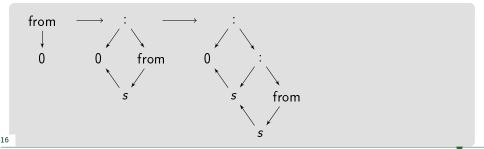


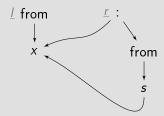
from ↓ 0

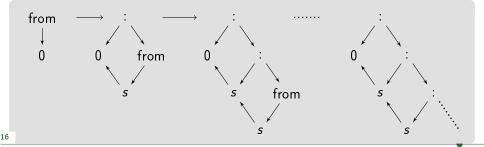


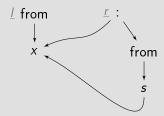


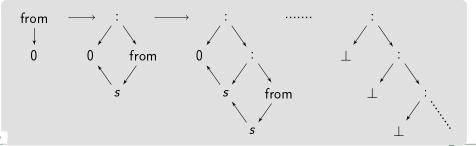










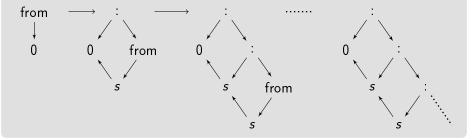


Partial order $\leq_{\perp}^{\mathcal{H}}$ based on \perp -homomorphisms

• it behaves weird but it might still be suited for convergence e.g.

Partial order $\leq_{\perp}^{\mathcal{H}}$ based on \perp -homomorphisms

• it behaves weird but it might still be suited for convergence, e.g.

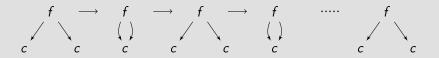


Partial order $\leq_{\perp}^{\mathcal{H}}$ based on \perp -homomorphisms

- it behaves weird but it might still be suited for convergence, e.g.
- is there a metric space counterpart?

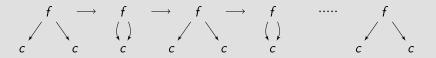
Partial order $\leq_{\perp}^{\mathcal{H}}$ based on \perp -homomorphisms

- it behaves weird but it might still be suited for convergence, e.g.
- is there a metric space counterpart? No.



$\overline{\mathsf{Partial}} \operatorname{order} \leq_{\perp}^{\mathcal{H}} \operatorname{based} \operatorname{on} \perp \operatorname{homomorphisms}$

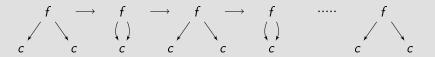
- it behaves weird but it might still be suited for convergence, e.g.
- is there a metric space counterpart? No.



• For strong convergence there is!

Partial order $\leq_{\perp}^{\mathcal{H}}$ based on \perp -homomorphisms

- it behaves weird but it might still be suited for convergence, e.g.
- is there a metric space counterpart? No.



• For strong convergence there is!

A simple metric for strong convergence

- depth: length of shortest path
- metric: $d(s, t) = 2^{-d}$, d = maximal depth s.t. s and t are isomorphic if truncated at depth d.