Evaluation à la Carte

Non-Strict Evaluation via Compositional Data Types

Patrick Bahr

University of Copenhagen, Department of Computer Science paba@diku.dk

23rd Nordic Workshop on Programming Theory, Mälardalen University, Västerås, Sweden, October 26-28, 2011

Outline

(1) Compositional Data Types
(2) Monadic Catamorphisms \& Thunks
(3) Conclusions

Outline

(1) Compositional Data Types

(2) Monadic Catamorphisms \& Thunks

(3) Conclusions

A Solution to the Expression Problem

Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add new cases to the data type and new functions over the data type, without recompiling existing code, and while retaining static type safety.

A Solution to the Expression Problem

Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add new cases to the data type and new functions over the data type, without recompiling existing code, and while retaining static type safety.

"Data Types à la Carte" by Wouter Swierstra (2008)

A solution to the expression problem: Decoupling + Composition!

A Solution to the Expression Problem

Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add new cases to the data type and new functions over the data type, without recompiling existing code, and while retaining static type safety.
"Data Types à la Carte" by Wouter Swierstra (2008)
A solution to the expression problem: Decoupling + Composition!

- data types: decoupling of signature and term construction
- functions: decoupling of pattern matching and recursion

A Solution to the Expression Problem

Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add new cases to the data type and new functions over the data type, without recompiling existing code, and while retaining static type safety.
"Data Types à la Carte" by Wouter Swierstra (2008)
A solution to the expression problem: Decoupling + Composition!

- data types: decoupling of signature and term construction
- functions: decoupling of pattern matching and recursion
- signatures \& functions defined on them can be composed

Example: Evaluation Function

Example (A simple expression language)

data Exp = Const Int | Pair Exp Exp | Mult Exp Exp|Fst Exp data Value $=$ VConst Int \mid VPair Value Value

Example: Evaluation Function

Example (A simple expression language)

data Exp = Const Int | Pair Exp Exp | Mult Exp Exp | Fst Exp data Value $=$ VConst Int \mid VPair Value Value
eval :: Exp \rightarrow Value
eval (Const n) $=$ VConst n
eval $($ Pair $x y)=$ VPair $($ eval $x)($ eval $y)$
eval $($ Mult $x y)=$ let V Const $m=$ eval x
VConst $n=$ eval y
in VConst $(m * n)$
eval $($ Fst $p) \quad=$ let VPair $x y=$ eval p in x

Decoupling Signature and Term Construction

Remove recursion from data type definition
data Exp $=$ Const Int \mid Pair Exp Exp \mid Mult Exp Exp \mid Fst Exp

Decoupling Signature and Term Construction

Remove recursion from data type definition
data Exp $=$ Const Int \mid Pair Exp Exp \mid Mult Exp Exp \mid Fst Exp

$$
\Downarrow
$$

data Sig e = Const Int \mid Pair e e \mid Mult e e \mid Fst e

Decoupling Signature and Term Construction

Remove recursion from data type definition

data Exp $=$ Const Int \mid Pair Exp Exp | Mult Exp Exp | Fst Exp

$$
\Downarrow
$$

data Sig e = Const Int \mid Pair e e \mid Mult e e \mid Fst e

Recursion can be added separately
data $\operatorname{Term} f=\operatorname{Term}(f(\operatorname{Term} f))$
Term f is the initial f-algebra (a.k.a. term algebra over f)

Decoupling Signature and Term Construction

Remove recursion from data type definition

data Exp $=$ Const Int \mid Pair Exp Exp | Mult Exp Exp | Fst Exp
\Downarrow
data Sig e = Const Int \mid Pair e e \mid Mult e e \mid Fst e

Recursion can be added separately
data $\operatorname{Term} f=\operatorname{Term}(f(\operatorname{Term} f))$
Term f is the initial f-algebra (a.k.a. term algebra over f)

$$
\text { Term Sig } \cong \text { Exp } \quad \text { (modulo strictness) }
$$

Combining Signatures

In order to extend expressions, we need a way to combine signatures.
Direct sum of signatures
data $(f \oplus g) e=\operatorname{In} /(f e) \mid \operatorname{Inr}(g e)$
$f \oplus g$ is the sum of the signatures f and g

Combining Signatures

In order to extend expressions, we need a way to combine signatures.
Direct sum of signatures
data $(f \oplus g) e=\operatorname{InI}(f e) \mid \operatorname{Inr}(g e)$
$f \oplus g$ is the sum of the signatures f and g

Example

$$
\begin{aligned}
& \text { data Sig e }=\text { Const Int } \\
& \mid \text { Pair e e } \\
& \mid \text { Mult e e } \\
& \left\lvert\, \begin{array}{ll}
\text { Fst e }
\end{array}\right.
\end{aligned}
$$

Combining Signatures

In order to extend expressions, we need a way to combine signatures.

Direct sum of signatures

data $(f \oplus g) e=\operatorname{InI}(f e) \mid \operatorname{Inr}(g e)$
$f \oplus g$ is the sum of the signatures f and g

Example

data Sig e = Const Int
Pair e e Mult e e Fst e

data Val $e=$ Const Int
| Pair e e
data $O p e=$ Mult e e
| Fst e

Combining Signatures

In order to extend expressions, we need a way to combine signatures.
Direct sum of signatures
data $(f \oplus g) e=\operatorname{InI}(f e) \mid \operatorname{Inr}(g e)$
$f \oplus g$ is the sum of the signatures f and g

Example

$$
\begin{aligned}
& \text { data Sig e = Cost Int } \\
& \text { Pair e e } \\
& \text { Malt e e } \\
& \text { Fsh e } \\
& \text { data Val } e=\text { Cons Int } \\
& \text { | Pair e e } \\
& \text { data } O p e=\text { Malt e e } \\
& \text { | Fsh e } \\
& V a l \oplus O p \cong S i g
\end{aligned}
$$

Combining Signatures

In order to extend expressions, we need a way to combine signatures.

Direct sum of signatures

data $(f \oplus g) e=\operatorname{InI}(f e) \mid \operatorname{Inr}(g e)$
$f \oplus g$ is the sum of the signatures f and g

Example

$$
\text { type } S i g=V a l \oplus O p
$$

data Val $e=$ Const Int
| Pair e e
data $O p$ e Cult e e
| Fast e

Combining Signatures

In order to extend expressions, we need a way to combine signatures.
Direct sum of signatures
data $(f \oplus g) e=\operatorname{InI}(f e) \mid \operatorname{Inr}(g e)$
$f \oplus g$ is the sum of the signatures f and g

Example

$$
\text { type } S i g=V a l \oplus O p
$$

data Val $e=$ Const Int
| Pair e e
data $O p$ e Cult e e
| Fit e

$$
\begin{aligned}
& \text { Term Sig } \cong \text { Exp } \\
& \text { Term Val } \cong \text { Value }
\end{aligned}
$$

Subsignatures

Subsignature type class

class $f \prec g$ where

Subsignatures

Subsignature type class
class $f \prec g$ where

$$
\begin{aligned}
& f \prec g \quad \text { iff } \\
& \quad \bullet g=g_{1} \oplus g_{2} \oplus \ldots \oplus g_{n} \text { and } \\
& \quad \text { - } f=g_{i}, \quad 0<i \leq n
\end{aligned}
$$

Subsignatures

Subsignature type class
class $f \prec g$ where

For example: $\mathrm{Val} \prec \underbrace{V a l \oplus O p}_{\text {Sig }}$

$$
f \prec g \quad \text { iff }
$$

$$
\text { - } g=g_{1} \oplus g_{2} \oplus \ldots \oplus g_{n} \text { and }
$$

$$
f=g_{i}, \quad 0<i \leq n
$$

Subsignatures

Subsignature type class
class $f \prec g$ where

For example: $\mathrm{Val} \prec \underbrace{V a l \oplus O p}_{\text {Sig }}$

$$
f \prec g \quad \text { iff }
$$

$$
\text { - } g=g_{1} \oplus g_{2} \oplus \ldots \oplus g_{n} \text { and }
$$

$$
f=g_{i}, \quad 0<i \leq n
$$

Injection and projection functions
inject $::(g \prec f) \Rightarrow g($ Term $f) \rightarrow$ Term f
project $::(g \prec f) \Rightarrow$ Term $f \rightarrow$ Maybe $(g($ Term $f))$

Separating Function Definition from Recursion

Compositional function definitions as algebras
In the same way as we defined the types:

- define functions on the signatures (non-recursive): $f a \rightarrow a$
- combine functions using type classes
- apply the resulting function recursively on the term: Term $f \rightarrow a$

Separating Function Definition from Recursion

Compositional function definitions as algebras

In the same way as we defined the types:

- define functions on the signatures (non-recursive): $f a \rightarrow a$
- combine functions using type classes
- apply the resulting function recursively on the term: Term $f \rightarrow a$

Algebras

class Eval f where

evalAlg :: $f($ Term Val $) \rightarrow$ Term Val

Separating Function Definition from Recursion

Compositional function definitions as algebras

In the same way as we defined the types:

- define functions on the signatures (non-recursive): $f a \rightarrow a$
- combine functions using type classes
- apply the resulting function recursively on the term: Term $f \rightarrow a$

Algebras
class Eval f where
evalAlg :: $f($ Term Val $) \rightarrow$ Term Val

Applying a function recursively to a term
cata $::$ Functor $f \Rightarrow(f a \rightarrow a) \rightarrow$ Term $f \rightarrow a$
cata $f($ Term $t)=f($ fmap $($ cata $f) t)$

Defining Algebras

On the singleton signatures
instance Eval Val where
evalAlg $=$ inject

Defining Algebras

On the Val (Term Val) \rightarrow Term Val
instance Ey lal Val where
evalAIg = inject

Defining Algebras

On the singleton signatures

instance Eval Val where
evalAlg $=$ inject
instance Eval Op where
evalAlg $($ Mult $x y)=$ let Just $($ Const $m)=$ project x Just (Const n) $=$ project y in inject (Const $(m * n)$)
$\operatorname{evalAlg}($ Fst $p)=$ let Just $($ Pair $x y)=$ project p in x

Defining Algebras

On the singleton signatures

instance Eval Val where
evalAlg $=$ inject
instance Eval Op where
evalAlg (Mult $x y)=$ let Just $($ Const $m)=$ project x Just (Const n) $=$ project y in inject (Const $(m * n)$)
evalAlg (Fst $p)=$ let Just $($ Pair $x y)=$ project p in x

Forming the catamorphism

eval :: Term Sig \rightarrow Term Val
eval = cata evalAlg

Outline

(1) Compositional Data Types

(2) Monadic Catamorphisms \& Thunks
(3) Conclusions

Monadic Catamorphisms

Fear the bottoms!

instance Eval Op where
evalAlg $($ Mult $x y)=$ let Just $($ Const $m)=$ project x Just (Const n) $=$ project y in inject (Const $(m * n)$)
evalAlg $($ Fst $p)=$ let Just $($ Pair $x y)=$ project p in x

Monadic Catamorphisms

Fear the bottoms!

The case distinction is incomplete
instance Eval Op where
evalAlg $($ Mult $x y)=$ let Just $($ Const $m)=$ project x Just (Const n) $=$ project y in inject (Const $(m * n)$)
evalAlg (Fst $p)=$ let Just $($ Pair $x y)=$ project p in x

Monadic Catamorphisms

Fear the bottoms!

instance Eval Op where

$$
\begin{aligned}
\text { evalAlg }(\text { Mult } \times y)= & \text { let Just }(\text { Const } m)=\text { project } x \\
& \text { Just }(\text { Const } n)=\text { project } y \\
& \text { in inject }(\text { Const }(m * n)) \\
\text { evalAlg }(\text { Fst } p)= & \text { let Just }(\text { Pair } \times y)=\text { project } p \\
& \text { in } x
\end{aligned}
$$

Monadic Algebra

instance Eval Op where
evalAlg $($ Mult $x y)=$ do Const $m \leftarrow$ project x Const $n \leftarrow$ project y return (inject (Const $(m * n))$)
evalAlg (Fst p) $=$ do Pair $\times y \leftarrow$ project p return x

Monadic Catamorphisms

Fear the bottoms!

instance Eval Op where

$$
\begin{aligned}
\text { evalAlg }(\text { Mult } \times y)= & \text { let Just }(\text { Const } m)=\text { project } x \\
& \text { Just }(\text { Const } n)=\text { project } y \\
& \text { in inject }(\text { Const }(m * n)) \\
\text { evalAlg }(\text { Fst } p)= & \text { let Just }(\text { Pair } \times y)=\text { project } p \\
& \text { in } x
\end{aligned}
$$

Op (Term Val) \rightarrow Maybe (Term Val)

instance Evz Op where
evalAtg (Mult x y) $=$ do Const $m \leftarrow$ project x
Const $n \leftarrow$ project y
return (inject (Const $(m * n))$)
evalAlg (Fst $p) \quad=$ do Pair $x y \leftarrow$ project p return x

Monadic Catamorphisms

Fear the bottoms!

instance Eval Op where

$$
\begin{aligned}
& \text { evalAlg }(\text { Mult } \times y)= \text { let Just }(\text { Const } m)=\text { project } x \\
& \text { Just }(\text { Const } n)=\text { project } y \\
& \text { in inject }(\text { Const }(m * n)) \\
&= \text { let Just }(\text { Pair } \times y)=\text { project } p \\
& \text { in } x
\end{aligned}
$$

Monadic Algebra

instance Eval Op where
evalAlg (Mult xy) $=$ do Cons
both x and y are evaluated
Const $n \leftarrow$ proict y
return (inject (Const $(m * n))$)
evalAlg (Fst $p) \quad=$ do Pair $\ngtr y \leftarrow$ project p
return x

Monadic Catamorphisms

Fear the bottoms!

instance Eval Op where

$$
\begin{aligned}
& \text { evalAlg }(\text { Mult } x y)= \text { let Just }(\text { Const } m)=\text { project } x \\
& \text { Just }(\text { Const } n)=\text { project y } \\
& \text { in inject }(\text { Const }(m * n)) \\
&= \text { let Just }(\text { Pair } \times y)=\text { project } p \\
& \text { in } x
\end{aligned}
$$

Monadic Algebra
instance Eval Op where
evalAlg $($ Mult $x y)=$ do Cons Stricter than non-monadic evaluation!
Const $n \leftarrow$ prozet y
return (inject (Const $(m * n))$)
evalAlg (Fst $p) \quad=$ do Pair $\ngtr y \leftarrow$ project p return x

The Type of the Monadic Evaluation Function

eval $::$ Term Sig $\rightarrow m$ (Term Val)

The Type of the Monadic Evaluation Function

m (Term Val)

The Type of the Monadic Evaluation Function

The Type of the Monadic Evaluation Function

Term $(m \oplus V a l)$

Creating and Evaluating Thunks

```
Creating a thunk
thunk :: m (Term (m\oplusf)) -> Term (m\oplusf)
thunk = inject
```


Creating and Evaluating Thunks

```
Creating a thunk
thunk :: m (Term (m\oplusf)) -> Term (m\oplusf)
thunk = inject
```


Evaluation to weak head normal form

whnf $::$ Monad $m \Rightarrow \operatorname{Term}(m \oplus f) \rightarrow m(f(\operatorname{Term}(m \oplus f)))$

Creating and Evaluating Thunks

```
Creating a thunk
thunk :: m (Term (m\oplusf)) -> Term (m\oplusf)
thunk = inject
```


Evaluation to weak head normal form

whnf $::$ Monad $m \Rightarrow \operatorname{Term}(m \oplus f) \rightarrow m(f(\operatorname{Term}(m \oplus f)))$
whnf $(\operatorname{Term}(\operatorname{In} \mid m))=m \gg w h n f$
whnf $(\operatorname{Term}(\operatorname{Inr} t))=$ return t

Evaluation via Thunks

Algebra declaration \& trivial instance

class EvalT f where
evalAlgT $:: f($ Term $($ Maybe \oplus Val $)) \rightarrow$ Term $($ Maybe \oplus Val $))$

Evaluation via Thunks

Algebra declaration \& trivial instance

class EvalT f where
evalAlgT :: $f($ Term $($ Maybe \oplus Val $)) \rightarrow$ Term $($ Maybe \oplus Val $))$

Evaluation via Thunks

Algebra dec evalAlg $:: f($ Term Val) \rightarrow Maybe (Term Val)
class EvalT f where
evalAlgT‥f $($ Term $($ Maybe \oplus Val $)) \rightarrow$ Term $($ Maybe \oplus Val $))$

Evaluation via Thunks

Algebra declaration \& trivial instance

class EvalT f where
evalAlg $T:: f($ Term $($ Maybe \oplus Val $)) \rightarrow$ Term $($ Maybe \oplus Val $))$
instance EvalT Val where evalAlg $T=$ inject

Evaluation via Thunks

Algebra declaration \& trivial instance

class EvalT f where
evalAlg $T:: f($ Term $($ Maybe \oplus Val $)) \rightarrow$ Term $($ Maybe \oplus Val $))$
instance EvalT Val where evalAlgT = inject

Evaluating operators

instance EvalT Op where
evalAlg $T($ Mult $\times y)=$ thunk $\$$ do
Const $i \leftarrow$ whnf x Const $j \leftarrow$ whnf y return (inject (Const $(i * j)$))
evalAlgT (Fst v) = thunk $\$$ do
Pair x $y \leftarrow$ whnf v
return x

Evaluation via Thunks

Algebra declaration \& trivial instance

class EvalT f where
evalAlgT :: $f($ Term $($ Maybe \oplus Val $)) \rightarrow$ Term $($ Maybe \oplus Val $))$
instance EvalT Val where evalAlgT = inject

Evaluating operators

instance EvalT Op where
evalAlg $T($ Mult $\times y)=$ thunk $\$$ do
Const $i \leftarrow$ whnf x Const $j \leftarrow$ whnf y return (inject (Const $(i * j)$))
evalAlgT (Fst v) $=$ thunk $\$$ do
Pair x y \leftarrow whnf v
return x

Evaluation via Thunks

Algebra declaration \& trivial instance

class EvalT f where
evalAlg $T:: f($ Term $($ Maybe \oplus Val $)) \rightarrow$ Term $($ Maybe \oplus Val $))$
instance EvalT Val where evalAlgT = inject

Evaluating operators

instance EvalT Op where
evalAlg $T($ Mult $\times y)=$ thunk $\$$ do
Const $i \leftarrow$ whnf x Const $j \leftarrow$ whnf y return (inject (Const $(i * j)$))
evalAlgT (Fst v) = thunk \$ do
Pair x y \leftarrow whnf v
return x

Obtaining the Evaluation Function

Forming the catamorphism

evalT $::$ Term Sig \rightarrow Term (Maybe \oplus Val) evalT = cata evalAlg T

Obtaining the Evaluation Function

Forming the catamorphism

```
evalT :: Term Sig -> Term (Maybe }\oplus\textrm{Val}
evalT = cata evalAlgT
```

Evaluating to normal form
$n f::($ Monad m, Traversable $f) \Rightarrow \operatorname{Term}(m \oplus f) \rightarrow m($ Term $f)$
$n f=$ liftM Term . mapM nf \Leftarrow whnf

Obtaining the Evaluation Function

Forming the catamorphism

```
evalT :: Term Sig -> Term (Maybe }\oplus\mathrm{ Val)
evalT = cata evalAlgT
```

Evaluating to normal form
$n f::($ Monad m, Traversable $f) \Rightarrow \operatorname{Term}(m \oplus f) \rightarrow m($ Term $f)$
$n f=$ liftM Term.mapM nf \Leftarrow whnf

The evaluation function

```
eval :: Term Sig -> Maybe (Term Value)
eval = nf . evalT
```


Adding Strictness

Value constructors are non-strict
instance EvalT Val where evalAlgT = inject

Adding Strictness

Value constructors are non-strict instance EvalT Val where evalAlgT = inject

Making constructors strict
strict :: $(f \prec g$, Traversable f, Monad $m) \Rightarrow$ $f(\operatorname{Term}(m \oplus g)) \rightarrow$ Term $(m \oplus g)$
strict $=$ thunk. liftM inject. mapM $($ liftM inject. whnf $)$

Adding Strictness

Value constructors are non-strict instance EvalT Val where evalAlgT = inject

Making constructors strict
strict :: $(f \prec g$, Traversable f, Monad $m) \Rightarrow$ $f(\operatorname{Term}(m \oplus g)) \rightarrow \operatorname{Term}(m \oplus g)$
strict $=$ thunk. liftM inject. mapM $($ liftM inject. whnf $)$

Adding Strictness

Making value constructors strict
instance EvalT Val where evalAlgT = strict

Making constructors strict
strict : : $(f \prec g$, Traversable f, Monad $m) \Rightarrow$
$f($ Term $(m \oplus g)) \rightarrow$ Term $(m \oplus g)$
strict $=$ thunk. liftM inject. mapM (liftM inject. whnf $)$

Adding Strictness

Making value constructors strict

instance EvalT Val where evalAlgT = strictAt spec
where spec (Pair a b) $=[b]$

$$
\text { spec }_{-} \quad=[]
$$

Making constructors strict
strict $::(f \prec g$, Traversable f, Monad $m) \Rightarrow$
$f($ Term $(m \oplus g)) \rightarrow$ Term $(m \oplus g)$
strict $=$ thunk. liftM inject. mapM (liftM inject. whnf)

Adding Strictness

Making value constructors strict spec can be derived from Haskell strictness annotations instance EvalT Val where evalAIgI = frictAt spec where spec (Pair a b) $=[b]$

$$
\text { spec }-\quad=[]
$$

Making constructors strict

```
strict :: (f\precg, Traversable f,Monad m) =>
    f(Term (m\oplusg)) -> Term (m\oplusg)
strict = thunk. liftM inject. mapM (liftM inject.whnf)
```


Adding Strictness

Making value constructors strict spec can be derived from Haskell strictness annotations instance EvalT Val where evalAlgI = frictAt spec where spec (Pair a b) $=[b]$

$$
\text { spec } \quad=\quad=[]
$$

Making constructors strict
strict : : $(f \prec g$, Traversable f, Monad $m) \Rightarrow$

$$
f(\operatorname{Term}(m \oplus g)) \rightarrow \operatorname{Term}(m \oplus g)
$$

strict $=$ thunk. liftM inject. mapM $($ liftM inject. whnf $)$

Strictness annotations

data Val a = Const Int
| Pair a a

Adding Strictness

Making value constructors strict spec can be derived from Haskell strictness annotations instance EvalT Val where evalAlgI = frictAt spec where spec (Pair a b) $=[b]$

$$
\text { spec }-\quad=[]
$$

Making constructors strict
strict : : $(f \prec g$, Traversable f, Monad $m) \Rightarrow$
$f($ Term $(m \oplus g)) \rightarrow \operatorname{Term}(m \oplus g)$
strict $=$ thunk. liftM inject. mapM $($ liftM inject. whnf $)$

Strictness annotations
data Val a = Const Int
| Pair a!a

Adding Strictness

Making value constructors strict

 instance EvalT Val where evalAlgT = haskellStrictMaking constructors strict

```
strict :: (f\precg,Traversable f,Monad m) =>
    f(Term (m\oplusg)) -> Term (m\oplusg)
strict = thunk. liftM inject .mapM (liftM inject . whnf)
```


Strictness annotations

data Val a Const Int
| Pair a! a

Outline

(1) Compositional Data Types

(2) Monadic Catamorphisms \& Thunks

(3) Conclusions

The Last Slide

What have we gained?
Monadic computations with the same strictness as pure computations!

The Last Slide

What have we gained?
Monadic computations with the same strictness as pure computations!

Other settings

- (parametric) higher-order abstract syntax
- mutually recursive data types

The Last Slide

What have we gained?

Monadic computations with the same strictness as pure computations!

Other settings

- (parametric) higher-order abstract syntax
- mutually recursive data types

Easy to use

- we use it ourselves for implementing DSLs

The Last Slide

What have we gained?

Monadic computations with the same strictness as pure computations!

Other settings

- (parametric) higher-order abstract syntax
- mutually recursive data types

Easy to use

- we use it ourselves for implementing DSLs
- try it: cabal install compdata

