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Appendices
A Full Proof of the Complete Semilattice

In this section, we want to give the full proofs of Theorem 4.7 and Lemma 4.9 which together,
as stated in the proof of Theorem 4.10, prove the semilattice structure of (G∞C (Σ⊥),≤⊥).
Moreover, we give the proofs of Lemma 3.2, 3.4 and 4.5.

A.1 ∆-Homomorphisms
Before we begin with the proof of Lemma 3.2, we show some general properties of homo-
morphisms and isomorphisms including the full proofs of Proposition 2.6.

I Proposition 2.6. The ∆-homomorphisms on G∞(Σ) form a category which is a preorder.
That is, there is at most one ∆-homomorphism from one term graph to another.

Proof of Proposition 2.6. The identity ∆-homomorphism is obviously the identity mapping
on the set of nodes. Moreover, an easy equational reasoning reveals that the composition
of two ∆-homomorphisms is again a ∆-homomorphism. Associativity of this composition is
obvious as ∆-homomorphisms are functions.

In order to show that the category is a preorder assume that there are two ∆-homomorphisms
φ1, φ2 : g →∆ h. We prove that φ1 = φ2 by showing that φ1(n) = φ2(n) for all n ∈ Ng by
induction on the depth of n.

Let depthg(n) = 0, i.e. n = rg. By the root condition, we have that φ1(rg) = rh = φ2(rg).
Let depthg(n) = d > 0. Then n has an occurrence π · i in g such that depthg(n′) < d for
n′ = nodeg(π). Hence, we can employ the induction hypothesis for n′ to obtain the following:

φ1(n) = suchi (φ1(n′)) (successor condition for φ1)
= suchi (φ2(n′)) (ind. hyp.)
= φ2(n) (successor condition for φ2)

J

One can quite easily see that homomorphisms between term graphs are always surjective.

I Lemma A.1 (homomorphisms are surjective). Let g, h ∈ G∞(Σ) and φ : g → h. Then φ is
surjective.

Proof. Follows from an easy induction on the depth of the nodes in h. J

Note that a bijective ∆-homomorphism is not necessarily a ∆-isomorphism. To realise
this, consider two term graphs g, h, each with one node only. Let the node in g be labelled
with a and the node in h with b then the only possible a-homomorphism from g to h is
clearly a bijection but not an a-isomorphism. On the other hand, bijective homomorphisms
are isomorphisms.

I Lemma A.2 (bijective homomorphisms are isomorphisms). Let g, h ∈ G∞(Σ) and φ : g → h.
Then the following are equivalent

(a) φ is an isomorphism.
(b) φ is bijective.
(c) φ is injective.
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Proof. The implication (a) ⇒ (b) is trivial. The equivalence (b) ⇔ (c) follows from
Lemma A.1. For the implication (b) ⇒ (a), consider the inverse φ−1 of φ. We need to
show that φ−1 is a homomorphism from h to g. The root condition follows immediately
from the root condition for φ. Similarly, an easy equational reasoning reveals that the fact
that φ is homomorphic in Ng implies that φ−1 is homomorphic in Nh J

Now we can give the proofs of Lemma 3.2 and Lemma 3.4.

I Lemma 3.2 (characterisation of ∆-homomorphisms). For g, h ∈ G∞C (Σ), a function φ : Ng →
Nh is a ∆-homomorphism φ : g →∆ h iff the following holds for all n ∈ Ng:

(a) n ⊆ φ(n), and (b) labg(n) = labh(φ(n)) whenever labg(n) 6∈ ∆.

Proof of Lemma 3.2. For the “only if” direction, assume that φ : g →∆ h. (b) is the
labelling condition and is therefore satisfied by φ. To establish (a), we show the equivalent
statement

∀π ∈ P(g). ∀n ∈ Ng. π ∈ n =⇒ π ∈ φ(n)

We do so by induction on the length of π: If π = 〈〉, then π ∈ n implies n = rg. By the
root condition, we have φ(rg) = rh and, therefore, π = 〈〉 ∈ rh. If π = π′ · i, then let n′ =
nodeg(π′). Consequently, π′ ∈ n′ and, by induction hypothesis, π′ ∈ φ(n′). Since π = π′ · i,
we have sucgi (n′) = n. By the successor condition we can conclude φ(n) = suchi (φ(n′)). This
and π′ ∈ φ(n′) yields that π′ · i ∈ φ(n).

For the “if” direction, we assume (a) and (b). The labelling condition follows immediately
from (b). For the root condition, observe that since 〈〉 ∈ rg, we also have 〈〉 ∈ φ(rg). Hence,
φ(rg) = rh. In order to show the successor condition, let n, n′ ∈ Ng and 0 ≤ i < arg(n)
such that sucgi (n) = n′. Then there is an occurrence π ∈ n with π · i ∈ n′. By (a), we can
conclude that π ∈ φ(n) and π · i ∈ φ(n′) which implies that suchi (φ(n)) = φ(n′). J

I Lemma 3.4. Let g, h ∈ G∞(Σ). Then there is a ∆-homomorphism φ : g →∆ h iff, for all
π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Proof of Lemma 3.4. W.l.o.g. we assume g and h to be canonical. For the “only if” direc-
tion, suppose that φ is a ∆-homomorphism from g to h. Then we can assume the properties
(a) and (b) of Lemma 3.2, which we refer to as (a’) and (b’) to avoid confusion. In order
to show (a), assume π ∼g π′. Then there is some node n ∈ Ng with π, π′ ∈ n. Hence, (a’)
yields π, π′ ∈ φ(n) and, therefore, π ∼h π′. To show (b), we assume some π ∈ P(g) with
g(π) 6∈ ∆. Then we can reason as follows:

g(π) = labg(nodeg(π)) (b’)= labh(φ(nodeg(π))) (a’)= labh(nodeh(π)) = h(π)

For the converse direction, assume that both (a) and (b) hold. Define the function
φ : Ng → Nh by φ(n) = n′ iff n ⊆ n′ for n ∈ Ng and n′ ∈ Nh. To see that this is well-
defined, we show at first that, for each n ∈ Ng, there is at most one n′ ∈ Nh with n ⊆ n′.
Suppose there is another node n′′ ∈ Nh with n ⊆ n′′. Since n 6= ∅, this implies n′ ∩ n′′ 6= ∅
and, therefore, n′ = n′′. Secondly, we show that there is at least one such node n′. Choose
some π∗ ∈ n. Since then π∗ ∼g π∗ and, by (a), also π∗ ∼h π∗ holds, there is some n′ ∈ Nh

with π∗ ∈ n′. For each π ∈ n, we have π∗ ∼g π and, therefore, π∗ ∼h π by (a). Hence,
π ∈ n′. So we know that φ is well-defined. By construction, φ satisfies (a’). Moreover,
because of (b), it satisfies (b’). Hence, φ is a homomorphism from g to h. J
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A.2 Strong ∆-Homomorphisms
Before we continue with the proof of Lemma 4.5, we need to establish some auxiliary lemmas
about strong ∆-homomorphisms.

Recall that when we moved from the partial orders ≤2
⊥ and ≤3

⊥ to the partial order ≤⊥,
we replaced the requirement for injectivity with the requirement for preservation of sharing
that is captured by strong ∆-homomorphisms. The following lemma shows that preservation
of sharing is, in fact, a stronger property than injectivity:

I Lemma A.3 (strong ∆-homomorphisms are injective for non-∆-nodes). Let g, h ∈ G∞(Σ)
and φ : g →∆ h strong. Then φ is injective for all non-∆-nodes in g. That is, for two nodes
n,m ∈ Ng with labg(n), labg(m) 6∈ ∆ we have that φ(n) = φ(m) implies n = m.

Proof. Let n,m ∈ Ng with labg(n), labg(m) 6∈ ∆ and φ(n) = φ(m). Since φ is strong, it
preserves the sharing of n and m. That is, in particular we have Pah(φ(n)) ⊆ Pg(n) and
Pah(φ(m)) ⊆ Pg(m). Moreover, because Pah(φ(n)) = Pah(φ(m)) 6= ∅, we can conclude that
Pg(n) ∩ Pg(m) 6= ∅ and, therefore, m = n. J

The following lemma provides an equivalent characterisation of strong ∆-homomorphisms
that reduces the proof obligations necessary to show that a ∆-homomorphism is strong.

I Lemma A.4 (preservation of sharing). Let g, h ∈ G∞(Σ), φ : g →∆ h. Then φ is strong iff
Pah(φ(n)) ⊆ Pg(n) for all n ∈ Ng with labg(n) 6∈ ∆.

Proof. The “only if” direction is trivial. For the “if” direction, suppose that φ satisfies
Pah(φ(n)) ⊆ Pg(n) for all n ∈ Ng with labg(n) 6∈ ∆. In order to prove that φ is strong, we
will show that Pah(φ(n)) = Pag (n) holds for each n ∈ Ng with labg(n) 6∈ ∆.

We first show the inclusion Pah(φ(n)) ⊆ Pag (n). For this purpose, let π ∈ Pah(φ(n)). Due
to the hypothesis, this implies that π ∈ Pg(n). Now suppose that π is cyclic in g, i.e. there
are two occurrences π1, π2 of a node m ∈ Ng with π1 < π2 ≤ π. By Lemma 3.2, we can
conclude that π1, π2 ∈ Ph(φ(m)). This is a contradiction to the assumption that π is acyclic
in h. Hence, π ∈ Pag (n).

For the other inclusion, assume some π ∈ Pag (n). Using Lemma 3.2 we obtain that
π ∈ Ph(φ(n)). It remains to be shown that π is acyclic in h. Suppose that this is not true,
i.e. there are two occurrences π1, π2 of a node m ∈ Nh with π1 < π2 ≤ π. Note that since
π ∈ P(g), also π1, π2 ∈ P(g). Let mi = nodeg(πi), i = 1, 2. According to Lemma 3.2, we
have that φ(m1) = m = φ(m2). Moreover, observe that g(π1), g(π2) 6∈ ∆: g(π1) cannot
be a nullary symbol because π1 < π ∈ P(g). The same argument applies for the case that
π2 < π. If this is not the case, then π2 = π and g(π) 6∈ ∆ follows from the assumption that
labg(n) 6∈ ∆. Thus, we can apply Lemma A.3 to conclude that m1 = m2. Consequently, π
is cyclic in g, which contradicts the assumption. Hence, π ∈ Pah(φ(n)). J

From this we obtain that ∆-isomorphisms are, in fact, also strong ∆-homomorphisms.

I Corollary A.5 (∆-isomorphisms are strong). Let g, h ∈ G∞(Σ). If φ : g →̃∆ h, then φ is a
strong ∆-homomorphism.

Proof. This follows from Corollary 3.5 and Lemma A.4. J

Now we are ready to prove Lemma 4.5:

I Lemma 4.5. Let g, h ∈ G∞(Σ) and φ : g →∆ h. Then φ is strong iff

π ∼h π′ =⇒ π ∼g π′ for all π ∈ P(g) with g(π) 6∈ ∆ and π′ ∈ Pa(h).
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Proof of Lemma 4.5. For the “only if” direction, assume that φ is strong. Moreover, let
π ∈ P(g) with g(π) 6∈ ∆ and π′ ∈ Pa(h) such that π ∼h π′, and let n = nodeg(π). According
to Lemma 3.2, we get that π ∈ Ph(φ(n)). Because of π ∼h π′, also π′ ∈ Ph(φ(n)). Since, by
assumption, π′ is acyclic in h, we know in particular that π′ ∈ Pah(φ(n)). Since φ is strong
and labg(n) 6∈ ∆, we know that φ preserves the sharing of n which yields that π′ ∈ Pg(n).
Hence, π ∼g π′.

For the converse direction, let n ∈ Ng with labg(n) 6∈ ∆. We need to show that φ
preserves the sharing of n. Due to Lemma A.4, it suffices to show that Pah(φ(n)) ⊆ Pg(n).
Since Pg(n) 6= ∅, we can choose some π∗ ∈ Pg(n). Then, according to Lemma 3.2, also
π∗ ∈ Ph(φ(n)). Let π ∈ Pah(φ(n)). Then π∗ ∼h π holds. Since π is acyclic in h and
g(π∗) 6∈ ∆, we can use the hypothesis to obtain that π∗ ∼g π holds which shows that
π ∈ Pg(n). J

A.3 A Complete Semilattice on Term Graphs
We shall now give the proofs that show the complete semilattice structure of the partial
order ≤⊥. We begin by showing that it is a complete partial order.

I Theorem 4.7 (≤⊥ is a cpo). The relation ≤⊥ is a complete partial order on G∞C (Σ⊥).

Proof of Theorem 4.7. The least element of ≤⊥ is obviously ⊥. Hence, it remains to be
shown that each each directed subset of G∞C (Σ⊥) has a least upper bound. To this end,
suppose that G is a directed subset of G∞C (Σ⊥). We define a canonical term graph g by
giving the labelled quotient tree (P, l,∼) with

P =
⋃
g∈G
P(g) ∼ =

⋃
g∈G
∼g l(π) =

{
f if f ∈ Σ and ∃g ∈ G. g(π) = f

⊥ otherwise

We will make extensive use of Corollary 4.6 in order to show that g is the lub of G.
Therefore, we use (a), (b), (c) to refer to the conditions mentioned there.

At first we need to show that l is indeed well-defined. For this purpose, let g1, g2 ∈ G
and π ∈ P(g1) ∩ P(g2) with g1(π), g2(π) ∈ Σ. Since G is directed, there is some g ∈ G such
that g1, g2 ≤⊥ g. By (c), we can conclude g1(π) = g(π) = g2(π).

Next we show that (P, l,∼) is indeed a labelled quotient tree. Recall that ∼ needs to be
an equivalence relation. For the reflexivity, assume that π ∈ P . Then there is some g ∈ G
with π ∈ P(g). Since ∼g is an equivalence relation, π ∼g π must hold and, therefore, π ∼ π.
For the symmetry, assume that π1 ∼ π2. Then there is some g ∈ G such that π1 ∼g π2.
Hence, we get π2 ∼g π1 and, consequently, π2 ∼ π1. In order to show transitivity, assume
that π1 ∼ π2, π2 ∼ π3. That is, there are g1, g2 ∈ G with π1 ∼g1 π2 and π2 ∼g2 π3. Since
G is directed, we find some g ∈ G such that g1, g2 ≤⊥ g. By (a), this implies that also
π1 ∼g π2 and π2 ∼g π3. Hence, π1 ∼g π3 and, therefore, π1 ∼ π3.

For the reachability condition, let π · i ∈ P . That is, there is a g ∈ G with π · i ∈ P(g).
Hence, π ∈ P(g), which in turn implies π ∈ P . Moreover, π · i ∈ P(g) implies that
i < ar(g(π)). Since g(π) cannot be a nullary symbol and in particular not ⊥, we obtain that
l(π) = g(π). Hence, i < ar(l(π)).

For the congruence condition, assume that π1 ∼ π2 and that l(π1) = f . If f ∈ Σ, then
there are g1, g2 ∈ G with π1 ∼g1 π2 and g2(π1) = f . Since G is directed, there is some
g ∈ G such that g1, g2 ≤⊥ g. Hence, by (a) resp. (c), we have π1 ∼g π2 and g(π1) = f .
Using Lemma 3.10 we can conclude that g(π2) = g(π1) = f and that π1 · i ∼g π2 · i for all
< ar(g(π1)). Because g ∈ G, it holds that l(π2) = f and that π1 · i ∼ π · i for all i < ar(l(π1)).

RTA’11



22

If f = ⊥, then also l(π2) = ⊥, for if l(π2) = f ′ for some f ′ ∈ Σ, then, by the symmetry
of ∼ and the above argument (for the case f ∈ Σ), we would obtain f = f ′ and, therefore,
a contradiction. Since ⊥ is a nullary symbol, the remainder of the condition is vacuously
satisfied.

This shows that (P, l,∼) is a labelled quotient tree which, by Lemma 3.10, uniquely
defines a canonical term graph. Next we show that the thus obtained term graph g is an
upper bound for G. To this end, let g ∈ G. We will show that g ≤⊥ g by establishing (a),(b)
and (c). (a) and (c) are an immediate consequence of the construction. For (b), assume
that π1 ∈ P(g), g(π1) ∈ Σ, π2 ∈ Pa(g) and π1 ∼ π2. We will show that then also π1 ∼g π2
holds. Since π1 ∼ π2, there is some g′ ∈ G with π1 ∼g′ π2. Because G is directed, there
is some g∗ ∈ G with g, g′ ≤⊥ g∗. Using (a), we then get that π1 ∼g∗ π2. Note that since
π2 is acyclic in g, it is also acyclic in g∗: Suppose that this is not the case, i.e. there are
occurrences π3, π4 with π3 < π4 ≤ π2 and π3 ∼g∗ π4. But then we also have π3 ∼ π4 which
contradicts the assumption that π2 is acyclic in g. With this knowledge we are able to apply
(b) to π1 ∼g∗ π2 in order to obtain π1 ∼g π2.

In the final part of this proof, we will show that g is the least upper bound of G. For
this purpose, let ĝ be an upper bound of G, i.e. g ≤⊥ ĝ for all g ∈ G. We will show that
g ≤⊥ ĝ by establishing (a), (b) and (c). For (a), assume that π1 ∼ π2. Hence, there is
some g ∈ G with π1 ∼g π2. Since, by assumption, g ≤⊥ ĝ, we can conclude π1 ∼ĝ π2 using
(a). For (b), assume π1 ∈ P , l(π1) ∈ Σ, π2 ∈ Pa(ĝ) and π1 ∼ĝ π2. That is, there is some
g ∈ G with g(π1) ∈ Σ. Together with g ≤⊥ ĝ this implies π1 ∼g π2 by (b). π1 ∼ π2 follows
immediately. For (c), assume π ∈ P and l(π) = f ∈ Σ. Then there is some g ∈ G with
g(π) = f . Applying (c) then yields ĝ(π) = f since g ≤⊥ ĝ. J

From the construction in the previous proof, we immediately get the following corollary:

I Corollary A.6 (lub of directed sets). Let G be a directed subset of G∞C (Σ⊥) and g =
⊔⊥G.

Then the following holds:

(i) P(g) =
⋃
g∈G
P(g), and (ii) g(π) = f ∈ Σ iff ∃g ∈ G. g(π) = f .

I Remark A.7. Following Remark 3.8, we can define an order ≤⊥ on G∞(Σ⊥)/∼= which
is isomorphic to the order ≤⊥ on G∞C (Σ⊥). Define [g]∼= ≤⊥ [h]∼= iff there is a strong ⊥-
homomorphism φ : g →⊥ h.

The extension of ≤⊥ to equivalence classes is easily seen to be well-defined: Assume
some strong ⊥-homomorphism φ : g →⊥ h and two isomorphisms g′ ∼= g and h′ ∼= h. Since,
by Corollary A.5, isomorphisms are also strong (⊥-)homomorphisms, we have two strong
⊥-homomorphisms φ1 : g′ →⊥ g and φ2 : h→⊥ h′. Hence, by Proposition 4.2, φ2 ◦ φ ◦ φ1 is
a strong ⊥-homomorphism from g′ to h′.

We will employ this isomorphism by switching between these structures to be able to
use the respective structure that is more convenient for the given setting.

Finally, we prove the lemma which, together with Theorem 4.7, shows that (G∞C (Σ⊥),≤⊥)
is a complete semilattice:

I Lemma 4.9 (compatible elements have lub). If {g1, g2} ⊆ G∞C (Σ⊥) has an upper bound,
then it has a least upper bound.

Proof of Lemma 4.9. Since {g1, g2} is not necessarily directed, its lub might have occur-
rences that are neither in g1 or g2. Therefore, we have to employ a different construction
here: Following Remark A.7, we will use the structure (G∞(Σ⊥)/∼=,≤⊥) which is isomorphic
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to (G∞C (Σ⊥),≤⊥). To this end, we will construct a term graph g such that [g]∼= is the lub of
{[g1]∼=, [g2]∼=}. Since we assume that {[g1]∼=, [g2]∼=} has an upper bound, say [ĝ]∼=, there are
two strong ⊥-homomorphisms φi : gi →⊥ ĝ.

Let gj = (N j , sucj , labj , rj), j = 1, 2. Since we are dealing with isomorphism classes, we
can assume w.l.o.g. that the nodes in gj are of the form nj for j = 1, 2. Let M = N1 ]N2

and define the relation ∼ on M as follows:

nj ∼ mk iff Pgj (nj) ∩ Pgk(mk) 6= ∅

∼ is clearly reflexive and symmetric. Hence, its transitive closure ∼+ is an equivalence
relation on M . Now define the term graph g = (N, lab, suc, r) as follows:

N = M/∼+ lab(N) =
{
f if f ∈ Σ,∃nj ∈ N. labj(nj) = f

⊥ otherwise

r = [r1]∼+ suci(N) = N ′ iff ∃nj ∈ N. sucji (nj) ∈ N ′

Note that since 〈〉 ∈ Pg1(r1) ∩ Pg2(r2), we also have r = [r2]∼+ .
Before we argue about the well-definedness of g, we need to establish some auxiliary

claims:

nj ∼+ mk =⇒ φj(nj) = φk(mk) for all nj ,mk ∈M (1)

φj(nj) = φk(mk) =⇒ nj ∼ mk
for all nj ,mk ∈M

with labj(nj), labk(mk) ∈ Σ
(1’)

We show (1) by proving that nj ∼p mk implies φj(nj) = φk(mk) by induction on p > 0.
If p = 1, then nj ∼ mk. Hence, Pgj (nj) ∩ Pgk(mk) 6= ∅. Additionally, from Lemma 3.2 we
obtain both Pgj (nj) ⊆ Pĝ(φj(n

j)) and Pgk(mk) ⊆ P
ĝ
(φk(mk)). Consequently, we also have

that P
ĝ
(φj(nj)) ∩ Pĝ(φk(mk)) 6= ∅, i.e. φj(nj) = φk(mk). If p = q + 1 > 1, then there is

some ol ∈ M with nj ∼ ol and ol ∼q mk. Applying the induction hypothesis immediately
yields φj(nj) = φl(ol) = φk(mk).

For (1’), let nj ,mk ∈ M with labj(nj), labk(mk) ∈ Σ and φj(nj) = φk(mk). Since φj
and φk are strong ⊥-homomorphisms, we have the following equations:

Pagj (n
j) = Pa

ĝ
(φj(nj)) = Pa

ĝ
(φk(mk)) = Pagk(mk).

Hence, Pgj (nj) ∩ Pgk(mk) 6= ∅ and, therefore, nj ∼ mk.
Next we show that lab is well-defined. To this end, let N ∈ N and nj ,mk ∈ N such that

labj(nj) = f1 ∈ Σ and labk(mk) = f2 ∈ Σ. We need to show that f1 = f2. By (1), we have
that φj(nj) = φk(mk). Since f1, f2 ∈ Σ, we can employ the labelling condition for φj and
φk in order to obtain that

f1 = l̂ab(φj(nj)) = l̂ab(φk(mk)) = f2.

To argue that suc is well-defined, we first have to show for all N ∈ N that suci(N) is
defined iff i < ar(lab(N)). Suppose that suci(N) is defined. Then there is some nj ∈ N

such that sucji (nj) is defined. Hence, i < ar(labj(nj)). Since then also labj(nj) ∈ Σ, we
have lab(N) = labj(nj). Therefore, i < ar(lab(N)). If, conversely, there is some i ∈ N with
i < ar(lab(N)), then we know that lab(N) = f ∈ Σ. Hence, there is some nj ∈ N with
labj(nj) = f . Hence, i < ar(labj(nj)) and, therefore, sucji (nj) is defined. Hence, suci(N) is
defined.
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To finish the argument showing that suc is well-defined, we have to show that, for all
N,N1, N2 ∈ N and nj ,mk ∈ N such that sucji (nj) ∈ N1 and sucki (mk) ∈ N2, we indeed have
N1 = N2. As nj ,mk ∈ N , we have nj ∼+ mk and, therefore, φj(nj) = φk(nk) according
to (1). Since both sucji (nj) and sucki (mk) are defined, we have labj(nj), labk(mk) ∈ Σ.
By (1’) we then have nj ∼ mk, i.e. there is some π ∈ Pgj (nj) ∩ Pgk(mk). Consequently,
π · i ∈ Pgj (sucji (nj))∩Pgk(sucki (mk)). Hence, sucji (nj) ∼ sucki (mk) and, therefore, N1 = N2.

Before we begin the main argument we need establish the following auxiliary claims:

Pgj (nj) ⊆ Pg([nj ]∼+) for all nj ∈M (2)
∀π ∈ Pag (N) ∃nj ∈ N. labj(nj) ∈ Σ, π ∈ Pagj (n

j) for all N ∈ N with lab(N) ∈ Σ (3)

nj ∼+ mk =⇒ Pagj (n
j) = Pagk(mk)

for all nj ,mj ∈M

with labj(nj), labk(mk) ∈ Σ
(4)

For (2), we will show that π ∈ Pgj (nj) implies π ∈ Pg([nj ]∼+) by induction on the
length of π. If π = 〈〉, then 〈〉 ∈ Pgj (nj), i.e. nj = rj . Recall that [rj ]∼+ = r. Hence, 〈〉 ∈
Pg([nj ]∼+). If π = π′·i, then π′·i ∈ Pgj (nj), i.e. formj = nodegj (π′), we have sucji (mj) = nj .
Employing the induction hypothesis, we obtain π′ ∈ Pg([mj ]∼+). Additionally, according to
the construction of g, we have suci([mj ]∼+) = [nj ]∼+ . Consequently, π′ · i ∈ Pg([nj ]∼+)
holds.

Similarly, we also show (3) by induction on the length of π. If π = 〈〉, then we have
〈〉 ∈ Pag (N), i.e. N = r. Since, by assumption, lab(r) ∈ Σ holds, there is some j ∈ {1, 2}
such that labj(rj) ∈ Σ. Moreover, we clearly have 〈〉 ∈ Pagj (r

j). If π = π′ · i, then we have
π′ · i ∈ Pag (N). Let N ′ = nodeg(π′). Since π′ · i is acyclic in g, so is π′, i.e. π′ ∈ Pag (N ′).
Moreover, we have that suci(N ′) is defined, i.e. lab(N ′) is not nullary and in particular not
⊥. Thus, we can apply the induction hypothesis to obtain some nj ∈ N ′ with labj(nj) ∈ Σ
and π′ ∈ Pagj (n

j). Hence, according to the construction of g, we have labj(nj) = lab(N ′),
i.e. sucji (nj) = mj is defined. Furthermore, we then get mj ∈ N . Note that π′ · i ∈ Pgj (mj).
Thus, it remains to be shown that π′ · i is acyclic in gj . Suppose that π′ · i is cyclic in gj . As
π′ is acyclic in gj , this means that there is some occurrence π∗ < π′ · i with π∗ ∈ Pgj (mj).
Using (2), we obtain that π∗ ∈ Pg(N). This contradicts the assumption of π′ · i being acyclic
in g. Hence, π′ · i ∈ Pagj (m

j) holds.
For (4), suppose that nj ∼+ mk holds with labj(nj), labk(mk) ∈ Σ. From (1), we obtain

φj(nj) = φk(nk). Moreover, since both nj and mk are not labelled with ⊥, we know that
φj and φk preserve the sharing of nj and mk, respectively, which yields the equations

Pagj (n
j) = Pa

ĝ
(φj(nj)) = Pa

ĝ
(φk(mk)) = Pagk(mk).

Next we show that [g1]∼=, [g1]∼= ≤⊥ [g]∼= holds by giving two strong ⊥-homomorphisms
ψj : gj →⊥ g, j = 1, 2. Define ψj : N j → N by nj 7→ [nj ]∼+ . From (2) and the fact that,
according to the construction, labj(nj) ∈ Σ implies labj(nj) = lab([nj ]∼+), we immediately
get that ψj is a ⊥-homomorphism by applying Lemma 3.2. In order to argue that ψj is
strong, assume that nj ∈ N j with labj(nj) ∈ Σ. According to Lemma A.4, it suffices to show
that Pag (ψj(nj)) ⊆ Pgj (nj). Suppose that π ∈ Pag (ψj(nj)). Note that, by construction, also
ψj(nj) is not labelled with ⊥. Hence, we can apply (3) to obtain some mk ∈ ψj(nj) with
labk(mk) ∈ Σ and π ∈ Pagk(mk). By definition, mk ∈ ψj(nj) is equivalent to nj ∼+ mk.
Therefore, we can employ (4), which yields Pagk(mk) = Pagj (n

j). Hence, π ∈ Pagj (n
j).

Note that the construction of g did not depend on ĝ, viz., for any other upper bound
[ĥ]∼= of [g1]∼=, [g2]∼=, we get the same term graph g. Hence, it is still just an arbitrary upper
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bound which means that in order to show that [g]∼= is the least upper bound, it suffices to
show [g]∼= ≤⊥ [ĝ]∼=. For this purpose, we will devise a strong ⊥-homomorphism ψ : g →⊥ ĝ.
Define ψ : N → N̂ by [nj ]∼+ 7→ φj(nj). (1) shows that ψ is well-defined. The root condition
for ψ follows from the root condition for φ1:

ψ(r) = ψ([r1]∼+) = φ1(r1) = r̂.

For the labelling condition, assume that lab(N) = f ∈ Σ for some N ∈ N . Then there is
some nj ∈ N with labj(nj) = f . Therefore, the labelling condition for φj yields

l̂ab(ψ(N)) = l̂ab(φj(nj)) = lab(N) = f

For the successor condition, let suci(N) = N ′ for some N,N ′ ∈ N . Then there is some
nj ∈ N with sucji (nj) ∈ N ′. Therefore, the successor condition for ψ follows from the
successor condition for φj as follows:

ψ(suci(N)) = ψ(N ′) = ψ([sucji (nj)]∼+) = φj(sucji (nj))
= ŝuci(φj(nj)) = ŝuci(ψ([nj ]∼+)) = ŝuci(ψ(N))

Finally, we show that ψ is strong. To this end, let N ∈ N with lab(N) ∈ Σ. That is,
there is some nj ∈ N with labj(nj) ∈ Σ. Recall, that we have shown that ψj : gj →⊥ g is
strong. That is, we have

Pagj (n
j) = Pag (ψj(nj)) = Pag ([nj ]∼+).

Analogously, we have Pa
ĝ

(φj(nj)) = Pagj (n
j) as φj is strong. Using this, we can obtain the

following equations:

Pa
ĝ

(ψ(N)) = Pa
ĝ

(ψ([nj ]∼+)) = Pa
ĝ

(φj(nj)) = Pagj (n
j) = Pag ([nj ]∼+) = Pag (N)

Hence, ψ is a strong ⊥-homomorphism from g to ĝ. J

Intuitively, partial term graphs represent partial results of computations where ⊥-nodes
act as placeholders denoting the uncertainty or ignorance of the actual “value” at that
position. On the other hand, total term graphs do contain all the information of a result
of a computation – they have the maximally possible information content. In other words,
they are the maximal elements w.r.t. ≤⊥. The following proposition confirms this intuition.

I Proposition A.8 (total term graphs are the maximal elements). Let Σ be a non-empty
signature. Then G∞C (Σ) is the set of maximal elements in G∞C (Σ⊥) w.r.t. ≤⊥.

Proof. At first we need to show that each element in G∞C (Σ) is maximal. For this purpose,
let g ∈ G∞C (Σ) and h ∈ G∞C (Σ⊥) such that g ≤⊥ h. We have to show that then g = h.
Since g ≤⊥ h, there is a strong ⊥-homomorphism φ : g →⊥ h. As g does not contain any
⊥-node, φ is even a strong homomorphism. By Lemma A.3, φ is injective and, therefore,
according to Lemma A.2, an isomorphism. Hence, we obtain that g ∼= h and, consequently,
using Proposition 3.7, that g = h.

Secondly, we need to show that G∞C (Σ⊥) does not contain any other maximal elements
besides those in G∞C (Σ). Suppose there is a term graph g ∈ G∞C (Σ⊥) \ G∞C (Σ) which is
maximal in G∞C (Σ⊥). Hence, there is a node n∗ ∈ Ng with labg(n∗) = ⊥. Let n be a fresh
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node (i.e. n 6∈ Ng) and f some k-ary symbol in Σ. Define the term graph h by

Nh = Ng ] {n} rh = rg

labh(n) =


f if n = n∗

⊥ if n = n

labg(n) otherwise
such(n) =


〈n, . . . , n〉 if n = n∗

〈〉 if n = n

sucg(n) otherwise

That is, h is obtained from g by relabelling n? with f and setting the ⊥-labelled node
n as the target of all outgoing edges of n?. We assume that n was chosen such that h
is canonical (i.e. n = Ph(n)). Obviously, g and h are distinct. Define φ : Ng → Nh by
n 7→ n for all n ∈ Ng. Clearly, φ defines a strong ⊥-homomorphism from g to h. Hence,
g ≤⊥ h. This contradicts the assumption of g being maximal. Consequently, no element in
G∞C (Σ⊥) \ G∞C (Σ) is maximal. J

B Full Proof of the Complete Metric Space

In this section we shall give full proofs for Proposition 5.3, 5.5 and 5.7.

B.1 ∆-Homomorphisms and Depth
Before we proceed with the proof of Proposition 5.3, we need a characterisation how the
depth of nodes in a term graph is preserved by ∆-homomorphisms.

One can quite easily see that the depth of a node can be defined in terms of its acyclic
occurrences.

I Lemma B.1 (depth in terms of acyclic occurrences). Let g ∈ G∞(Σ) and n ∈ Ng. Then
depthg(n) = min

{
|π|
∣∣π ∈ Pag (n)

}
.

Proof. Since depthg(n) = min {|π| |π ∈ Pg(n)}, we can immediately obtain the inequation
depthg(n) ≤ min

{
|π|
∣∣π ∈ Pag (n)

}
. Suppose, that depthg(n) < min

{
|π|
∣∣π ∈ Pag (n)

}
. Then

there is some π ∈ Pg(n)\Pag (n) with |π| ≤ |π′| for all π′ ∈ Pg(n). Since π is cyclic, there are
paths π1, π2, π3 with π2 6= 〈〉, π = π1 · π2 · π3 and nodeg(π1) = nodeg(π1 · π2). Consequently,
π1 · π3 ∈ Pg(n) and |π1 · π3| < |π1 · π2 · π3| = |π|. This is contradicts that |π| ≤ |π′| for all
π′ ∈ Pg(n). J

This observation then immediately gives us the result that the preservation of sharing of
a node also yields a preservation of its depth:

I Corollary B.2 (depth preservation of strong ∆-homomorphisms). Let g, h ∈ G∞(Σ) and
φ : g →∆ h a strong ∆-homomorphism. Then depthg(n) = depthh(φ(n)) for all n ∈ Ng with
labg(n) 6∈ ∆.

Proof. This follows immediately from Lemma B.1 since labg(n) 6∈ ∆ implies Pag (n) =
Pah(φ(n)) for the strong ∆-homomorphisms φ. J

Next we present three lemmas that state in which way ∆-homomorphisms, which are
not necessarily strong, preserve the depth of the nodes in the involved term graphs.

I Lemma B.3 (weak depth preservation of ∆-homomorphisms). Let g, h ∈ G∞(Σ) and
φ : g →∆ h. Then depthg(n) ≥ depthh(φ(n)) for all n ∈ Ng.
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Proof. We prove by induction on d that depthh(φ(n)) ≤ d for all n ∈ Ng with depthg(n) = d.
If d = 0, then n = rg. By the root condition, we have φ(rg) = rh. Hence, depthh(φ(rg)) = 0.
If d > 0, then there is a node m ∈ Ng with depthg(m) = d − 1 and sucgi (m) = n for some
i. Applying the induction hypothesis yields depthh(φ(m)) ≤ d − 1. From the successor
condition, we can obtain φ(n) = suchi (φ(m)). Hence, depthh(φ(n)) ≤ depthh(φ(m)) + 1 ≤
d. J

I Lemma B.4 (reverse weak depth preservation of ∆-homomorphisms). Let g, h ∈ G∞(Σ),
φ : g →∆ h, d ∈ N and ∆-depth(g) ≥ d. Then, for all n ∈ Nh with depthh(n) ≤ d, there is
a node m ∈ φ−1(n) with depthg(m) ≤ depthh(n).

Proof. We prove the equivalent statement

∀e ≤ d ∀n ∈ Nh. (depthh(n) = e =⇒ ∃m ∈ Ng.(depthg(m) ≤ e ∧ φ(m) = n))

by induction on e. If e = 0, then n = rh. Take m = rg. Then we have depthg(m) = 0
and, therefore, φ(m) = n according to the root condition. If e > 0, then there is some
n′ ∈ Nh with suchi (n′) = n and depthh(n′) = e − 1. Hence, we can employ the induction
hypothesis to obtain some m′ ∈ Ng with depthg(m′) ≤ e − 1 and φ(m′) = n′. Since
∆-depth(g) ≥ d ≥ e > depthg(m′), we have labg(m′) 6∈ ∆. Hence, φ is homomorphic in m′.
Let m = sucgi (m′). We can reason as follows:

φ(m) = φ(sucgi (m′)) = suchi (φ(m′)) = suchi (n′) = n, and
depthg(m) ≤ depthg(m′) + 1 ≤ e.

J

I Lemma B.5 (∆-depth preservation). Let g, h ∈ G∞(Σ) and φ : g →∆ h, then ∆-depth(g) ≤
∆-depth(h).

Proof. Let d = ∆-depth(g). If d = ∞, then g ∈ G∞(Σ \∆). Hence, φ is a homomorphism
which is, according to Lemma A.1, surjective. Consequently, due to the labelling condition,
h ∈ G∞(Σ \ ∆), too, which implies that ∆-depth(h) = ∞. If d = 0, then d ≤ ∆-depth(h)
is trivially true. If 0 < d < ∞, then, by Lemma B.4, for each node n at depth < d in h,
there is a node m at depth < d in g with φ(m) = n. Since then labg(m) 6∈ ∆, we also have
labh(n) 6∈ ∆ by the labelling condition. Hence, d ≤ ∆-depth(h). J

B.2 Truncation of Term Graphs
Now we look at the properties of the truncation operation.

The following fact follows immediately from the definition of truncation:

I Fact B.6 (truncation preserves labelling up to truncation depth). Let g ∈ G∞(Σ⊥) and
d ∈ N. Then g|d and g coincide in all occurrences of depth smaller than d.

The following lemma confirms that we were indeed successful in making the truncation
of term graphs compatible with the partial order ≤⊥:

I Lemma B.7 (truncation yields a smaller term graph). Let g ∈ G∞(Σ⊥) and d ∈ N. Then
g|d ≤⊥ g.
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Proof. For d = 0, this is obvious. Assume d > 0. Define the function φ as follows:

φ : Ng|d → Ng

Ng
<d 3 n 7→ n

Ng
=d 3 n

i 7→ sucgi (n)

We will show that φ is a strong ⊥-homomorphism from g|d to g and, thereby, g|d ≤⊥ g.
Since rg|d = rg and rg|d ∈ Ng

<d, we have φ(rg|d) = rg and, therefore, the root condition.
Note that all nodes in Ng

=d are labelled with ⊥ in g|d. Hence, all non-⊥-nodes are in Ng
<d.

Thus, the labelling condition is trivially satisfied as for all n ∈ Ng
<d we have

labg|d(n) = labg(n) = labg(φ(n)).

For the successor condition, let n ∈ Ng
<d. If ni ∈ N

g
=d, then sucg|di (n) = ni. Hence, we have

φ(sucg|di (n)) = φ(ni) = sucgi (n) = sucgi (φ(n)).

If, on the other hand, ni 6∈ Ng
=d, then sucg|di (n) = sucgi (n) ∈ Ng

<d. Hence, we have

φ(sucg|di (n)) = φ(sucgi (n)) = sucgi (n) = sucgi (φ(n)).

This shows that φ is a ⊥-homomorphism. In order to prove that φ is strong, we will
show that Pag (φ(n)) ⊆ Pg|d(n) for all n ∈ Ng

<d, which is sufficient according to Lemma A.4.
Note that we can replace φ(n) by n since n ∈ Ng

<d. Therefore, we can show this statement
by proving

∀e ∈ N∀n ∈ Ng
<d∀π ∈ P

a
g (n). (|π| = e =⇒ π ∈ Pg|d(n))

by induction on e. If e = 0, then π = 〈〉. Hence, n = rg and, therefore, π ∈ Pg|d(n). If e > 0,
then there is some occurrence π′ and natural number i with π = π′ · i. Let m = nodeg(π′).
Then we havem ∈ Preag(n) and, therefore, m ∈ Ng

<d by the closure property (T2). And since
π′ ∈ Pag (m), we can apply the induction hypothesis to obtain that π′ ∈ Pg|d(m). Moreover,
because sucgi (m) = n, this implies that mi 6∈ Ng

=d. Thus, sucg|di (m) = n and, therefore,
π′ · i ∈ Pg|d(n). J

In order to characterise the effect of a truncation to a term graph, we also need to
associate an appropriate notion of depth to a whole term graph:

I Definition B.8 (depth of term graphs). Let ∈ G∞(Σ). The depth of g, denoted depth(g),
is the maximum of the depths of the nodes in g if it exists and otherwise ∞:

depth(g) = max
{

depthg(n)
∣∣n ∈ Ng

}
∪ {∞}

The gaps that are caused by a truncation due to the removal of nodes are filled by fresh
⊥-nodes. The following lemma provides a lower bound for the depth of the introduced
⊥-nodes.

I Lemma B.9 (⊥-depth in truncated term graphs). Let Σ be a signature not containing ⊥,
g ∈ G∞(Σ) and d ∈ N.

(i) ⊥-depth(g|d) ≥ d.
(ii) If d > depth(g) + 1, then g|d = g, i.e. ⊥-depth(g|d) =∞.
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Figure 4 ⊥-depth in truncated term graphs.

Proof. (i) From the proof of Lemma B.7, we obtain a strong ⊥-homomorphism φ : g|d→⊥ g.
Note that the only ⊥-nodes in g|d are those in Ng

=d. Each of these nodes has only a single
predecessor, a node n ∈ Ng

<d with depthg(n) ≥ d − 1. By Corollary B.2, we also have
depthg|d(n) ≥ d− 1 for these nodes since φ is strong, n is not labelled with ⊥ and φ(n) = n.
Hence, we have depthg|d(m) ≥ d for each node m ∈ Ng

=d. Consequently, it holds that
⊥-depth(g|d) ≥ d.

(ii) Note that if d > depth(g) + 1, then Ng
<d = Ng and Ng

=d = ∅. Hence, g|d = g. J

I Remark B.10. Note that the condition for the statement of clause (ii) in the lemma above
reads d > depth(g) + 1 rather than d > depth(g) as one might expect. The reason for this
is that a truncation might cut off an edge that emanates from a node at depth d − 1 and
closes a cycle. For an example of this phenomenon, take a look at Figure 4. It shows a term
graph g of depth 1 and its truncation at depth 2. Even though there is no node at depth 2
the truncation introduces a ⊥-node.

On the other hand, although a term graph has depth more than d, the truncation at
depth d might still preserve the whole term graph. An example for this behaviour is the
family of term graphs hn, n > 0, depicted in Figure 4. Each of the term graphs hn has
depth n. Yet, the truncation at depth 2 preserves the whole term graph hn for each n > 0.
Even though there might be f -nodes which are at depth ≥ 2 these nodes are directly or
indirectly acyclic predecessors of the a-node and are, thus, included in Nhn

<2 .

I Lemma B.11 (isomorphic truncations and similarity). Let g, h ∈ G∞C (Σ) and d ∈ N. If
g|d ∼= h|d, then sim(g, h) ≥ d.

Proof. W.l.o.g. we can assume that Σ does not contain ⊥. Assume g|d ∼= h|d. Then
Proposition 3.7 yields C(g|d) = C(h|d). By Lemma B.7, we have g|d ≤⊥ g and h|d ≤⊥ h.
Hence, C(g|d) ≤⊥ g and C(h|d) ≤⊥ h (cf. Remark A.7). That is, C(g|d) is a lower bound for g
and h. Therefore, C(g|d) ≤⊥ gu⊥h. Since this means that there is a ⊥-homomorphism from
C(g|d) to gu⊥h (and, therefore, also from g|d to gu⊥h), we can employ Lemma B.5 to obtain
that ⊥-depth(g|d) ≤ ⊥-depth(g u⊥ h). According to Lemma B.9, we have d ≤ ⊥-depth(g|d)
which means that we can conclude that d ≤ ⊥-depth(g u⊥ h) and, thus, d ≤ sim(g, h). J

The lemma below will serve as a tool for the two lemmas that are to follow afterwards.

I Lemma B.12 (labelling). Let g ∈ G∞(Σ), ∆ ⊆ Σ(0) and d ∈ N. If ∆-depth(g) ≥ d, then
labg(n) 6∈ ∆ for all n ∈ Ng

<d.
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Proof. We will show that N∇ = {n ∈ Ng | labg(n) 6∈ ∆} satisfies the properties (T1) and
(T2) of Definition 5.2 for the term graph g and depth d. Since Ng

<d is the least such set, we
then obtain Ng

<d ⊆ N∇ and, thereby, the claimed statement.
For (T1), let n ∈ Ng with depthg(n) < d. Since ∆-depth(g) ≥ d, we have labg(n) 6∈ ∆

and, therefore, n ∈ N∇. For (T2), let n ∈ N∇ and m ∈ Preag(n). Then m cannot be labelled
with a nullary symbol, a fortiori labg(m) 6∈ ∆. Hence, we have m ∈ N∇. J

The following two lemmas are rather technical. They state that ∆-homomorphisms
preserve retained nodes and in a stricter sense also fringe nodes.

I Lemma B.13 (preservation of retained nodes). Let g, h ∈ G∞(Σ), d ∈ N, φ : g →∆ h

strong, and ∆-depth(g) ≥ d. Then φ(Ng
<d) = Nh

<d.

Proof. Let N∇ = {n ∈ Ng | labg(n) 6∈ ∆}. At first we will show that φ(Ng
<d) ⊆ Nh

<d. To
this end, we will show that φ−1(Nh

<d)∩N∇ satisfies (T1) and (T2) of Definition 5.2 for term
graph g and depth d. Since Ng

<d is the least such set, we then obtain Ng
<d ⊆ φ−1(Nh

<d)∩N∇
and, a fortiori, Ng

<d ⊆ φ−1(Nh
<d) which is equivalent to φ(Ng

<d) ⊆ Nh
<d.

For (T1), let n ∈ Ng with depthg(n) < d. By Lemma B.3, we then have depthh(φ(n)) < d.
Hence, φ(n) ∈ Nh

<d by (T1). Moreover, since ∆-depth(g) ≥ d, we have labg(n) 6∈ ∆. That
is, n ∈ φ−1(Nh

<d) ∩N∇.
For (T2), let n ∈ φ−1(Nh

<d) ∩ N∇. That is, we have φ(n) ∈ Nh
<d and labg(n) 6∈ ∆.

Hence, by (T2), it holds that Preah(φ(n)) ⊆ Nh
<d. We have to show now that Preag(n) ⊆

φ−1(Nh
<d)∩N∇. Let m ∈ Preag(n). That is, there is some π · i ∈ Pag (n) with π ∈ Pg(m). As

labg(n) 6∈ ∆ and φ is strong, φ preserves the sharing of n. Consequently, π · i ∈ Pah(φ(n)).
Moreover, we have π ∈ Ph(φ(m)) by Lemma 3.2. Hence, φ(m) ∈ Preah(φ(n)) and, therefore,
φ(m) ∈ Nh

<d by (T2). Additionally, as m has a successor in g, it cannot be labelled with a
symbol in ∆. Hence, m ∈ φ−1(Nh

<d) ∩N∇.
In order to prove the converse inclusion φ(Ng

<d) ⊇ Nh
<d, we will show that φ(Ng

<d)
satisfies (T1) and (T2) for term graph h and depth d. This will prove the abovementioned
inclusion since Nh

<d is the least such set.
For (T1), let n ∈ Nh with depthh(n) < d. By Lemma B.4, there is some m ∈ Ng with

depthg(m) < d and φ(m) = n. Hence, according to (T1), we have m ∈ Ng
<d and, therefore,

n ∈ φ(Ng
<d).

For (T2), let n ∈ φ(Ng
<d). That is, there is some m ∈ Ng

<d with φ(m) = n. By (T2),
we have Preag(m) ⊆ Ng

<d. We must show that Preah(n) ⊆ φ(Ng
<d). Let n′ ∈ Preah(n). That

is, there is some π · i ∈ Pah(n) with π ∈ Ph(n′). Since m ∈ Ng
<d, we have labg(m) 6∈ ∆ by

Lemma B.12. Consequently, φ preserves the sharing of m which yields that π · i ∈ Pag (m).
Note that then also π ∈ P(g). Let m′ = nodeg(π). Thus, m′ ∈ Preag(m) and, therefore,
m′ ∈ Ng

<m according to (T2). Moreover, because π ∈ Pg(m′)∩Ph(n′), we are able to obtain
from Lemma 3.2 that φ(m′) = n′. Hence, n′ ∈ φ(Ng

<d). J

I Lemma B.14 (preservation of fringe nodes). Let g, h ∈ G∞(Σ), φ : g →∆ h strong, d ∈ N+,
∆-depth(g) ≥ d, n ∈ Ng, and 0 ≤ i < arg(n). Then ni ∈ Ng

=d iff φ(n)i ∈ Nh
=d.

Proof. Note that, by Lemma B.12, we have that labg(n) 6∈ ∆ for all nodes n ∈ Ng
<d.

Additionally, by Lemma B.13, we obtain φ(Ng
<d) = Nh

<d and, therefore, according to the
labelling condition for φ, we get that labh(n) 6∈ ∆ for all n ∈ Nh

<d.
At first we will show the “only if” direction. To this end, let ni ∈ Ng

=d. By definition, we
then have depthg(n) ≥ d− 1. Hence, by Corollary B.2, depthh(φ(n)) ≥ d− 1. Furthermore,
we have that sucgi (n) 6∈ Ng

<d or n 6∈ Preag(sucgi (n)). We show now that in either case we can
conclude φ(n)i ∈ Nh

=d.
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Figure 5 Fringe nodes and strong ⊥-homomorphisms.

Let sucgi (n) 6∈ Ng
<d. If we have suchi (φ(n)) 6∈ Nh

<d, then φ(n)i ∈ Nh
=d. So suppose

suchi (φ(n)) ∈ Nh
<d. Then, by the successor condition for φ, we have φ(sucgi (n)) ∈ Nh

<d =
φ(Ng

<d). Hence, there is some m ∈ Ng
<d with φ(m) = φ(sucgi (n)). In the following, we will

show that this implies φ(n) 6∈ Preah(suchi (φ(n))). Suppose this would not be true, i.e. that
φ(n) ∈ Preah(suchi (φ(n))). Note that we have the following equations:

Preah(suchi (φ(n))) = Preah(φ(sucgi (n))) = Preah(φ(m)).

Consequently, there is some π · i ∈ Pah(φ(m)) with π ∈ Pah(φ(n)). Since n,m ∈ Ng
<d, we have

that φ preserves the sharing of m and n. Hence, we have π · i ∈ Pag (m) and π ∈ Pag (n) which
implies that m = sucgi (n). This, however, violates the assumption that sucgi (n) 6∈ Ng

<d.
Thus, we indeed have φ(n) 6∈ Preah(suchi (φ(n))) and, consequently, φ(n)i ∈ Nh

=d.
Let n 6∈ Preag(sucgi (n)). If φ(n) 6∈ Preah(suchi (φ(n))), then φ(n)i ∈ Nh

=d. So suppose that
φ(n) ∈ Preah(suchi (φ(n))). Hence, φ(n) ∈ Preah(φ(sucgi (n))). If labg(sucgi (n)) 6∈ ∆, then φ

preserves the sharing of sucgi (n) and we would also get n ∈ Preag(sucgi (n)) which contradicts
the assumption. Hence, labg(sucgi (n)) ∈ ∆ and, therefore, sucgi (n) 6∈ Ng

<d according to
Lemma B.12. Thus, we can employ the argument for this case that we have already given
above.

We now turn to the converse direction. For this purpose, let φ(n)i ∈ Nh
=d. Then

depthh(φ(n)) ≥ d − 1 and, consequently depthg(n) ≥ d − 1 by Corollary B.2. Additionally,
we also have suchi (φ(n)) 6∈ Nh

<d or φ(n) 6∈ Preah(suchi (φ(n))). Again we will show that in
either case we can conclude ni ∈ Ng

=d.
If suchi (φ(n)) 6∈ Nh

<d, then φ(sucgi (n)) 6∈ Nh
<d and, therefore, φ(sucgi (n)) 6∈ φ(Ng

<d) ac-
cording to Lemma B.13. Consequently, sucgi (n) 6∈ Ng

<d which implies that ni ∈ Ng
=d.

Let φ(n) 6∈ Preah(suchi (φ(n))). If n 6∈ Preag(sucgi (n)), then we get ni ∈ Ng
=d immediately.

So assume that n ∈ Preag(sucgi (n)). If labg(sucgi (n)) 6∈ ∆, then φ would preserve the sharing of
sucgi (n). Thereby, we would get φ(n) ∈ Preah(φ(sucgi (n))) which contradicts the assumption.
Hence, labg(sucgi (n)) ∈ ∆. According to Lemma B.12, we then have sucgi (n) 6∈ Ng

<d and,
therefore, ni ∈ Ng

=d. J

The above lemma depends upon the peculiar definition of fringe nodes – in particular
those fringe nodes that are due to the condition

depthg(n) ≥ d− 1 and n 6∈ Preag(sucgi (n)).

Recall that this condition produces a fringe node for each edge from a retained node that
closes a cycle. Let us have a look at the term graph h depicted in Figure 5. If the abovemen-
tioned alternative condition for fringe nodes would not be present, then the set Nh

=2 would
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be empty (and, thus, h|2 = h). Then, however, the strong ⊥-homomorphism φ illustrated
in Figure 5 would violate Lemma B.14. Since the node m is cut off from g in the truncation
g|2, there is a fringe node n0 in g|2. On the other hand, there would be no fringe node n0

in h|2 if not for the alternative condition above.
Intuitively, the following lemma states that a strong ⊥-homomorphism has the properties

of an isomorphism up to the depth of the shallowest ⊥-node:

I Lemma B.15 (≤⊥ and truncation). Let g, h ∈ G∞(Σ⊥), g ≤⊥ h, d ∈ N and ⊥-depth(g) ≥
d. Then g|d ∼= h|d.

Proof. For d = 0, this is trivial. So assume d > 0. Since g ≤⊥ h, there is a strong
⊥-homomorphism φ : g →⊥ h. Define the function ψ as follows:

ψ : Ng|d → Nh|d

Ng
<d 3 n 7→ φ(n)

Ng
=d 3 n

i 7→ φ(n)i

At first we have to argue that ψ is well-defined. For this purpose, we first need that φ(Ng
<d) ⊆

Ng|d. Lemma B.13 confirms this. Secondly, we need that ni ∈ Ng
=d implies φ(n)i ∈ Ng|d.

This is guaranteed by Lemma B.14.
Next we show that ψ is a homomorphism from g|d to h|d. The root condition is inherited

from φ as rg|d ∈ Ng
<d. Note that, according to Lemma B.12, we have labg(n) ∈ Σ for all

n ∈ Ng
<d. Hence, φ is homomorphic in Ng

<d which means that the labelling condition for
nodes in Ng

<d is also inherited from φ. For nodes ni ∈ Ng
=d, we have labg|d(ni) = ⊥. Since,

by definition, ψ(ni) ∈ Nh
=d, we can conclude labh|d(ψ(ni)) = ⊥.

The successor condition is trivially satisfied by nodes in Ng
=d as they do not have any

successors. Let n ∈ Ng
<d and 0 ≤ i < arg|d(n). We distinguish two cases: At first assume that

ni 6∈ Ng
=d. Hence, sucg|di (n) = sucgi (n) ∈ Ng

<d. Since, by Lemma B.14, also φ(n)i 6∈ Nh
=d, we

additionally have such|di (φ(n)) = suchi (φ(n)). Hence, using the successor condition for φ, we
can reason as follows:

ψ(sucg|di (n)) = ψ(sucgi (n)) = φ(sucgi (n)) = suchi (φ(n)) = such|di (φ(n)) = such|di (ψ(n))

If, on the other hand, ni ∈ Ng
=d, then sucg|di (n) = ni. Moreover, since then φ(n)i ∈ Nh

=d
by Lemma B.14, we have such|di (φ(n)) = φ(n)i, too. Hence, we can reason as follows:

ψ(sucg|di (n)) = ψ(ni) = φ(n)i = such|di (φ(n)) = such|di (ψ(n))

This shows that ψ is a homomorphism. Note that, according to Lemma A.3, φ is injective
in Ng

<d. Then also ψ is injective in Ng
<d. For the same reason, ψ is also injective in Ng

=d.
Moreover, we have ψ(Ng

<d) ⊆ Nh
<d and ψ(Ng

=d) ⊆ Nh
=d, i.e. ψ(Ng

<d) ∩ ψ(Ng
=d) = ∅. Hence,

ψ is injective which implies, by Lemma A.2, that ψ is an isomorphism from g|d to h|d. J

We can use the above findings in order to obtain the following properties of truncations
that one would intuitively expect from a truncation operation:

I Corollary B.16 (smaller truncations). For all g, h ∈ G∞(Σ) and e, d ∈ N∪{∞} with e ≤ d
the following holds:

(i) g|e ∼= (g|d)|e, and (ii) g|d ∼= h|d =⇒ g|e ∼= h|e.
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Proof. We assume w.l.o.g. that ⊥ 6∈ Σ.
(i) For d = ∞, this is trivial. Suppose d ∈ N. From Lemma B.7, we obtain g|d ≤⊥ g.

Moreover, by Lemma B.9, we have ⊥-depth(g|d) ≥ d and, a fortiori, ⊥-depth(g|d) ≥ e.
Hence, we can employ Lemma B.15 to get g|e ∼= (g|d)|e.

(ii) Since g|d ∼= h|d, we also have (g|d)|e ∼= (h|d)|e, as the construction of the truncation
only depends on the structure of the term graphs. Hence, using
we can conclude

g|e ∼= (g|d)|e ∼= (h|d)|e ∼= h|e.

J

I Lemma B.17 (similarity and isomorphic truncation). For all g, h ∈ G∞C (Σ) and d ∈ N,
sim(g, h) ≥ d implies g|d ∼= h|d.

Proof. We assume w.l.o.g. that ⊥ 6∈ Σ. Let g∗ = gu⊥ h. Then ⊥-depth(g∗) = sim(g, h) ≥ d.
Since g∗ ≤⊥ g, h, we can apply Lemma B.15 twice in order to obtain g|d ∼= g∗|d ∼= h|d. J

The previous lemmas stated various details about the connection between truncations
and the partial order ≤⊥. Now we can finally use this to prove the characterisation of
similarity in terms of the truncation of term graphs

I Proposition 5.3 (alternative characterisation of similarity). Let g, h ∈ G∞C (Σ). Then
sim(g, h) = max {d ∈ N ∪ {∞} | g|d ∼= h|d}.

Proof of Proposition 5.3. We assume w.l.o.g. that ⊥ 6∈ Σ. Furthermore, we will use
sim′(g, h) as a shorthand for max {d ∈ N ∪ {∞} | g|d ∼= h|d}. At first assume that g = h.
Hence, g u⊥ h = g and, consequently sim(g, h) = ∞ as g does not contain any ⊥. On
the other hand, this implies g|∞ ∼= h|∞, and, therefore, sim′(g, h) = ∞, too. If g 6= h,
then g 6∼= h by Proposition 3.7. Moreover, according to Proposition A.8, g u⊥ h has to
contain some ⊥. Hence, we have both sim(g, h) ∈ N and sim′(g, h) ∈ N. We prove that
sim(g, h) = sim′(g, h) by showing that both sim(g, h) ≤ sim′(g, h) and sim(g, h) ≥ sim′(g, h)
hold. In order to show the former, let d = sim(g, h). Then, by Lemma B.17, g|d ∼= h|d
and, therefore, sim′(g, h) ≥ d. To show the latter, let d = sim′(g, h). Hence, g|d ∼= h|d.
Furthermore, by Lemma B.7, we have both g|d ≤⊥ g and h|d ≤⊥ h. Note that, for the
canonical representation, we then have C(g|d) = C(h|d), C(g|d) ≤⊥ g and C(h|d) ≤⊥ h (cf.
Proposition 3.7 resp. Remark A.7). That is, C(g|d) is a lower bound of g and h. Thus,
C(g|d) ≤⊥ g u⊥ h and we can reason as follows:

d ≤ ⊥-depth(g|d) (Lem. B.9)
= ⊥-depth(C(g|d)) (Cor. B.2, Cor. A.5)
≤ ⊥-depth(g u⊥ h) (C(g|d) ≤⊥ g u⊥ h, Lem. B.5)
= sim(g, h)

J

B.3 Compatitibility of the Metric Space and the Complete Semilattice
Now we can start to give the full proofs of the two propositions that link the limit in the
metric space to the limit inferior in the complete semilattice:
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I Proposition 5.5 (metric limit equals limit inferior). Let Σ⊥ be a signature and (gι)ι<α a
non-empty Cauchy sequence in the metric space (G∞C (Σ),d). Then limι→α gι = lim infι→α gι.

Proof of Proposition 5.5. If α is a successor ordinal, this is trivial, as the limit and the
limit inferior are then gα−1. Assume that α is a limit ordinal and let g be the limit inferior
of (gι)ι<α. Since, according to Theorem 4.10, (G∞C (Σ⊥),≤⊥) is a complete semilattice, g is
well-defined. Since (gι)ι<α is Cauchy, we obtain that, for each ε ∈ R+, there is a β < α such
that we have d(gι, gι′) < ε for all β ≤ ι, ι′ < α. A fortiori, we get that, for each ε ∈ R+,
there is a β < α such that we have d(gβ , gι) < ε for all β ≤ ι < α. By definition of d, this
is equivalent to 2−sim(gβ ,gι) < ε. Consequently, we have, for each d ∈ N, a β < α such that
sim(gβ , gι) > d for all β ≤ ι < α. Due to Lemma B.17, sim(gβ , gι) > d implies gβ |d = gι|d
which in turn implies gβ |d ≤⊥ gι according to Lemma B.7. Hence, gβ |d is a lower bound for
Gβ = {gι |β ≤ ι < α}, i.e. gβ |d ≤⊥

d⊥Gβ . Moreover, by the definition of the limit inferior,
it holds that

d⊥Gβ ≤⊥ g. Consequently, gβ |d ≤⊥ g, i.e. we have

∀d ∈ N∃β < α : gβ |d ≤⊥ g (1)

Applying Lemma B.9 and Lemma B.15 yields gβ |d ∼= g|d. Hence, sim(g, gβ) ≥ d. That is,
we have shown that

∀d ∈ N∃β < α : sim(g, gβ) ≥ d

Since, for each ε ∈ R+, we find a d ∈ N with 2−d < ε, this implies

∀ε ∈ R+∃β < α : d(g, gβ) < ε

This shows that (gι)i<α converges to g. Now it remains to be shown that g is indeed in
G∞C (Σ), i.e. it does not contain any ⊥. Suppose that g does contain a node labelled with ⊥.
Then ⊥-depth(g) ∈ N. Let d = ⊥-depth(g) + 1. By (1), there is a β with gβ |d ≤⊥ g. By
applying Lemma B.9 and Lemma B.5, we then get

⊥-depth(g) + 1 = d ≤ ⊥-depth(gβ |d) ≤ ⊥-depth(g).

This is a contradiction. Hence, g is indeed in G∞C (Σ). J

I Proposition 5.7 (total limit inferior equals limit). Let Σ⊥ be a signature, (gι)ι<α a non-
empty sequence in G∞C (Σ), and g = lim infι→α gι. If g ∈ G∞C (Σ), then limι→α gι = g.

Proof of Proposition 5.7. If α is a successor ordinal, then both the limit and the limit
inferior are equal to gα−1. Let α be a limit ordinal. According to Proposition 5.5, in order
to show that limit and limit inferior coincide, it suffices to prove that (gι)ι<α is Cauchy. For
this purpose, assume that (gι)ι<α is not Cauchy. Then there is some ε ∈ R+ such that, for
all β < α, there are β ≤ ι, ι′ < α with d(gι, gι′) ≥ ε. Take some d ∈ N with ε ≥ 2−d. Then
we have, for each β < α, some β ≤ ι, ι′ < α with sim(gι, gι′) ≤ d, i.e. ⊥-depth(gι u⊥ gι′) ≤ d.
Define Gβ = {gι |β ≤ ι < α} and hβ =

d⊥Gβ for each β < α. Note that for β ≤ ι, ι′ < α

we have hβ ≤⊥ gι u⊥ gι′ since gι, gι′ ∈ Gβ . Thus, by employing Lemma B.5, we obtain
⊥-depth(hβ) ≤ ⊥-depth(gι u⊥ gι′). Since there are, for each β < α, some β ≤ ι, ι′ < α with
⊥-depth(gι u⊥ gι′) ≤ d, we, therefore, have ⊥-depth(hβ) ≤ d for each β < α. That is,

for each β < α there is some π ∈ P(hβ) with |π| ≤ d such that hβ(π) = ⊥. (1)

Note that g =
⊔⊥

β<α hβ . Since {hβ |β < α} is a directed set, we can employ Corollary A.6
which yields that P(g) =

⋃
β<α P(hβ). Therefore, we can rephrase (1) in order to obtain
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that, for each β < α, there is a π ∈ P(g) with |π| ≤ d such that hβ(π) = ⊥. Since there
are only finitely many occurrences in g of length at most d and α is a limit ordinal, there is
some occurrence π∗ in g such that

for any β < α, there is some β ≤ γ < α with hγ(π∗) = ⊥. (2)

Note that (hι)ι<α is a ≤⊥-chain. From Corollary 4.6, we know that whenever there are
two term graphs g, h with g ≤⊥ h and h(π) = ⊥, then also g(π) = ⊥ provided π ∈ P(g).
We now show that

hβ(π∗) = ⊥ for any β < α with π∗ ∈ P(hβ). (3)

Let β < α with π∗ ∈ P(hβ). Due to (2), there is some β ≤ γ < α with hγ(π∗) = ⊥. As
(hι)ι<α is a ≤⊥-chain, we then have hβ ≤⊥ hγ and, therefore, hβ(π∗) = ⊥. This proves (3).
From (3), we obtain, according to Corollary A.6, that g(π∗) = ⊥. This is a contradiction to
the assumption that g ∈ G∞(Σ). Hence, (gι)ι<α is Cauchy. J

C Alternative Partial Orders

In this section we want to give the proofs that show the properties of the partial orders ≤1
⊥,

≤2
⊥ and ≤3

⊥ stated in the main text.

C.1 The Partial Order ≤1
⊥

Let us begin by recapitulating the definition of ≤1
⊥:

I Definition C.1. The relation ≤1
⊥ on G∞C (Σ⊥) is defined as follows: g ≤1

⊥ h iff there is a
⊥-homomorphism φ : g →⊥ h.

As we have already argued, this defines a partial order on G∞C (Σ⊥).

I Proposition C.2 (partial order ≤1
⊥). The relation ≤1

⊥ is a partial order on G∞C (Σ⊥).

Proof. Transitivity and reflexivity of ≤1
⊥ follows immediately from Proposition 2.6. For

antisymmetry, consider g, h ∈ G∞C (Σ⊥) with g ≤1
⊥ h and h ≤1

⊥ g. Then, by Proposition 2.6,
g ∼=⊥ h. This is equivalent to g ∼= h by Corollary 3.6 from which we can conclude g = h

using Proposition 3.7. J

The proof that ≤1
⊥ is a complete partial order can be easily derived from the correspond-

ing proof for ≤⊥:

I Theorem C.3. The relation ≤1
⊥ is a complete partial order on G∞C (Σ⊥).

Proof. This is essentially the same proof as the one for Theorem 4.7. The part showing
that the given construction constitutes a well-defined labelled quotient tree only uses (a)
and (c) of Corollary 4.6. Hence, we can employ Lemma 3.4 here instead. For the second
part, instead of showing (a), (b) and (c), we only need to show (a), and (c) which are
equivalent to (a) resp. (b) of Lemma 3.4. Again instead of using Corollary 4.6, we can refer
to Lemma 3.4. J

The following proposition shows that the partial order ≤1
⊥ also admits glbs of arbitrary

non-empty sets:
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I Proposition C.4. In the partially ordered set (G∞C (Σ⊥),≤1
⊥) every non-empty set has a

glb.

Proof. Let G ⊆ G∞C (Σ⊥). We construct a canonical term graph g ∈ G∞C (Σ⊥) by giving the
following labelled quotient tree (P, l,∼):

P =

π ∈ ⋂
g∈G
P(g)

∣∣∣∣∣∣∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f


l(π) =

{
f if ∀g ∈ G : f = g(π)
⊥ otherwise

∼ =
⋂
g∈G
∼g ∩ P × P

At first we need to prove that (P, l,∼) is in fact a well-defined labelled quotient tree. That
∼ is an equivalence relation follows straightforwardly from the fact that each ∼g is an
equivalence relation.

Next, we show the reachability and congruence properties from Definition 3.9. In order
to show the reachability property, assume some π · i ∈ P . Then, for each π′ ≤ π there is
some fπ′ ∈ Σ⊥ such that g(π′) = fπ′ . Hence, π ∈ P . Moreover, we have in particular that
i < ar(fπ) = ar(l(π)).

For the congruence condition, assume that π1 ∼ π2. Hence, π1 ∼g π2 for all g ∈ G.
Consequently, we have for each g ∈ G that g(π1) = g(π2) and that π1 · i ∼g π2 · i for all
i < ar(g(π1)). We distinguish two cases: At first assume that there are some g1, g2 ∈ G with
g1(π1) 6= g2(π1). Hence, l(π2) = ⊥. Since, we also have that g1(π2) = g1(π1) 6= g2(π1) =
g2(π2) we can conclude that l(π2) = ⊥ = l(π1). Since ar(⊥) = 0 we are done for this case.
Next, consider the alternative case that there is some f ∈ Σ⊥ such that g(π1) = f for
all g ∈ G. Consequently, l(π1) = f and since also g(π2) = g(π1) = f for all g ∈ G, we
can conclude that l(π2) = f = l(π1). Moreover, we obtain from the initial assumption for
this case, that π1 · i, π2 · i ∈ P for all i < ar(f) which implies that π1 · i ∼ π2 · i for all
i < ar(f) = ar(l(π1)).

Next, we show that the thus defined term graph g is a lower bound of G, i.e. that g ≤1
⊥ g

for all g ∈ G. By Lemma 3.4, it suffices to show ∼ ∩ P × P ⊆ ∼g and l(π) = g(π) for all
π ∈ P with l(π) ∈ Σ. Both conditions follow immediately from the construction of g.

Finally, we show that g is the greatest upper bound of G. To this end, let ĝ ∈ G∞C (Σ⊥)
with ĝ ≤1

⊥ g for each g ∈ G. We will show that then ĝ ≤1
⊥ g using Lemma 3.4. At

first we show that P(ĝ) ⊆ P . Let π ∈ P(ĝ). We know that ĝ(π′) ∈ Σ for all π′ < π.
According to Lemma 3.4, using the assumption that g ≤1

⊥ g for all g ∈ G, we obtain that
g(π′) = ĝ(π′) for all π′ < π. Consequently, π ∈ P . Next, we show part (a) of Lemma 3.4.
Let π1, π2 ∈ P(ĝ) ⊆ P with π1 ∼ĝ π2. Hence, using the assumption that ĝ is a lower bound
of G, we have π1 ∼g π2 for all g ∈ G according to Lemma 3.4. Consequently, π1 ∼ π2. For
part (b) of Lemma 3.4 let π ∈ P(ĝ) ⊆ P with ĝ(π) = f ∈ Σ. Using Lemma 3.4, we obtain
that g(π) = f for all g ∈ G. Hence, l(π) = f . J

From this we can immediately derive the complete semilattice structure of ≤1
⊥:

I Theorem C.5. The partially ordered set (G∞C (Σ⊥),≤1
⊥) forms a complete semilattice.

Proof. Follows from Theorem C.3 and Proposition C.4. J

C.2 The Partial Order ≤2
⊥

Let us begin by recapitulating the definition of ≤2
⊥:
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I Definition C.6. The relation ≤2
⊥ on G∞C (Σ⊥) is defined as follows: g ≤1

⊥ h iff there is an
injective ⊥-homomorphism φ : g →⊥ h.

I Proposition C.7 (category of injective ∆-homomorphisms). The injective ∆-homomorphisms
on G∞(Σ) form a subcategory of the category of ∆-homomorphisms on G∞(Σ).

Proof. Trivial, since the composition of two injective ∆-homomorphisms is again injective.
J

From this we derive that the relation ≤2
⊥ is a partial order:

I Proposition C.8 (partial order ≤2
⊥). The relation ≤2

⊥ is a partial order on G∞C (Σ⊥).

Proof. Reflexivity and Transitivity follow from Proposition C.13. For antisymmetry, assume
that g ≤2

⊥ h and h ≤2
⊥ g. By Proposition 2.6, this implies g ∼=⊥ h. Corollary 3.6 then yields

g ∼= h, which according to Proposition 3.7 is equivalent to g = h. J

Before we show that the partial order ≤2
⊥ is a complete partial order, we provide an

alternative characterisation in the fashion of Corollary 4.6. The following lemma gives the
relevant characterisation of injectivity of ∆-homomorphisms:

I Lemma C.9 (characterisation of injective ∆-homomorphisms). Let φ : g →∆ h be a ∆-
homomorphism. Then φ is injective iff

π1 ∼h π2 =⇒ π1 ∼g π2 for all π1, π2 ∈ P(g)

Proof. For the “only if” direction assume π1, π2 ∈ P(g) with π1 ∼h π2. Let ni = nodeg(πi),
i = 1, 2. Since πi ∈ ni ⊆ φ(ni), according to Lemma 3.2, π1 ∼h π2 implies φ(n1) = φ(n2).
By the injectivity of φ we can then conclude that n1 = n2 and, therefore, π1 ∼g π2.

For the “if” direction assume n1, n2 ∈ Ng with φ(n1) = φ(n2). Pick some πi ∈ ni, i = 1, 2.
By Lemma 3.2, we then have πi ∈ φ(ni) and, therefore, π1 ∼h π2. Hence, we can use our
assumption to conclude that π1 ∼g π2 and, thereby, n1 = n2. J

Equipped with this lemma, we can give the characterisation of ≤2
⊥ as follows:

I Corollary C.10 (characterisation of ≤2
⊥). Let g, h ∈ G∞C (Σ⊥). Then g ≤2

⊥ h iff the following
conditions are met:

(a) π1 ∼g π2 =⇒ π1 ∼h π2 for all π1, π2 ∈ P(g)
(b) π1 ∼h π2 =⇒ π1 ∼g π2 for all π1, π2 ∈ P(g)
(c) g(π) = h(π) for all π ∈ P(g) with g(π) ∈ Σ.

Proof. This follows immediately from Lemma 3.4 and Lemma C.9. J

The proof that ≤2
⊥ is a complete partial order can now be easily derived from the corre-

sponding proof for ≤⊥:

I Theorem C.11. The relation ≤2
⊥ is a complete partial order on G∞C (Σ⊥).

Proof. This is essentially the same proof as the one for Theorem 4.7. Instead of using
Corollary 4.6, we can refer to Corollary C.10. Since (a) and (c) are the same for both
corollaries, we can use the same argument for the first part of the proof showing that the
constructed triple is a well-defined labelled quotient tree. For the second part we only need
to give different arguments for (b):
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At first, for showing that g is an upper bound of G, assume some g ∈ G and π1, π2 ∈ P(g)
with π1 ∼ π2. In order to establish (b) of Corollary C.10, we need to show that π1 ∼g π2.
Since π1 ∼ π2, we find some g1 ∈ G with π1 ∼g1 π2. As G is directed, we find some g2 ∈ G
such that g, g1 ≤2

⊥ g2. Hence, according to (a), we have π1 ∼g2 π2 which implies, by (b),
that π1 ∼g π2.

For the argument that g is smaller than any upper bound ĝ of G, assume some π1, π2 ∈ P
with π1 ∼ĝ π2. In order to show (b) of Corollary C.10, we need to show that π1 ∼ π2. Since
π1, π2 ∈ P , we find some g1, g2 ∈ G with πi ∈ P(gi), i = 1, 2. As G is directed, there is some
g ∈ G with g1, g2 ≤2

⊥ g3. According to (a), this implies that π1, π2 ∈ P(g3). Because ĝ is an
upper bound of G, we have that g3 ≤2

⊥ ĝ which implies, by (b), that π1 ∼g3 π2. Hence, we
can conclude that π1 ∼ π2. J

C.3 The Partial Order ≤3
⊥

The properties of ≤3
⊥ are quite similar to ≤2

⊥. The proofs from Section C.2 can be used
with only minor changes to them.

At first, we shall give the formal definition:

I Definition C.12.

(i) A ∆-homomorphism φ : g →∆ h is called injective on non-∆-nodes if the restriction
of φ to the set Ng

∇ = {n ∈ Ng | labg(n) 6∈ ∆} is injective.
(ii) The binary relation ≤3

⊥ is defined on G∞C (Σ⊥) as follows: g ≤3
⊥ h iff there is a ⊥-

homomorphism φ : g →⊥ h that is injective on non-⊥-nodes.

We can easily argue that ∆-homomorphisms that are injective on non-∆-nodes form a
category:

I Proposition C.13 (category of partially injective ∆-homomorphisms). The ∆-homomorphisms
on G∞(Σ) injective on non-∆-nodes form a subcategory of the category of ∆-homomorphisms
on G∞(Σ).

Proof. We only need to show that injectivity on non-∆-nodes is preserved by composition.
To this end, let φ : g1 →∆ g2, ψ : g2 →∆ g3 be two ∆-homomorphisms injective on non-∆-
nodes. Furthermore, assume n1, n2 ∈ Ng1 with labg1(ni) 6∈ ∆ and ψ(φ(n1)) = ψ(φ(n2)). We
have to show that then n1 = n2. By the labelling condition for φ we also have labg1(φ(ni)) 6∈
∆, i.e. ψ is injective on φ(n1), φ(n2) and we have that φ(n1) = φ(n2). Since φ is injective
on n1, n2, we can conclude that n1 = n2. J

From this we derive that the relation ≤3
⊥ is a partial order:

I Proposition C.14 (partial order ≤3
⊥). The relation ≤3

⊥ is a partial order on G∞C (Σ⊥).

Proof. Reflexivity and Transitivity follow from Proposition C.13. For antisymmetry, assume
that g ≤3

⊥ h and h ≤3
⊥ g. By Proposition 2.6, this implies g ∼=⊥ h. Corollary 3.6 then yields

g ∼= h, which according to Proposition 3.7 is equivalent to g = h. J

The characterisation of injectivity on non-∆-nodes is straightforward:

I Lemma C.15 (characterisation of injectivity on non-∆-nodes). Let φ : g →∆ h be a ∆-
homomorphism. Then φ is injective on non-∆-nodes iff

π1 ∼h π2 =⇒ π1 ∼g π2 for all π1, π2 ∈ P(g) with g(π1), g(π2) 6∈ ∆
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Proof. For the “only if” direction assume π1, π2 ∈ P(g) with g(π1), g(π2) 6∈ ∆ and π1 ∼h π2.
Let ni = nodeg(πi), i = 1, 2. Since πi ∈ ni ⊆ φ(ni), according to Lemma 3.2, π1 ∼h π2
implies φ(n1) = φ(n2). Because labg(ni) = g(πi) 6∈ ∆, φ is injective on n1, n2 and we can
conclude that n1 = n2. Hence, π1 ∼g π2.

For the “if” direction assume n1, n2 ∈ Ng with labg(n1), labg(n2) 6∈ ∆ and φ(n1) = φ(n2).
Pick some πi ∈ ni, i = 1, 2. By Lemma 3.2, we then have πi ∈ φ(ni) and, therefore, π1 ∼h π2.
Since g(πi) = labg(ni) 6∈ ∆, we can use our assumption to conclude that π1 ∼g π2 and,
thereby, n1 = n2. J

With this we can give the characterisation of ≤3
⊥ as follows:

I Corollary C.16 (characterisation of ≤3
⊥). Let g, h ∈ G∞C (Σ⊥). Then g ≤3

⊥ h iff the following
conditions are met:

(a) π1 ∼g π2 =⇒ π1 ∼h π2 for all π1, π2 ∈ P(g)
(b) π1 ∼h π2 =⇒ π1 ∼g π2 for all π1, π2 ∈ P(g) with g(π1), g(π2) ∈ Σ
(c) g(π) = h(π) for all π ∈ P(g) with g(π) ∈ Σ.

Proof. This follows immediately from Lemma 3.4 and Lemma C.15. J

The proof that ≤3
⊥ is a complete partial order can now be easily derived from the corre-

sponding proof for ≤⊥:

I Theorem C.17. The relation ≤3
⊥ is a complete partial order on G∞C (Σ⊥).

Proof. This is essentially the same proof as the one for Theorem 4.7. Instead of using
Corollary 4.6, we can refer to Corollary C.16. Since (a) and (c) are the same for both
corollaries, we can use the same argument for the first part of the proof showing that the
constructed triple is a well-defined labelled quotient tree. For the second part we only need
to give different arguments for (b):

At first, for showing that g is an upper bound of G, assume some g ∈ G and π1, π2 ∈ P(g)
with g(π1), g(π2) ∈ Σ and π1 ∼ π2. In order to establish (b) of Corollary C.16, we need to
show that π1 ∼g π2. Since π1 ∼ π2, we find some g1 ∈ G with π1 ∼g1 π2. As G is directed,
we find some g2 ∈ G such that g, g1 ≤3

⊥ g2. Hence, according to (a), we have π1 ∼g2 π2
which implies, by (b), that π1 ∼g π2.

For the argument that g is smaller than any upper bound ĝ of G, assume some π1, π2 ∈ P
with l(π1), l(π2) ∈ Σ and π1 ∼ĝ π2. In order to show (b) of Corollary C.16, we need to show
that π1 ∼ π2. Since l(π1), l(π2) ∈ Σ, we find some g1, g2 ∈ G with gi(πi) ∈ Σ, i = 1, 2. As
G is directed, there is some g ∈ G with g1, g2 ≤3

⊥ g3. According to (c), this implies that
g3(πi) ∈ Σ. Because ĝ is an upper bound of G, we have that g3 ≤3

⊥ ĝ which implies, by (b),
that π1 ∼g3 π2. Hence, we can conclude that π1 ∼ π2. J

D Alternative Metric

In this section, we shall explore what happens if we start out with the characterisation of
the metric on term graphs as provided by Proposition 5.3 but using a different notion of
truncation. In particular, we want to consider the much more simple strict truncation god
that was sketched in Figure 2b.
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D.1 Truncation Functions
In order to also consider other variants, we begin with an abstract notion of truncation

I Definition D.1 (truncation function). A family t = (td : G∞(Σ⊥) → G∞(Σ⊥))d∈N∪{∞} of
functions on term graphs is called a truncation function if it satisfies the following properties
for all g, h ∈ G∞(Σ⊥) and d ∈ N ∪ {∞}:

(a) t0(g) ∼= ⊥, (b) t∞(g) ∼= g, and (c) td(g) ∼= td(h) =⇒ te(g) ∼= te(h) for all e < d.

Given a truncation function, we can define an associated metric space in the style of
Proposition 5.3.

I Definition D.2 (truncation-based similarity/distance). Let t be a truncation function. The
t-similarity is the function simt : G∞(Σ⊥)× G∞(Σ⊥)→ N ∪ {∞} defined by

simt(g, h) = max {d ∈ N | td(g) ∼= td(h)}

The t-distance is the function dt : G∞(Σ⊥)×G∞(Σ⊥)→ R+ defined by dt(g, h) = 2−simt(g,h),
where 2−∞ is interpreted as ∞.

The following proposition confirms that the t-distance restricted to G∞C (Σ) is indeed an
ultrametric.

I Proposition D.3. For each truncation function t, the t-distance dt constitutes an ultra-
metric on G∞C (Σ).

Proof. The identity resp. the symmetry condition follow by

dt(g, h) = 0 ⇐⇒ simt(g, h) =∞ ⇐⇒ t∞(g) ∼= t∞(h) ⇐⇒ g ∼= h
Prop. 3.7⇐⇒ g = h, and

dt(g, h) = 2−simt(g,h) = 2−simt(h,g) = dt(h, g).

For the strong triangle condition we have to show that

simt(g1, g3) ≥ min {simt(g1, g2), simt(g2, g3)} .

With d = min {simt(g1, g2), simt(g2, g3)} we have td(g1) ∼= td(g2) and td(g2) ∼= td(g3). Con-
sequently, td(g1) ∼= td(g3) and thus simt(g1, g2) ≥ d. J

One can show that the truncation g|d induces a truncation function. Let us call this
function |, i.e. we have that |d(g) = g|d. Then the |-distance d| is the metric d on term
graphs.

Given their particular structure, we can reformulate the definition of Cauchy sequences
and convergence in metric spaces induced by truncation functions in terms of the truncation
function itself:

I Lemma D.4. For each truncation function t, each g ∈ (G∞C (Σ),dt), and each sequence
(gι)ι<α in (G∞C (Σ),dt) the following holds:

(i) (gι)ι<α is Cauchy iff there is some β < α such that td(gγ) ∼= td(gι) for all β ≤ γ, ι < α.
(ii) (gι)ι<α converges to g iff there is some β < α such that td(g) ∼= td(gι) for all β ≤ ι < α.
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Proof. We only show (i) as (ii) is essentially the same. For “only if” direction assume that
(gι)ι<α is Cauchy. We then find some β < α such that dt(gγ , gι) < 2−d for all β ≤ γ, ι < α.
We obtain that simt(gγ , gι) > d for all β ≤ γ, ι < α. That is, te(gγ) ∼= te(gι) for some e > d.
We can then conclude that td(gγ) ∼= t(gι) for all β ≤ γ, ι < α.

For the “if” direction assume some ε ∈ R+. Then there is some d ∈ N with 2−d ≤ ε.
By the initial assumption we find some β < α with td(gγ) ∼= td(gι) for all β ≤ γ, ι < α, i.e.
simt(gγ , gι) ≥ d. Hence, we have that dt(gγ , gι) = 2simt(gγ ,gι) < 2−d ≤ ε for all β ≤ γ, ι <

α. J

D.2 The Strict Truncation and its Metric Space
Let us consider the strict truncation god that we sketched in Figure 2b.

IDefinition D.5 (strict truncation). Let g ∈ G∞(Σ⊥) and d ∈ N∪{∞}. The strict truncation
god of g at d is a term graph defined by

Ngod =
{
n ∈ Ng

∣∣ depthg(n) ≤ d
}

rgod = rg

labgod(n) =
{

labg(n) if depthg(n) < d

⊥ if depthg(n) = d
sucgod(n) =

{
sucg(n) if depthg(n) < d

〈〉 if depthg(n) = d

The strict truncation indeed induces a truncation function:

I Proposition D.6. Let o be the function with od(g) = god. Then o is a truncation function.

Proof. (a) and (b) of Definition D.1 follow immediately from the construction of the trun-
cation. For (c) assume that td(g) ∼= td(h). Let 0 ≤ e < d and let φ : td(g) → td(h) be the
witnessing isomorphism. Since the strict truncation and as well as isomorphisms preserve
the depth of nodes, we have that depthh(φ(n)) = depthg(n). Restricting φ to the nodes in
goe thus yields an isomorphism from goe to hoe. J

Next we show that the metric space (G∞C (Σ),do) that is induced by the truncation func-
tion o is in fact complete.

I Lemma D.7. Let g ∈ G∞(Σ⊥) and d ∈ N ∪ {∞}. The strict truncation god is uniquely
determined up to isomorphism by the labelled quotient tree (P, l,∼) with

(a) P = {π ∈ P(g) | ∀π1 < π∃π2 ∼g π1 with |π2| < d},

(b) l(π) =
{
g(π) if ∃π′ ∼g π with |π′| < d

⊥ otherwise
(c) ∼ = ∼g ∩ P × P

Proof. We just have to show that (P, l,∼) is the canonical labelled quotient tree induced by
god. Then the lemma follows from Lemma 3.10. The case d =∞ is trivial. In the following
we assume that d ∈ N.

(a) P = P(god). For the “⊆” direction let π ∈ P . To show that π ∈ P(god) assume a
π1 < π and let n = nodeg(π1). Since π ∈ P , there is some π2 ∼g π1 with |π2| < d. That
is, depthg(n) < d. Therefore, we have that n ∈ Ngod and sucgod(n) = sucg(n). Hence, each
node on the path π in g is also a node in god and has the same successor nodes as in g. That
is, π ∈ P(god).

For the “⊇” direction, assume some π ∈ P(god). Since Ngod ⊆ Ng and sucgodi (n) =
sucgi (n) for all n ∈ Ngod, π is an occurrence in g as well. To show that π ∈ P let π1 < π. Since
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only nodes of depth smaller than d can have a successor node in god, the node nodegod(π1)
in god is at depth smaller than d. Hence, there is some π2 ∼god π1 with |π2| < d. Because
π2 ∼god π implies that π2 ∼g π, we can conclude that π ∈ P .

(b) l(π) = g(π) for all π ∈ P . Let π ∈ P and n = nodeg(π). We distinguish two
cases. At first suppose that there is some π′ ∼g π with |π′| < d. Then l(π) = g(π).
Since n = nodeg(π′), we have that depthg(n) < d. Consequently, labgod(n) = labg(n) and,
therefore, god(n) = g(π) = l(π). In the other case that there is no π′ ∼g π with |π| < d, we
have l(π) = ⊥. This also means that depthg(n) = d. Consequently, god(π) = labgod(n) =
⊥ = l(π).

(c) ∼ = ∼god. Since sucgodi (n) = sucgi (n) for all n ∈ Ngod we have that nodegod(π) =
nodeg(π) for all π ∈ P . Hence, we can conclude for all π1, π2 ∈ P that

π1 ∼god π2 ⇐⇒ nodegod(π1) = nodegod(π2) ⇐⇒ nodeg(π1) = nodeg(π2) ⇐⇒ π1 ∼g π2

J

From this we immediately obtain the following relation between a term graph and its
strict truncations:

I Corollary D.8. Let g ∈ G∞(Σ⊥) and d ∈ N ∪ {∞}. Then god(π) = g(π) for all π ∈ P(g)
with |π| < d.

Proof. Follows immediately from Lemma D.7 (b) and the reflexivity of ∼g. J

We can now show that the metric space induced by the strict truncation is complete:

I Theorem D.9. The metric space (G∞C (Σ),do) is complete.

Proof. Let (gι)ι<α be a Cauchy sequence in (G∞C (Σ),do). W.l.o.g. we can assume that
α = ω.

We define a canonical term graph g ∈ G∞C (Σ) by giving the following labelled quotient
tree (P, l,∼):

P = lim inf
ι→ω

P(gι) =
⋃
β<ω

⋂
β≤ι<ω

P(gι) ∼ = lim inf
ι→ω

∼gι =
⋃
β<ω

⋂
β≤ι<ω

∼gι

l(π) = f if ∃β < ω∀β ≤ ι < ω : gι(π) = f

At first we need to check that (P, l,∼) is a well-defined labelled-quotient tree.
At first we show that l is a well-defined function on P . In order to show that l is

functional, assume that there are β1, β2 < ω and f1, f2 ∈ Σ such that there is a π with
gι(π) = fj for all βj ≤ ι < ω, j = 1, 2. but then f1 = gβ(π) = f2 for β = max {β1, β2}.

To show that l is total on P let π ∈ P and d = |π|. By Lemma D.4, there is some β < ω

such that gγ od + 1 ∼= gιod + 1 for all β ≤ γ, ι < ω. According to Corollary D.8, this means
that all gι for β ≤ ι < ω agree on occurrences of length smaller than d+ 1, in particular π.
Hence, there is some f ∈ Σ such that gι(π) = f for all β ≤ ι < ω. Consequently, l(π) = f .

Next, we show that ∼ is an equivalence relation on P . To show reflexivity let π ∈ P .
Then there is some β < ω such that π ∈ P(gι) for all β ≤ ι < ω. Hence, π ∼gι π for all
β ≤ ι < ω and, therefore, π ∼ π. In the same way symmetry and transitivity follow from
the symmetry and transitivity of ∼gι .

Finally, we have to show the reachability and the congruence property from Definition 3.9.
To show reachability assume some π ·i ∈ P . Then there is some β < ω such that π ·i ∈ P(gι)
for all β ≤ ι < ω. Hence, since then also π ∈ P(gι) for all β ≤ ι < ω, we have π ∈ P .
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According to the construction of l, there is also some β ≤ γ < ω with gγ(π) = l(π). Since
π · i ∈ P(gγ) we can conclude that i < ar(l(π)).

To establish congruence assume that π1 ∼ π2. Consequently, there is some β < γ such
that π1 ∼gι π2 for all β ≤ ι < ω. Therefore, we also have for each β ≤ ι < ω that
π1 · i ∼gι π2 · i and that gι(π1) = gι(π2). From the former we can immediately derive that
π1 · i ∼ π2 · i. Moreover, according to the construction of l, there some β ≤ γ < ω such that
l(π1) = gγ(π1) = gγ(π2) = l(π2).

This concludes the proof that (P, l,∼) is indeed a labelled quotient tree. Next, we
show that the sequence (gι)ι<ω converges to the thus define canonical term graph g. By
Lemma D.4, this amounts to giving for each d ∈ N some β < ω such that god ∼= gιod for each
β ≤ ι < ω.

To this end, let d ∈ N. By Lemma D.4, there is some β < ω such that

gιod ∼= gι′ od for all β ≤ ι, ι′ < ω. (1)

In order to show that this implies that god ∼= gιod for each β ≤ ι < ω, we show that the
respective labelled quotient trees of god and gιod as characterised by Lemma D.7 coincide.
The labelled quotient tree (P1, l1,∼1) for god is given by

P1 = {π ∈ P | ∀π1 < π∃π2 ∼ π1 : |π2| < d} ∼1 = ∼ ∩ P1 × P2

l1(π) =
{
l(π) if ∃π′ ∼ π : |π′| < d

⊥ otherwise

The labelled quotient tree (P ι2 , lι2,∼ι2) for each gιod is given by

P ι2 = {π ∈ P(gι) | ∀π1 < π∃π2 ∼gι π1 : |π2| < d} ∼ι2 = ∼ ∩ P ι2 × P ι2

lι2(π) =
{
gι(π) if ∃π′ ∼gι π : |π′| < d

⊥ otherwise

According to Lemma D.7, all (P ι2 , lι2,∼ι2) with β ≤ ι < ω are pairwise equal due to (1).
Therefore, we write (P2, l2,∼2) for this common labelled quotient tree. That is, it remains
to be shown that (P1, l1,∼1) and (P2, l2,∼2) are equal.

(a) P1 = P2. For the “⊆” direction let π ∈ P1. Hence, π ∈ P , which means that there
is some β ≤ β′ < ω with π ∈ P(gι) for all β′ ≤ ι < ω. Moreover this means that for each
π1 < π there is some π2 ∼ π1 with |π2| < d. That is, there is some β′ ≤ γπ1 < ω such that
π2 ∼gι π2 for all γπ1 ≤ ι < ω. Since there are only finitely many proper prefixes π1 < π, we
can define γ = max {γπ1 |π1 < π } ∪ {β′} such that we have for each π1 < π some π2 ∼gγ π1
with |π2| < d. Hence, π ∈ P γ2 = P2.

To show the converse direction, assume that π ∈ P2. Then π ∈ P ι2 ⊆ P(gι) for all
β ≤ ι < ω. Hence, π ∈ P . To show that π ∈ P1, assume some π1 < π. Since π ∈ P β2 ,
there is some π2 ∼gβ π1 with |π2| < d. Then π1 ∈ P2 because P2 is closed under prefixes
and π2 ∈ P2 because |π2| < d. Thus, π2 ∼2 π1 which implies π2 ∼gι π1 for all β ≤ ι < ω.
Consequently, π2 ∼ π1, which means that π ∈ P1.

(c) ∼1 = ∼2. For the “⊆” direction assume π1 ∼1 π2. Hence, π1 ∼ π2 and π1, π2 ∈ P1 =
P2. This means that there is some β ≤ γ < ω with π1 ∼gγ π2. Consequently, π1 ∼2 π2. For
the converse direction assume that π1 ∼2 π2. Then π1, π2 ∈ P2 = P1 and π1 ∼gι π2 for all
β ≤ ι < ω. Hence, π1 ∼ π2 and we can conclude that π1 ∼1 π2.

(b) l1 = l2. We show this by proving the condition ∃π′ ∼ π : |π′| < d from the definition
of l1 to be equivalent to the condition ∃π′ ∼gι π : |π′| < d from the definition of l2 and
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that l(π) = gι(π) if either condition is satisfied. The latter is simple: Whenever there is
some π′ ∼ π with |π′| < d, then gι(π) = lι2(π) = lβ2 (π) = gβ(π) for all β ≤ ι < ω. Hence,
l(π) = gβ(π) = gι(π) for all β ≤ ι < ω. For the former, we first consider the “only if”
direction of the equivalence. Let π ∈ P1 and π′ ∼ π with |π′| < d. Then also π′ ∈ P1 which
means that π′ ∼1 π. Since then π′ ∼2 π, we can conclude that π′ ∼gι π for all β ≤ ι < ω.
For the converse direction assume that π ∈ P2, π′ ∼gι π and |π′| < d. Then also π′ ∈ P2
which means that π′ ∼2 π. Consequently, π′ ∼1 π and, therefore, π′ ∼ π. J

D.3 Other Truncation Functions and Their Metric Spaces
We close our discussion about alternative metric spaces by considering two variants of the
strict truncation function. Both variations – if applied to the truncation g|d – would yield
topologically different metric spaces. We shall show that – if applied to the strict truncation
– we obtain topologically equivalent metric spaces.
I Lemma D.10. Let s, t be two truncation functions on G∞(Σ⊥) and f : G∞C (Σ)→ G∞C (Σ)
a function on G∞C (Σ). Then the following are equivalent
(i) f is a continuous mapping f : (G∞C (Σ),ds)→ (G∞C (Σ),dt)
(ii) For each g ∈ G∞C (Σ) and d ∈ N there is some e ∈ N such that

sims(g, h) ≥ e =⇒ simt(f(g), f(h)) ≥ d for all h ∈ G∞C (Σ)

(iii) For each g ∈ G∞C (Σ) and d ∈ N there is some e ∈ N such that

se(g) ∼= se(h) =⇒ td(f(g)) ∼= td(f(h)) for all h ∈ G∞C (Σ)

Proof. Analogous to Lemma D.4. J

An easy consequence of the above lemma is that if two truncation functions only differ
by a constant depth, they induce the same topology:
I Proposition D.11. Let s, t be two truncation functions on G∞(Σ⊥) such that there is
a δ ∈ N with |sims(g, h)− simt(g, h)| ≤ δ for all g, h ∈ G∞C (Σ). Then (G∞C (Σ),ds) and
(G∞C (Σ),dt) are topologically equivalent, i.e. induce the same topology.
Proof. We show that the identity function id : G∞C (Σ)→ G∞C (Σ) is a homeomorphism from
(G∞C (Σ),ds) to (G∞C (Σ),dt), i.e. both id and id−1 are continuous. Due to the symmetry of
the setting it suffices to show that id is continuous. To this end, let g ∈ G∞C (Σ) and d ∈ N.
Define e = d+ δ and assume some h ∈ G∞C (Σ) such that sims(g, h) ≥ e. By Lemma D.10, it
remains to be shown that then simt(g, h) ≥ d. Indeed, we have simt(g, h) ≥ sims(g, h)− δ ≥
e− δ = d. J

This shows that metric spaces induced by truncation functions are essentially invariant
under changes in the truncation function bounded by a constant margin. This is for example
the case if we deal with fringe nodes in the strict truncation differently:
I Example D.12. Consider the following variant s of the strict truncation function o. Given
a term graph g ∈ G∞(Σ⊥) and depth d ∈ N we define the truncation sd(g) as follows:

Ng
<d =

{
n ∈ Ng

∣∣ depthg(n) < d
}

Ng
=d =

{
ni
∣∣n ∈ Ng

<d, 0 ≤ i < arg(n), sucgi (n) 6∈ Ng
<d

}
Nsd(g) = Ng

<d ]N
g
=d

labsd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucsd(g)
i (n) =

{
sucgi (n) if ni 6∈ Ng

=d

ni if ni ∈ Ng
=d
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The difference between o and s is that in the latter, similar to the truncation g|d, we create
a fresh node ni whenever a node n has a successor sucgi (n) that lies at the fringe, i.e. at
depth d. Since this only affects the nodes at the fringe and, therefore, only nodes at the
same depth d we get the following:

god ∼= hod =⇒ sd(g) ∼= sd(h), and
sd(g) ∼= sd(h) =⇒ god− 1 ∼= hod− 1.

Hence, the respectively induced similarities only differ by a constant margin of 1, i.e. we have
that |simo(g, h)− sims(g, h)| = 1. According to Proposition D.6, this means that (G∞C (Σ),do)
and (G∞C (Σ),ds) are topologically equivalent.

Consider another variant t of the strict truncation function o. Given a term graph
g ∈ G∞(Σ⊥) and depth d ∈ N we define the truncation td(g) as follows:

Ng
<d =

{
n ∈ Ng

∣∣ depthg(n) < d
}

Ng
=d =

{
ni

∣∣∣∣∣ n ∈ Ng, depthg(n) = d− 1, 0 ≤ i < arg(n) with sucgi (n) 6∈ Ng
<d

or n 6∈ Preag(sucgi (n))

}
N td(g) = Ng

<d ]N
g
=d

labtd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

suctd(g)(n) =
{

sucgi (n) if ni 6∈ Ng
=d

ni if ni ∈ Ng
=d

Here, in addition to creating fresh nodes ni for each successor that is not in the retained
nodes Ng

<d, we also create such new nodes ni for each cycle that created by a node just
above the fringe. This is essentially the same definition of fringe nodes that we have used
for the truncation g|d. Again, as for the truncation function s, only the nodes at the fringe,
i.e. at depth d are affected by this change. Hence, the respectively induced similarities of o
and t only differ by a constant margin of 1, which makes the metric spaces (G∞C (Σ),do) and
(G∞C (Σ),dt) topologically equivalent as well.

The robustness of the metric space (G∞C (Σ),do) under the changes illustrated above is due
to the uniformity of the core definition of the strict truncation which only takes into account
the depth. By simply increasing the depth by a constant number, we can compensate for
changes in the way fringe nodes are dealt with.

This is much different in truncation g|d and the corresponding metric space (G∞C (Σ),d).
Since it also takes into account the sharing in the term graph, small changes to the way we
define the fringe nodes affect the induced topology!

I Example D.13. Consider the following variant s of the truncation function |. Given a
term graph g ∈ G∞(Σ⊥) and depth d ∈ N we define the truncation sd(g) as follows: The set
of retained nodes Ng

<d is defined as for the truncation g|d. For the rest we define

Ng
=d =

{
sucgi (n)

∣∣n ∈ Ng
<d, 0 ≤ i < arg(n), sucgi (n) 6∈ Ng

<d

}
Nsd(g) = Ng

<d ]N
g
=d

labsd(g)(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucsd(g)(n) =
{

sucg(n) if n ∈ Ng
<d

〈〉 if n ∈ Ng
=d

In this variant of truncation, some sharing of the retained nodes is preserved. Instead of
creating fresh nodes for each successor node that is not in the set of retained nodes, we

RTA’11
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Figure 6 Variations in fringe nodes.

simply keep the successor node. Additionally loops back into the retained nodes are not
cut off. This variant of the truncation deals with its retained nodes in essentially the same
way as the strict truncation. However, opposed the strict truncation and their variants, this
truncation function yields a topology different from the metric space (G∞C (Σ),d)! To see
this, consider the two families of term graphs gn and hn indicated in Figure 6. For both
families we have that the s-truncations at depth 2 to n+2 are the same, i.e. sd(gn) = s2(gn)
and sd(hn) = s2(hn) for all 2 ≤ d ≤ n + 2. The same holds for the truncation function
|. Moreover, since the two leftmost successors of the h-node are not shared in gn, both
truncation functions coincide on gn, i.e. gn|d = sd(gn). This is not the case for hn. In
fact, they only coincide up to depth 1. However, we have that hn|d = sd(gn). In total, we
can observe that sim(gn, hn) = n + 2 but sims(gn, hn) = 1. This means, however, that the
sequence 〈g0, h0, g1, h1, . . .〉 converges in (G∞C (Σ),d) but not in (G∞C (Σ),ds)!

A similar example can be constructed that uses the difference in the way the two trun-
cation functions deal with fringe nodes created by cycles back into the set of retained nodes.


