TY OF COPENHAGEN Department of Campt

Faculty of Science

A Functional Language for Specifying

Business Reports

Patrick Bahr

University of Copenhagen, Department of Computer Science
paba@diku.dk

23rd Nordic Workshop on Programming Theory
Malardalen University, Vasteras, Sweden,
October 26 - 28, 2011

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

@ Enterprise Resource Planning Systems

© Reports & Report Functions

© Conclusions

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

@ Enterprise Resource Planning Systems

UNIVERSITY OF COPENHAGEN Department of Computer

What are Enterprise Resource Planning Systems?

ERP systems integrate several software components that are essential for
managing a business.

Department of Computer Science

UNIVERSITY OF COPENHAGEN

What are Enterprise Resource Planning Systems?

ERP systems integrate several software components that are essential for
managing a business.

ERP systems integrate

o Financial Management
@ Supply Chain Management

Manufacturing Resource Planning

@ Human Resource Management
@ Customer Relationship Management
o

UNIVERSITY OF COPENHAGEN Department of Computer Science

What are Enterprise Resource Planning Systems?

ERP systems integrate several software components that are essential for
managing a business.

ERP systems integrate

o Financial Management

Supply Chain Management
Manufacturing Resource Planning
Human Resource Management

Customer Relationship Management

UNIVERSITY OF COPENHAGEN

What do ERP Systems Look Like?

Compliance Compensation

AT AT /m ‘.
ERP,
- ‘- Securﬂy

Bl Tools CUSTOM Apmcanonge

Fragmented
Data Sourci

Department of Computer

UNIVERSITY OF COPENHAGEN Department of Computer Science

Issues of Many ERP Implementations

Complexity

@ processes are specified in general purpose language

@ gap between specification and implementation

o large monolithic system

UNIVERSITY OF COPENHAGEN Department of Computer Science

Issues of Many ERP Implementations

Complexity

@ processes are specified in general purpose language

@ gap between specification and implementation

o large monolithic system

Inflexibility

@ code is duplicated in order to avoid unexpected side effects

@ the use of general purpose languages makes customisation expensive

o the (relational) database determines the way data is stored and
accessed

UNIVERSITY OF COPENHAGEN Department of Computer

QOutline

© Reports & Report Functions

UNIVERSITY OF COPENHAGEN Department of Computer

Entering POETS

Process-oriented event-driven transaction systems

compact core system

UNIVERSITY OF COPENHAGEN Department of Computer

Entering POETS

Process-oriented event-driven transaction systems

compact core system e customisable via DSLs

UNIVERSITY OF COPENHAGEN Department of Computer

Entering POETS

Process-oriented event-driven transaction systems

compact core system e customisable via DSLs e simple data model

UNIVERSITY OF COPENHAGEN Department of Computer

Entering POETS

Process-oriented event-driven transaction systems

compact core system e customisable via DSLs e simple data model

UNIVERSITY OF COPENHAGEN Department of Computer Science

Entering POETS

Process-oriented event-driven transaction systems

compact core system e customisable via DSLs e simple data model

Contract engine)

Running
contracts

= e
start contract w‘
) Event

register event
end contract

UNIVERSITY OF COPENHAGEN Department of Computer Science

Entering POETS

Process-oriented event-driven transaction systems

compact core system e customisable via DSLs e simple data model

Contract engine) Report engine)
Running Report
contracts definitions

start contract add/delete report

modify report
query report

register event
end contract

UNIVERSITY OF COPENHAGEN Department of Computer Science

Entering POETS

Process-oriented event-driven transaction systems

compact core system e customisable via DSLs e simple data model

query results

Contract engine (Report engine)
Running Report
contracts definitions

start contract add/delete report

modify report
query report

register event
end contract

UNIVERSITY OF COPENHAGEN Department of Computer Science

Entering POETS

Process-oriented event-driven transaction systems

compact core system e customisable via DSLs e simple data model

query results

Contract engine (Report engine)
Running Report
contracts definitions

start contract add/delete report

modify report
query report

register event
end contract

NIVERSITY OF COPENHAGEN Department of Computer

What is a Report?

UNIVERSITY OF COPENHAGEN Department of Computer Science

What is a Report?

Event Log
Report Function
event 1 - _
invoices : [Invoice]
event 2 invoices = [Invoice{
customer = ii.customer@,

event 3 orderLines = ii.orderLines} |

tr : TransactionEvent < events,
event 4 i : Issuelnvoice = tr.transaction]
event 5
event 6 >
event 7
event 8
event 9
event 10

- 1111

UNIVERSITY OF COPENHAGEN

Department of Computer Science

What is a Report?

Event Log

event 1

event 2

event 3

event 4

event 5

event 6

Report Function

invoices : [Invoice]
invoices = [Invoice{
customer = ii.customer@,
orderLines = ii.orderLines} |
tr : TransactionEvent < events,
i : Issuelnvoice = tr.transaction]

Report

invoice 1 {

}

customer = {... },
orderLines = {...}

event 7

event 8

event 9

event 10

- 1111

A 4

invoice 2 {

}

customer = {... },
orderLines = {...}

invoice 3 {

}

customer = {...},
orderLines = {...}

UNIVERSITY OF COPENHAGEN

What is a Report?

Event Log

event 1
event 2
event 3
event 4
event 5

Department of Computer Science

Report

}

invoice 1 {

customer = {... },
orderLines = {...}

event 6
event 7
event 38
event 9
event 10

- 1111

A 4

}

invoice 2 {

customer = {... },
orderLines = {...}

}

invoice 3 {

customer = {...},
orderLines = {...}

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Report Language

The central data types

@ records

@ lists

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Report Language

The central data types

@ records: events are records

@ lists

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Report Language

The central data types

@ records: events are records

@ lists: the event log is a list of events

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Report Language

The central data types

@ records: events are records

@ lists: the event log is a list of events

Nominal subtyping

Event

/1IN

Entity Contract Report
Event Event Event

/ N\

Put Delete
Entity Entity

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Report Language

The central data types

@ records: events are records

@ lists: the event log is a list of events

Nominal subtyping

Event Transaction

ST\ AT

Entity Contract Report Transfer ISsue

Event E\./e.nt E\./e.nt / \ In\{o_ice

Put Delete .
Entity Entity Pay:njent Del:l\fery

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Report Language — An Example Function

reportNames : [String]
reportNames = [pr.name |
cr : CreateReport < events,
pr : PutReport = head [ur |
ur : ReportEvent <— events,
ur.id = cr.id|

11

UNIVERSITY OF COPENHAGEN Department of Computer Science

The Report Language — An Example Function

R t
reportNames : [String] Eevz(::c
reportNames = [pr.name | / \

cr : CreateReport < events, Put Delete
u
pr : PutReport = head [ur | Report Report
ur : ReportEvent <— events, / \

ur.id = cr.i
d Create Update

Report Report

11

UNIVERSITY OF COPENHAGEN Department of Computer Science

Nominal Subtyping with Benefits

Nominal subtype relation <:

@ User defined subtyping partial order on records

o Fixed subtyping relation on built-in types

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

Nominal Subtyping with Benefits

Nominal subtype relation <:

@ User defined subtyping partial order on records

o Fixed subtyping relation on built-in types

Record Constraints

Tl.f -T2

UNIVERSITY OF COPENHAGEN Department of Computer Science

Nominal Subtyping with Benefits

Nominal subtype relation <:

@ User defined subtyping partial order on records

o Fixed subtyping relation on built-in types

Record Constraints

Tl.f -T2

E.g. field selector operator _.f has type

af:f=a—=p

UNIVERSITY OF COPENHAGEN Department of Computer Science

Nominal Subtyping with Benefits

Nominal subtype relation <:

@ User defined subtyping partial order on records

o Fixed subtyping relation on built-in types

Record Constraints

Tl.f -T2

E.g. field selector operator _.f has type
af:f=a—=p
E.g. record modifier operator _ {fi = _,...,f, = _} has type

a.fi iay,...,af o= a0 = ... ap — Q@

UNIVERSITY OF COPENHAGEN Department of Computer Science

Record Field Constraints

What do we gain?

@ Field names can be used by different record types.

o Nominal subtyping feels like structural subtyping (unless you want to
create a record).

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

Record Field Constraints

What do we gain?

@ Field names can be used by different record types.

@ Nominal subtyping feels like structural subtyping (unless you want to
create a record).

fullName : (a.firstName : String, a.lastName : String) = a — String
fullName x = x.firstName ++ " " ++ x.lastName

UNIVERSITY OF COPENHAGEN Department of Computer Science

Record Field Constraints
What do we gain?
@ Field names can be used by different record types.

@ Nominal subtyping feels like structural subtyping (unless you want to
create a record).

Example

fullName : (a.firstName : String, a.lastName : String) = a — String
fullName x = x.firstName ++ " " ++ x.lastName

setFullName : (a.firstName : String, a.lastName : String) =
String — a — 2
setFullName name x = let (first,last) = decompose name
in x {firstName = first, lastName = last}

UNIVERSITY OF COPENHAGEN Department of Computer

Making It Scale

ain’t easy

event 1
event 2

— 11—

 —1—1—1—1—

event n

UNIVERSITY OF COPENHAGEN

Making It Scale

ain’t easy

event 1
event 2

report function

Report R

i

 —1—1—1—1—

event n

v

Department of Computer

UNIVERSITY OF COPENHAGEN

Making It Scale

ain’t easy

event 1
event 2

report function r

Report R

i

event n

v

Department of Computer

UNIVERSITY OF COPENHAGEN Department of Campute

Making It Scale

ain’t easy

Report R
event 1 P &
event 2 report function r ~<&~
— 11— ’ A/@M

[
=

UNIVERSITY OF COPENHAGEN Department of Campute

Making It Scale

ain’t easy

Report R
event 1 P &
event 2 report function r ~<&~
— 11— { 4 f\’@’\’\
e
S

Report R’

14

UNIVERSITY OF COPENHAGEN Department of Campute

Making It Scale

ain’t easy

Report R
event 1 P &
event 2 report function r ~<&~
— 11— { 4 A’@M

[
" S

’ Report R’

14

UNIVERSITY OF COPENHAGEN Department of Campute

Making It Scale

ain’t easy

Report R
event 1 P &
event 2 report function r ~<&~
1111 > ’V@M
ety
o

old result + A
Report R’

14

UNIVERSITY OF COPENHAGEN Department of Campute

Making It Scale

ain’t easy
Report R
event 1 P &
event 2 report function r <&
- 1111 4 /-\/\6/-\/\%
e

A

old result + A
Report R’

incrementalised variant of r

14

UNIVERSITY OF COPENHAGEN Department of Computer Science

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x # xs)

15

UNIVERSITY OF COPENHAGEN Department of Computer Science

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x#xs) =1 S (fold f e xs)

15

UNIVERSITY OF COPENHAGEN Department of Computer Science

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x#xs) =1 S (fold f e xs)

old (intermediate) result

new element

15

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x#xs) =1 X (fold f e xs)

new element 4 (intermediate) result

Limitations
@ This works well with single folds.
@ For nested folds more powerful equations are needed.

15

UNIVERSITY OF COPENHAGEN Department of Computer Science

Automatic Incrementalisation of Report Functions

Basic idea: unfolding folds

fold f e (x#xs) =1 X (fold f e xs)

old (intermediate) result

new element

Limitations

@ This works well with single folds.
@ For nested folds more powerful equations are needed.

» commutative operations
» multisets instead of lists

15

UNIVERSITY OF COPENHAGEN

QOutline

© Conclusions

16

UNIVERSITY OF COPENHAGEN Department of Computer Science

Conclusions
The Last Slide

What do we have?

@ Simple yet powerful data model for ERP

@ Purely functional language for extracting & aggregating complex
information

@ Highly customisable & flexible

@ Incrementalisation of report functions

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Conclusions
The Last Slide

What do we have?

@ Simple yet powerful data model for ERP

@ Purely functional language for extracting & aggregating complex
information

@ Highly customisable & flexible

@ Incrementalisation of report functions

What are we planning?

@ More powerful incrementalisation transformations

@ Possibly restricting the language further

@ A better cost model

17

	Enterprise Resource Planning Systems
	Reports & Report Functions
	Conclusions

