
Compositional Data Types
A Report from the Field

Patrick Bahr
paba@diku.dk

University of Copenhagen, Department of Computer Science

Fourth DIKU-IST Joint Workshop on
Foundations of Software,

January 10-14, 2011

joint work with Tom Hvitved and Morten Ib Nielsen

Outline

1 Compositional Data Types

2 A Toolbox for Prototyping Programming Languages

3 Conclusions

2

Outline

1 Compositional Data Types

2 A Toolbox for Prototyping Programming Languages

3 Conclusions

3

The Setting
Domain-Specific Languages in POETS

We have a number of domain-specific languages.

Each pair shares some common sublanguage.

All of them share a common language of values.

We have the same situation on the type level!

How do we implement this system without duplicating code!

4

How Can we Compose Data Structures?
. . . and Functions Defined on Them?

This is easy on non-recursive data structures.

Composition by sum or product.

For recursively defined data structures this is different.

Example (A simple expression language)

data Expr = Val Int

| Add Expr Expr

eval :: Expr -> Int

eval (Val x) = x

eval (Add x y) = eval x + eval y

5

Compositional Data Types

Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add
new cases to the data type and new functions over the data
type, without recompiling existing code, and while retaining
static type safety.

“Data Types à la Carte” by Wouter Swierstra (2008)

A solution to the expression problem: Decoupling!

data types: decoupling of signature and term construction
I isolated signature (expression data type without recursion)
I explicit recursive construction of terms over arbitrary signatures

functions: decoupling of pattern matching and recursion
I functions are defined on signatures
I recursion is added separately

signatures (+ functions defined on them) can be composed
6

Decoupling Signature and Term Construction

The data type contains both the signature of operations and the inductive
definition of terms over them through recursion.

data Expr = Val Int

| Add Expr Expr

Remove recursion from the definition

data Sig e = Val Int

| Add e e

Recursion can be added separately

data Term f = Term (f (Term f))

Term Sig ∼= Expr

7

Combining Signatures

In order to extend expressions, we need a way to combine signatures.

Direct sum of signatures

Type constructor :+: of kind (* -> *) -> (* -> *) -> (* -> *):

data (f :+: g) e = Inl (f e) | Inr (g e)

Example

data Sig e = Val Int

| Add e e

data Val e = Val Int

data Add e = Add e e

Val :+: Add ∼= Sig

8

Separating Function Definition from Recursion

Compositional function definitions as algebras

In the same way as we defined the types:

define functions on the signatures (non-recursive): f a -> a

apply the resulting function recursively on the term: Term f -> a

combine functions using type classes

Algebras

class Eval f where

evalAlg :: f Int -> Int

Applying a function recursively to a term

algHom :: Functor f => (f a -> a) -> Term f -> a

algHom f (Term t) = f (fmap (algHom f) t)

9

Defining Algebras
On the singleton signatures

instance Eval Val where

evalAlg (Val x) = x

instance Eval Add where

evalAlg (Add x y) = x + y

On sums of signatures

instance (Eval f , Eval g)

=> Eval (f :+: g) where

evalAlg (Inl x) = evalAlg x

evalAlg (Inr y) = evalAlg y

On sums of signatures

eval :: (Functor f, Eval f) => Term f -> Int

eval = algHom evalAlg

10

Outline

1 Compositional Data Types

2 A Toolbox for Prototyping Programming Languages

3 Conclusions

11

Using Compositional Data Types

Using Compositional Data Types in POETS

Coarse-grained partition into only a few atomic signatures
I one for base values
I one for shared operations
I operations for each individual language
I syntactic sugar for each individual language

similar on the type language

Now that we have this structure in place, can we make further use of it?

12

Products on Signatures
Annotate Syntax Trees, e.g. with source positions

annotations are not part of the actual language

annotations should be added separately (to the signature)

functions that are agnostic to annotations should not care about them

Constant Products on Signatures

Type constructor :*: of kind (* -> *) -> * -> (* -> *):

data (f :*: a) e = f e :*: a

Example

data Sig ’ e = Val Int SrcPos

| Add e e SrcPos

Sig’ ∼= Sig :*: SrcPos

13

Dealing with Annotations
Strip away annotations

stripP :: (s :*: p) a -> s a

stripP (v :*: _) = v

stripPTerm :: (Functor s)

=> Term (s:*:p) -> Term s

stripPTerm = algHom (Term . stripP)

Ignoring annotations

liftPTerm :: (Functor s)

=> (Term s -> t) -> (Term (s :*: p) -> t)

liftPTerm f = f . stripPTerm

This can be extended to annotations on signature built with sums.
14

Limitations

Propagation of annotations

How can we lift a function Term f -> Term g

to a function Term (f :*: p) -> Term (g :*: p)?

Even if function is given as algebra a :: f (Term g) -> Term g

this does not work:
a . fmap stripP is of type f (Term (g :*: p)) -> Term g

We could derive an algebra from that, but then result has uniformly
the same annotation.

Composition of algebras

Given two algebras a :: f (Term g) -> Term g and b :: g B -> B,
how do we compose them to an algebra f B -> B?

Straightforward composition homAlg b . a is of type
f (Term g) -> A

15

An Example

Example (Syntactic Sugar)

type Exp = Core :+: Sugar

desugarAlg :: Exp (Term Core) -> Term Core

desugar :: Term Exp -> Term Core

desugar = algHom desugarAlg

16

Specialising Algebras
Problem

desugarAlg :: Exp (Term Core) -> Term Core

Algebras are too general!

We have to employ the fact that the domain consists of terms!

We need something more polymorphic!

First attempt: Signature Transformation

desugarAlg :: Exp a -> Core a

This is often too restrictive!

Each “layer” of a term over Exp has to be transformed into exactly
one “layer” of a term over Core.

I x > y y < x 4
I x − y x + (−y) 8

17

Contexts and Term Homomorphisms
Generalise terms to contexts

data Context f a = Term (f (Term f))

| Hole a

From signature transformations to term homomorphisms

desugarAlg :: Exp a -> Context Core a

Term homomorphisms

type TermHom f g = forall a . f a -> Context g a

Term homomorphisms (a.k.a. tree homomorphisms) are the term
algebras that are defined uniformly. Hence, the polymorphism!

Applying term homomorphisms

termHom :: (Functor f, Functor g)

=> TermHom f g -> Term f -> Term g

18

Propagating Annotations
Propagating Annotations

constP :: (Functor f)

=> p -> Context f a -> Context (f :*: p) a

constP p (Hole a) = Hole a

constP p (Term t) = Term (fmap (constP p) t :*: p)

liftPTermAlg :: (Functor g)

=> TermHom f g -> TermHom (f :*: p) (g :*: p)

liftPTermAlg f (v :*: p) = constP p (f v)

composing term homomorphisms (and algebras)

compTermHom :: (Functor g, Functor h) =>

TermHom g h -> TermHom f g -> TermHom f h

compAlg :: (Functor g) =>

(g a -> a) -> TermHom f g -> (f a -> a)

19

Terms as Contexts without Holes

Contexts with GADTs

data Cxt :: * -> (* -> *) -> * -> * where

Term :: f (Cxt h f a) -> Cxt h f a

Hole :: a -> Cxt Hole f a

type Context = Cxt Hole

type Term f = Cxt NoHole f Nothing

data Hole

data NoHole

data Nothing

 Generalise initial algebra semantics to free algebra semantics.

 Terms & initial algebras are a special case.

20

Other Extensions

monadic algebras
I using generalised sequence :: [m a] -> m [a]

(monadic) coalgebras
I generating terms e.g. for QuickCheck

generic functions
I e.g. size, querying, unification, matching . . .

I using generalised foldl :: (a -> b -> a) -> a -> [a] -> b

generic term rewriting
I e.g. for performing program transformations

mutually recursive data types [Yakushev et al. 2009]
I by adding additional type argument to the signatures
I can be extended to rational sets of trees (by bottom-up tree automata

on the type level)

21

Performance Impact
Composable data types simplify function definitions, provide
flexibility, reduce boilerplate code and avoid code duplication!
But how does it affect runtime performance?

The setting

Three signatures:
I values: integers, Booleans, pairs
I core language operations: +, ∗, if, =, <, ∧, ¬, projections
I syntactic sugar: negation, −, >, ∨, ⇒

a number of different typical functions:
I type inference
I evaluation to normal form,
I “desugaring” (reduce syntactic sugar to the core language)
I computing free variables

We compare this to an ordinary implementation using standard data
types and recursive functions.

22

Runtime Comparison
slowdown factors compared to standard data types

function n=16 n=63 n=1290 n=111,279

desugarType 4.8 5.2 5.3 4.1
desugarType’ 4.2 4.9 5.0 2.5

typeSugar 3.2 3.7 3.7 4.6
desugarEval 15 11 11 15
desugarEval’ 13 10 9.8 8.8

evalSugar 12 9.4 7.4 18
desugarEvalPure 11 7.1 6.4 11
desugarEvalPure’ 6.5 4.4 4.0 3.8

evalSugarPure 7.3 7.0 4.0 3.6
freeVars 1.3 1.6 1.4 1.6
desugar 0.33 0.08 1.2 ·10−3 1.5 ·10−5

monadic functions are in blue
underlined variants use composition of algebras

23

Outline

1 Compositional Data Types

2 A Toolbox for Prototyping Programming Languages

3 Conclusions

24

Applications for Compositional Data Types

Drawbacks

not as straightforward as ordinary data types

type errors are sometimes hard to decypher

memory and runtime overhead

Benefits

minimises code duplication

functions on shared structures can be shared as well

it is often more convenient to define functions

more flexible (algebras can be easily modified / lifted)

only little runtime overhead

sometimes asymptotically faster that ordinary recursive functions on
recursive data types

25

References

Wouter Swierstra.
Data types à la carte.
Journal of Functional Programming, 2008.

A. R. Yakushev, S. Holdermans, A. Löh and J. Jeuring.
Generic programming with fixed points for mutually recursive
datatypes.
Proceedings of the 14th ACM SIGPLAN international conference on
Functional programming, 2009.

26

	Compositional Data Types
	A Toolbox for Prototyping Programming Languages
	Conclusions

