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A Solution to the Expression Problem

Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add
new cases to the data type and new functions over the data
type, without recompiling existing code, and while retaining
static type safety.

“Data Types à la Carte” by Wouter Swierstra (2008)

A solution to the expression problem: Decoupling + Composition!

data types: decoupling of signature and term construction

functions: decoupling of pattern matching and recursion

signatures & functions defined on them can be composed

4
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Example: Evaluation Function

Example (A simple expression language)

data Exp = Const Int | Pair Exp Exp | Mult Exp Exp | Fst Exp

data Value = VConst Int | VPair Value Value

eval :: Exp → Value
eval (Const n) = VConst n
eval (Pair x y) = VPair (eval x) (eval y)
eval (Mult x y) = let VConst m = eval x

VConst n = eval y
in VConst (m ∗ n)

eval (Fst p) = let VPair x y = eval p in x
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Decoupling Signature and Term Construction

Remove recursion from data type definition

data Exp = Const Int | Pair Exp Exp | Mult Exp Exp | Fst Exp

⇓

data Sig e = Const Int | Pair e e | Mult e e | Fst e

Recursion can be added separately

data Term f = Term (f (Term f ))

Term f is the initial f -algebra (a.k.a. term algebra over f )

Term Sig ∼= Exp (modulo strictness)
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Combining Signatures

In order to extend expressions, we need a way to combine signatures.

Direct sum of signatures

data (f ⊕ g) e = Inl (f e) | Inr (g e)

f ⊕ g is the sum of the signatures f and g

Example

data Sig e = Const Int
| Pair e e

| Mult e e
| Fst e

 
data Val e = Const Int

| Pair e e

data Op e = Mult e e
| Fst e

Val ⊕ Op ∼= Sig
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Subsignatures

Subsignature type class

class f ≺ g where
...

For example: Val ≺ Val ⊕ Op︸ ︷︷ ︸
Sig

f ≺ g iff

g = g1 ⊕ g2 ⊕ ...⊕ gn and

f = gi , 0 < i ≤ n

Injection and projection functions

inject :: (g ≺ f )⇒ g (Term f )→ Term f

project :: (g ≺ f )⇒ Term f → Maybe (g (Term f ))
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Separating Function Definition from Recursion

Compositional function definitions as algebras

In the same way as we defined the types:

define functions on the signatures (non-recursive): f a→ a

combine functions using type classes

apply the resulting function recursively on the term: Term f → a

Algebras

class Eval f where
evalAlg :: f (Term Val)→ Term Val

Applying a function recursively to a term

cata :: Functor f ⇒ (f a→ a)→ Term f → a
cata f (Term t) = f (fmap (cata f ) t)

9
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Defining Algebras

On the singleton signatures

instance Eval Val where
evalAlg = inject

instance Eval Op where
evalAlg (Mult x y) = let Just (Const m) = project x

Just (Const n) = project y
in inject (Const (m ∗ n))

evalAlg (Fst p) = let Just (Pair x y) = project p
in x

Forming the catamorphism

eval :: Term Sig → Term Val
eval = cata evalAlg
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Monadic Catamorphisms

Fear the bottoms!

instance Eval Op where
evalAlg (Mult x y) = let Just (Const m) = project x

Just (Const n) = project y
in inject (Const (m ∗ n))

evalAlg (Fst p) = let Just (Pair x y) = project p
in x

Monadic Algebra

instance Eval Op where
evalAlg (Mult x y) = do Const m← project x

Const n ← project y
return (inject (Const (m ∗ n)))

evalAlg (Fst p) = do Pair x y ← project p
return x

12
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Op (Term Val)→ Maybe (Term Val)
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The Type of the Monadic Evaluation Function

eval :: Term Sig → m (Term Val)
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The Type of the Monadic Evaluation Function

eval :: Term Sig →

Term (m ⊕Val)

13



Creating and Evaluating Thunks

Creating a thunk

thunk :: m (Term (m ⊕ f ))→ Term (m ⊕ f )
thunk = inject

Evaluation to weak head normal form

whnf :: Monad m⇒ Term (m ⊕ f )→ m (f (Term (m ⊕ f )))

whnf (Term (Inl m)) = m >>= whnf
whnf (Term (Inr t)) = return t

14
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Evaluation via Thunks
Algebra declaration & trivial instance

class EvalT f where
evalAlgT :: f (Term (Maybe ⊕ Val))→ Term (Maybe ⊕ Val))

instance EvalT Val where evalAlgT = inject

Evaluating operators

instance EvalT Op where
evalAlgT (Mult x y) = thunk $ do

Const i ← whnf x
Const j ← whnf y
return (inject (Const (i ∗ j)))

evalAlgT (Fst v) = thunk $ do
Pair x y ← whnf v
return x
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Obtaining the Evaluation Function

Forming the catamorphism

evalT :: Term Sig → Term (Maybe ⊕ Val)
evalT = cata evalAlgT

Evaluating to normal form

nf :: (Monad m,Traversable f )⇒ Term (m ⊕ f )→ m (Term f )
nf = liftM Term . mapM nf <=< whnf

The evaluation function

eval :: Term Sig → Maybe (Term Value)
eval = nf . evalT
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Adding Strictness

Value constructors are non-strict

instance EvalT Val where evalAlgT = inject

where spec (Pair a b) = [b ]
spec = [ ]

Making constructors strict

strict :: (f ≺ g ,Traversable f ,Monad m)⇒
f (Term (m ⊕ g))→ Term (m ⊕ g)

strict = thunk . liftM inject . mapM (liftM inject . whnf )

Strictness annotations

data Val a = Const Int
| Pair a

!

a
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Making value constructors strict
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The Last Slide

What have we gained?

Monadic computations with the same strictness as pure computations!

Other settings

(parametric) higher-order abstract syntax

mutually recursive data types

Easy to use

we use it ourselves for implementing DSLs

try it: cabal install compdata
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