
A Functional Language for Specifying
Business Reports

Patrick Bahr

University of Copenhagen, Department of Computer Science
paba@diku.dk

23rd Nordic Workshop on Programming Theory,
Mälardalen University, Väster̊as, Sweden,

October 26 - 28, 2011

Outline

1 Enterprise Resource Planning Systems

2 Reports & Report Functions

3 Conclusions

2

Outline

1 Enterprise Resource Planning Systems

2 Reports & Report Functions

3 Conclusions

3

What are Enterprise Resource Planning Systems?

ERP systems integrate several software components that are essential for
managing a business.

ERP systems integrate

Financial Management

Supply Chain Management

Manufacturing Resource Planning

Human Resource Management

Customer Relationship Management

. . .

4

What are Enterprise Resource Planning Systems?

ERP systems integrate several software components that are essential for
managing a business.

ERP systems integrate

Financial Management

Supply Chain Management

Manufacturing Resource Planning

Human Resource Management

Customer Relationship Management

. . .

4

What are Enterprise Resource Planning Systems?

ERP systems integrate several software components that are essential for
managing a business.

ERP systems integrate

Financial Management

Supply Chain Management

Manufacturing Resource Planning

Human Resource Management

Customer Relationship Management

. . .

4

What do ERP Systems Look Like?

5

Issues of Many ERP Implementations

Complexity

processes are specified in general purpose language

gap between specification and implementation

large monolithic system

Inflexibility

code is duplicated in order to avoid unexpected side effects

the use of general purpose languages makes customisation expensive

the (relational) database determines the way data is stored and
accessed

6

Issues of Many ERP Implementations

Complexity

processes are specified in general purpose language

gap between specification and implementation

large monolithic system

Inflexibility

code is duplicated in order to avoid unexpected side effects

the use of general purpose languages makes customisation expensive

the (relational) database determines the way data is stored and
accessed

6

Outline

1 Enterprise Resource Planning Systems

2 Reports & Report Functions

3 Conclusions

7

Entering POETS
Process-oriented event-driven transaction systems

compact core system

• customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

8

Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs

• simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

8

Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

8

Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

8

Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events

updates

query results

8

Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

8

Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

8

Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

8

What is a Report?

event 1

event 2

event 3

event 4

event 5

event 6

event 7

event 8

event 9

event 10

Event Log

invoices : [Invoice]
invoices = [Invoice{

customer = ii.customer@,
orderLines = ii.orderLines} |

tr : TransactionEvent← events,
ii : IssueInvoice = tr.transaction]

Report Function
invoice 1 {

customer = {. . . },
orderLines = {. . . }
}

invoice 2 {
customer = {. . . },
orderLines = {. . . }
}

invoice 3 {
customer = {. . . },
orderLines = {. . . }
}

Report

9

What is a Report?

event 1

event 2

event 3

event 4

event 5

event 6

event 7

event 8

event 9

event 10

Event Log

invoices : [Invoice]
invoices = [Invoice{

customer = ii.customer@,
orderLines = ii.orderLines} |

tr : TransactionEvent← events,
ii : IssueInvoice = tr.transaction]

Report Function

invoice 1 {
customer = {. . . },
orderLines = {. . . }
}

invoice 2 {
customer = {. . . },
orderLines = {. . . }
}

invoice 3 {
customer = {. . . },
orderLines = {. . . }
}

Report

9

What is a Report?

event 1

event 2

event 3

event 4

event 5

event 6

event 7

event 8

event 9

event 10

Event Log

invoices : [Invoice]
invoices = [Invoice{

customer = ii.customer@,
orderLines = ii.orderLines} |

tr : TransactionEvent← events,
ii : IssueInvoice = tr.transaction]

Report Function
invoice 1 {

customer = {. . . },
orderLines = {. . . }
}

invoice 2 {
customer = {. . . },
orderLines = {. . . }
}

invoice 3 {
customer = {. . . },
orderLines = {. . . }
}

Report

9

What is a Report?

event 1

event 2

event 3

event 4

event 5

event 6

event 7

event 8

event 9

event 10

Event Log

invoices : [Invoice]
invoices = [Invoice{

customer = ii.customer@,
orderLines = ii.orderLines} |

tr : TransactionEvent← events,
ii : IssueInvoice = tr.transaction]

Report Function
invoice 1 {

customer = {. . . },
orderLines = {. . . }
}

invoice 2 {
customer = {. . . },
orderLines = {. . . }
}

invoice 3 {
customer = {. . . },
orderLines = {. . . }
}

Report

9

The Report Language

The central data types

records

: events are records

lists

: the event log is a list of events

Nominal subtyping

Event

Entity
Event

Put
Entity

Delete
Entity

Contract
Event

Report
Event

Transaction

Transfer

Payment Delivery

Issue
Invoice

10

The Report Language

The central data types

records: events are records

lists

: the event log is a list of events

Nominal subtyping

Event

Entity
Event

Put
Entity

Delete
Entity

Contract
Event

Report
Event

Transaction

Transfer

Payment Delivery

Issue
Invoice

10

The Report Language

The central data types

records: events are records

lists: the event log is a list of events

Nominal subtyping

Event

Entity
Event

Put
Entity

Delete
Entity

Contract
Event

Report
Event

Transaction

Transfer

Payment Delivery

Issue
Invoice

10

The Report Language

The central data types

records: events are records

lists: the event log is a list of events

Nominal subtyping

Event

Entity
Event

Put
Entity

Delete
Entity

Contract
Event

Report
Event

Transaction

Transfer

Payment Delivery

Issue
Invoice

10

The Report Language

The central data types

records: events are records

lists: the event log is a list of events

Nominal subtyping

Event

Entity
Event

Put
Entity

Delete
Entity

Contract
Event

Report
Event

Transaction

Transfer

Payment Delivery

Issue
Invoice

10

The Report Language – An Example Function

Example

reportNames : [String]
reportNames = [pr.name |

cr : CreateReport ← events,
pr : PutReport = head [ur |

ur : ReportEvent ← events,
ur.id ≡ cr.id]

]

Report Event Hierarchy

Report
Event

Put
Report

Create
Report

Update
Report

Delete
Report

11

The Report Language – An Example Function

Example

reportNames : [String]
reportNames = [pr.name |

cr : CreateReport ← events,
pr : PutReport = head [ur |

ur : ReportEvent ← events,
ur.id ≡ cr.id]

]

Report Event Hierarchy

Report
Event

Put
Report

Create
Report

Update
Report

Delete
Report

11

Nominal Subtyping with Benefits

Nominal subtype relation <:

User defined subtyping partial order on records

Fixed subtyping relation on built-in types

Record Constraints

τ1.f : τ2

E.g. field selector operator .f has type

α.f : β ⇒ α→ β

E.g. record modifier operator {f1 = , . . . , fn = } has type

α.f1 : α1, . . . , α.fn : αn ⇒ α→ α1 → . . .→ αn → α

12

Nominal Subtyping with Benefits

Nominal subtype relation <:

User defined subtyping partial order on records

Fixed subtyping relation on built-in types

Record Constraints

τ1.f : τ2

E.g. field selector operator .f has type

α.f : β ⇒ α→ β

E.g. record modifier operator {f1 = , . . . , fn = } has type

α.f1 : α1, . . . , α.fn : αn ⇒ α→ α1 → . . .→ αn → α

12

Nominal Subtyping with Benefits

Nominal subtype relation <:

User defined subtyping partial order on records

Fixed subtyping relation on built-in types

Record Constraints

τ1.f : τ2

E.g. field selector operator .f has type

α.f : β ⇒ α→ β

E.g. record modifier operator {f1 = , . . . , fn = } has type

α.f1 : α1, . . . , α.fn : αn ⇒ α→ α1 → . . .→ αn → α

12

Nominal Subtyping with Benefits

Nominal subtype relation <:

User defined subtyping partial order on records

Fixed subtyping relation on built-in types

Record Constraints

τ1.f : τ2

E.g. field selector operator .f has type

α.f : β ⇒ α→ β

E.g. record modifier operator {f1 = , . . . , fn = } has type

α.f1 : α1, . . . , α.fn : αn ⇒ α→ α1 → . . .→ αn → α

12

Record Field Constraints
What do we gain?

Field names can be used by different record types.

Nominal subtyping feels like structural subtyping (unless you want to
create a record).

Example

fullName : (a.firstName : String, a.lastName : String) ⇒ a → String
fullName x = x.firstName ++ " " ++ x.lastName

setFullName : (a.firstName : String, a.lastName : String) ⇒
String → a → a

setFullName name x = let (first,last) = decompose name
in x {firstName = first, lastName = last}

13

Record Field Constraints
What do we gain?

Field names can be used by different record types.

Nominal subtyping feels like structural subtyping (unless you want to
create a record).

Example

fullName : (a.firstName : String, a.lastName : String) ⇒ a → String
fullName x = x.firstName ++ " " ++ x.lastName

setFullName : (a.firstName : String, a.lastName : String) ⇒
String → a → a

setFullName name x = let (first,last) = decompose name
in x {firstName = first, lastName = last}

13

Record Field Constraints
What do we gain?

Field names can be used by different record types.

Nominal subtyping feels like structural subtyping (unless you want to
create a record).

Example

fullName : (a.firstName : String, a.lastName : String) ⇒ a → String
fullName x = x.firstName ++ " " ++ x.lastName

setFullName : (a.firstName : String, a.lastName : String) ⇒
String → a → a

setFullName name x = let (first,last) = decompose name
in x {firstName = first, lastName = last}

13

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!old result + ∆

r ′

incrementalised variant of r

14

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!old result + ∆

r ′

incrementalised variant of r

14

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!old result + ∆

r ′

incrementalised variant of r

14

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!old result + ∆

r ′

incrementalised variant of r

14

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!old result + ∆

r ′

incrementalised variant of r

14

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!

old result + ∆

r ′

incrementalised variant of r

14

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!

old result + ∆

r ′

incrementalised variant of r

14

Making It Scale
ain’t easy

event 1

event 2

event n

event n+1

report function r

Report R

ob
so

le
te

Report R ′

report function r

too expensive!

old result + ∆

r ′

incrementalised variant of r

14

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x # xs)

= f x︸︷︷︸

new element

(fold f e xs)︸ ︷︷ ︸

old (intermediate) result

Limitations

This works well with single folds.

For nested folds more powerful equations are needed.
I commutative operations
I multisets instead of lists

15

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x # xs) = f x︸︷︷︸

new element

(fold f e xs)︸ ︷︷ ︸

old (intermediate) result

Limitations

This works well with single folds.

For nested folds more powerful equations are needed.
I commutative operations
I multisets instead of lists

15

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x # xs) = f x︸︷︷︸
new element

(fold f e xs)︸ ︷︷ ︸
old (intermediate) result

Limitations

This works well with single folds.

For nested folds more powerful equations are needed.
I commutative operations
I multisets instead of lists

15

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x # xs) = f x︸︷︷︸
new element

(fold f e xs)︸ ︷︷ ︸
old (intermediate) result

Limitations

This works well with single folds.

For nested folds more powerful equations are needed.

I commutative operations
I multisets instead of lists

15

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x # xs) = f x︸︷︷︸
new element

(fold f e xs)︸ ︷︷ ︸
old (intermediate) result

Limitations

This works well with single folds.

For nested folds more powerful equations are needed.
I commutative operations
I multisets instead of lists

15

Outline

1 Enterprise Resource Planning Systems

2 Reports & Report Functions

3 Conclusions

16

Conclusions
The Last Slide

What do we have?

Simple yet powerful data model for ERP

Purely functional language for extracting & aggregating complex
information

Highly customisable & flexible

Incrementalisation of report functions

What are we planning?

More powerful incrementalisation transformations

Possibly restricting the language further

A better cost model

17

Conclusions
The Last Slide

What do we have?

Simple yet powerful data model for ERP

Purely functional language for extracting & aggregating complex
information

Highly customisable & flexible

Incrementalisation of report functions

What are we planning?

More powerful incrementalisation transformations

Possibly restricting the language further

A better cost model

17

	Enterprise Resource Planning Systems
	Reports & Report Functions
	Conclusions

