Evaluation a la Carte

Non-Strict Evaluation via Compositional Data Types

Patrick Bahr
Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen, Denmark
paba@diku.dk

Abstract

We describe how to perform monadic computations
over recursive data structures with fine grained con-
trol over the evaluation strategy. This solves the is-
sue that the definition of a recursive monadic func-
tion already determines the evaluation strategy due
to the necessary sequencing of the monadic oper-
ations. We show that compositional data types al-
ready provide the structure needed in order to delay
monadic computations at any point of the compu-
tation.

1 Introduction

Algebraic data types offer an excellent representa-
tion of abstract syntax trees (ASTs). The ease with
which functional programming languages allow us
to manipulate algebraic data types makes the func-
tional programming paradigm a powerful tool for
performing transformations on ASTs — an ubiqui-
tous tasks when writing compilers and interpreters.

As an example, consider the following
Haskell [4] definition of an algebraic data
type representing a simple expression language
over integers and pairs:

data Exp = Const Int | Pair Exp Exp
| Add Exp Exp | Fst Exp | Snd Exp

Apart from the constructors for integers and pairs,
the language contains addition and the projection
operators Fst and Snd. Implementing an evaluation
function for this language is a simple exercise:

eval:: Exp — Exp

eval (Const i) = Const i

eval (Pair x y) = Pair (eval x) (eval y)

eval (Add x y) = case (eval x,eval y) of
(Const i,Const j) — Const (i+j)

eval (Fst p)
eval (Snd p)

= case eval p of Pair xy — x
= case eval p of Pairxy — y

While this function performs the desired evalu-
ation, its type is not as precise as we would ex-
pect. According to its type, eval produces an ex-
pression of type Exp which potentially can contain
additions and projections. This can be solved by
using as codomain of eval a separate type Value that
only contains (copies of) the constructors Const
and Pair. This means, however, that also code that
works on both Exp and Value has to be duplicated,
e.g. pretty printing and parsing.

2 Data Types a la Carte

Swierstra’s data types a la carte [5] offer an elegant
solution to this problem by representing expression
types as a fixed point of a functor:

data Term f = Term f (Term f)

This approach makes it possible to define the signa-
ture of the expression language in two components
— values and operations — and combine them via the
formal sum @ of functors:

data (f@g)e=1Inl(fe)|Inr(ge)

We can then define the signatures of our expres-
sion language as follows:

data Value e = Const Int | Pair e e
dataOpe =Addee|Fste|Snde

type Sig = Op @ Value

This allows us to represent values and expressions
as Term Value and Term Sig, respectively.

In addition, Swierstra also defines a binary type
class < on signature functors that approximates in-
clusion. That is, f < g if g is equal to f or contains

paba@diku.dk

Evaluation a la Carte

it as a summand. Most importantly, this type class
provide a function to inject a “smaller” signature
into a “bigger” one:

inject:: (f < g)=f (Termg) — Term g

Functions of the form 7erm f — r are written as
catamorphisms induced by algebras, i.e. functions
of type f r — r. This allows us to write functions
on a per signature basis, which is achieved by using
a type class:

class Eval f where
evalAlg ::f (Term Value) — Term Value

The instantiation of this class for values is trivial:

instance Eval Value where
evalAlg = inject

For operator symbols we have to provide an im-
plementation that evaluates the arguments appro-
priately:

instance Eval Op where

evalAlg (Add x y) = case (x,y) of

(Term (Const i), Term (Const j))
— inject (Const (i+)))

evalAlg (Fstp) = casep of
Term (Pair x y) — x

evalAlg (Sndp) = case p of
Term (Pair xy) —y

Note that the case distinction in the above eval-
uation algebra as well as in the direct evaluation in
Section |1|is incomplete: In case that an argument
is not of the expected type, e.g. Fst is applied to an
integer constant, the evaluation halts with a runtime
error.

3 Monadic Algebras and Thunks

In order to recover from runtime errors, it is better
to use monads to indicate failure explicitly. This
can be easily achieved by defining a monadic al-
gebra [3, [1]], i.e. a function of type f r — m r for
a monad m. Such a monadic algebra gives rise
to a monadic catamorphism of type Term f — m r.
The evaluation algebra from Section [2] can be eas-
ily adapted to such a monadic style. Unfortunately,

Patrick Bahr

this will determine the evaluation strategy: The ar-
guments of the operator symbols such as Fst have
to be evaluated to normal form (in order to de-
termine whether an error occurred). For exam-
ple, the evaluation of an expression of the form
fs5t (3,snd 5) will yield an error since the evaluation
of (3,snd 5) to normal form fails due to the second
component of the pair.

In order to regain control over the evaluation
strategy, we have to allow arbitrary nesting of
monadic computations in the result. Instead of the
monadic result type m (Term Value), we therefore
use the result type Term (m @ Value) — making the
monad part of the target signature. A monadic
computation can thus be embedded into the term
structure.

thunk ::m (Term (m @ f)) — Term (m @ f)
thunk = inject

The evaluation of terms with such thunks to weak
head normal form (whnf) is implemented by se-
quencing all thunks until a proper constructor (i.e.
in the f-part of the signature) is reached:

whnf :: Monad m =

Term (maf) — m (f (Term (m&f)))
whnf (Term (Inl m)) = m >= whnf
whnf (Term (Inr t)) = return t

We can now use this idea to define a non-
strict monadic evaluation function using the Maybe
monad to indicate failure:

class EvalT f where
evalAlIgT :: f (Term (Maybe & Value))
— Term (Maybe & Value)

Again, the case for the value constructors is trivial:

instance EvalT Value where
evalAlgT = inject

For evaluating the operator symbol applications,
we simply evaluate their arguments to whnf and
create a thunk in the end:

evalAlgT (Add x y) = thunk $ do
Const i < whnf x
Const j < whnf y

Evaluation a la Carte

return (inject (Const (i+j)))

evalAlgT (Fstv) = thunk$do
Pair x y < whnf v
return x

evalAlgT (Sndv) = thunk$do

Pair x y < whnf v
return 'y

By constructing the catamorphism of this algebra,
we obtain the following evaluation function

evalT :: Term Sig — Term (Maybe @ Value)
evalT = cata evalAlgT

With only mild assumptions on the signature func-
tors, we can also easily implement the evaluation to
normal form by simply iterating the whnf function:

nf :: (Monad m, Traversable f) =
Term (m@®f) — m (Term f)
nf = liftM Term . mapM nf <=< whnf

Eventually, we obtain the desired non-strict evalu-
ation function:

eval :: Term Sig — Maybe (Term Value)
eval = nf .evalT

Using this evaluation function, the expression
fst (3,snd 5) now evaluates to the expected value
3.

Full non-strict evaluation, however, is only one
option that we now have. We can stipulate addi-
tional strictness if desired, similarly to Haskell’s
strictness annotations. The following function
makes every constructor strict by evealuating each
of its arguments to whnf:

strict:: (f < g, Traversable f,Monad m) =
f (Term (m&g)) — Term (m @ g)
strict = thunk . liftM inject .
mapM (liftM inject . whnf)

Now we can, for example, make all value construc-
tors strict simply by replacing inject with strict:

instance EvalT Value where
evalAlgT = strict

We can even be more specific: It is possible
to define the following combinator, which takes a

Patrick Bahr

specification of which arguments are supposed to
be strict and then performs the desired evaluation
strategy:

strictAt :: (f < g, Traversable f,Monad m, ...) =
(Va.Orda=fa— [a]) —
f(Term (im®g)) — Term (m @ g)

For example, we can make only the second compo-
nent of the Pair value constructor strict:

instance EvalT Value where

evalAlgT = strictAt spec
where spec (Pair a b) = [b]
spec _ =]

In a similar manner also other combinators can
be formed that allow to specify the evaluation strat-
egy in a very fine grained fashion.

4 Conclusions

This simple observation shows yet another use-
ful aspect of using compositional data types as a
framework for dealing with abstract syntax trees
(L 2]

In addition to the example presented here, we
have applied similar techniques to also control
the evaluation strategy for other recursion schemes
such as tree homomorphisms, tree transducers and
attribute grammars.

References

[1] Patrick Bahr and Tom Hvitved. Compositional data
types. WGP 2011, to appear.

[2] Laurence Day and Graham Hutton. Towards Mod-
ular Compilers For Effects. In Proceedings of the
Symposium on Trends in Functional Programming,
Madrid, Spain, 2011.

[3] Maarten Fokkinga. Monadic Maps and Folds for
Arbitrary Datatypes. Technical report, Memoranda
Informatica, University of Twente, 1994.

[4] Simon Marlow. Haskell 2010 Language Report,
2010.

[5] Wouter Swierstra. Data types a la carte. Journal of
Functional Programming, 18(4):423-436, 2008.

	Introduction
	Data Types à la Carte
	Monadic Algebras and Thunks
	Conclusions

