

Faculty of Science

Partial Order Infinitary Term Rewriting and Böhm Trees

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

21st International Conference on Rewriting Techniques and Applications, July 11-13, 2010

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$\mathit{from}(0) \
ightarrow \ 0: \mathit{from}(1)$$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$\mathit{from}(0) \
ightarrow^2 \ 0 : 1 : \mathit{from}(2)$$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ \qquad \textit{from}(x) \rightarrow x : \textit{from}(s(x))
ight\}$$

$$from(0) \rightarrow^3 0:1:2:from(3)$$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^4 0: 1: 2: 3: from(4)$$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow {}^{5}0:1:2:3:4:from(5)$$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6)$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6) \rightarrow \ldots$$

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$\textit{from}(0) \rightarrow^6 0: 1: 2: 3: 4: 5: \textit{from}(6) \rightarrow \ \ldots$$

intuitively this converges to the infinite list 0:1:2:3:4:5:....

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6) \rightarrow \ldots$$

intuitively this converges to the infinite list 0:1:2:3:4:5:....

Infinitary term rewriting provides models that formalise the intuition above!

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$\textit{from}(0) \
ightarrow ^6 \ 0: 1: 2: 3: 4: 5: \textit{from}(6)
ightarrow \ldots$$

intuitively this converges to the infinite list 0:1:2:3:4:5:....

Infinitary term rewriting provides models that formalise the intuition above!

What is infinitary rewriting?

Term rewriting without the restriction to finite reductions.

- formalisation of the "outcome" of an infinite reduction sequence ~> Refinement of non-termination!
- allows reduction sequences of any ordinal number length
- deals with terms of possibly infinite size

The Metric Model of Infinitary Term Rewriting

Complete metric space $\mathcal{T}^\infty(\Sigma,\mathcal{V})$

- convergence is defined in terms of "usual" complete metric space on possibly infinite terms terms
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) – depth of the shallowest discrepancy of s and t

The Metric Model of Infinitary Term Rewriting

Complete metric space $\mathcal{T}^\infty(\Sigma,\mathcal{V})$

- convergence is defined in terms of "usual" complete metric space on possibly infinite terms terms
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) – depth of the shallowest discrepancy of s and t

Convergence of reductions (a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules have to (eventually) be applied at increasingly large depth

The Metric Model of Infinitary Term Rewriting

Complete metric space $\mathcal{T}^\infty(\Sigma,\mathcal{V})$

- convergence is defined in terms of "usual" complete metric space on possibly infinite terms terms
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) – depth of the shallowest discrepancy of s and t

Convergence of reductions (a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules have to (eventually) be applied at increasingly large depth
- ~> convergence of a reduction: depth at which the rewrite rules are applied tends to infinity

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

Example: Convergence of a Reduction \bigwedge

$$\mathcal{R} = \{a
ightarrow g(a)\}$$

Example: Convergence of a Reduction f f ga

$$\mathcal{R} = \{a
ightarrow g(a)\}$$

$$\mathcal{R} = \{a \rightarrow g(a)\}$$

$$\mathcal{R} = \{a
ightarrow g(a)\}$$

 $\mathcal{R} = \{a \rightarrow g(a)\}$

$$\mathcal{R} = \left\{ egin{array}{l} \mathbf{a} o \mathbf{g}(\mathbf{a}) \ h(\mathbf{x}) o h(\mathbf{g}(\mathbf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{egin{array}{l} \mathbf{a} o \mathbf{g}(\mathbf{a}) \ h(\mathbf{x}) o h(\mathbf{g}(\mathbf{x})) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} a
ightarrow g(a) \ h(x)
ightarrow h(g(x)) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ h(x) o h(\mathsf{g}(x)) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} a
ightarrow g(a) \ h(x)
ightarrow h(g(x)) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} a
ightarrow g(a) \ h(x)
ightarrow h(g(x)) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} a o g(a) \ h(x) o h(g(x)) \end{array}
ight.$$

$$\mathcal{R} = \left\{ egin{array}{c} a o g(a) \ h(x) o h(g(x)) \end{array}
ight.$$

$$\mathcal{R} = \begin{cases} a \to g(a) \\ h(x) \to h(g(x)) \end{cases}$$

$$\mathcal{R} = \left\{ egin{array}{l} \mathsf{a} o \mathsf{g}(\mathsf{a}) \ h(\mathsf{x}) o h(\mathsf{g}(\mathsf{x})) \end{array}
ight.$$

$$\mathcal{R} = \begin{cases} a \to g(a) \\ h(x) \to h(g(x)) \end{cases}$$
Example: Non-Convergence of a Reduction

$$\mathcal{R} = \begin{cases} a \to g(a) \\ h(x) \to h(g(x)) \end{cases}$$

Issues of the Metric Model

- Notion of convergence is too restrictive! (no notion of local convergence)
- Orthogonal TRSs are not infinitary confluent!

6

Issues of the Metric Model

- Notion of convergence is too restrictive! (no notion of local convergence)
- Orthogonal TRSs are not infinitary confluent!

For every $t, t_1, t_2 \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_1 \leftarrow t \twoheadrightarrow t_2$

Issues of the Metric Model

- Notion of convergence is too restrictive! (no notion of local convergence)
- Orthogonal TRSs are not infinitary confluent!

Infinitary confluence

For every $t, t_1, t_2 \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_1 \leftarrow t \twoheadrightarrow t_2$ there is a $t' \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_1 \twoheadrightarrow t' \leftarrow t_2$

$$\mathcal{R} = \{f(x) \to x \quad g(x) \to x\}$$

7

$$\mathcal{R} = \{f(x) \to x \quad g(x) \to x\}$$

7

$$\mathcal{R} = \{f(x) \to x \quad g(x) \to x\}$$

 $\mathcal{R} = \{f(x) \to x \quad g(x) \to x\}$

 $\mathcal{R} = \{f(x) \to x \quad g(x) \to x\}$

7

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^* t'$ there is a $t' \rightarrow^* s$ with s a redex.

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^* t'$ there is a $t' \rightarrow^* s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \to \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp .

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^* t'$ there is a $t' \rightarrow^* s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \to \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp .

Theorem ([Kennaway et al. 1999])

The Böhm extension \mathcal{B} of an orthogonal TRS is both infinitarily confluent and infinitarily normalising.

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^* t'$ there is a $t' \rightarrow^* s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \to \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp .

Theorem ([Kennaway et al. 1999])

The Böhm extension \mathcal{B} of an orthogonal TRS is both infinitarily confluent and infinitarily normalising.

The unique normal form of a term w.r.t. \mathcal{B} is called its Böhm tree.

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^* t'$ there is a $t' \rightarrow^* s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \to \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp .

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^* t'$ there is a $t' \rightarrow^* s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \to \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp .

Outline

Introduction

- Infinitary Term Rewriting
- The Metric Model
- Issues of the Metric Model
- Meaningless Terms and Böhm Trees

The Partial Order Model

- Formal Definition
- Properties of the Partial Order Model
- And Böhm Trees?

Conclusion

Partial Order Model of Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial Order Model of Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota o lpha} t_\iota = igsqcup_{eta < lpha} igcap_{eta \le \iota < lpha} t_\iota$$

Partial Order Model of Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_\iota = \bigsqcup_{\beta < \alpha} \prod_{\beta \le \iota < \alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- convergence: limit inferior of the contexts of the reduction

An Example

An Example

11

An Example

11

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Definition (total reduction)

A reduction is called total if all its terms are total.

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Definition (total reduction)

A reduction is called total if all its terms are total.

Theorem (total *p*-convergence = *m*-convergence)

• For every reduction S in a TRS, S: $s \xrightarrow{P} t$ is total iff S: $s \xrightarrow{m} t$.

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Definition (total reduction)

A reduction is called total if all its terms are total.

Theorem (total *p*-convergence = *m*-convergence)

- For every reduction S in a TRS, S: $s \xrightarrow{P} t$ is total iff S: $s \xrightarrow{m} t$.
- I For orthogonal TRS, s P t iff s t, provided s, t are total.

Properties of orthogonal systems			
property	metric	partial order	
compression			
finite approximation			
complete developments			
infinitary confluence			
infinitary normalisation			

Properties of orthogonal systems			
property	metric	partial order	
compression			
finite approximation			
complete developments			
infinitary confluence			
infinitary normalisation			

Compression

Every reduction can be performed in at most ω steps:

$$s \twoheadrightarrow^{\alpha} t \implies s \twoheadrightarrow^{\leq \omega} t$$

Properties of orthogonal systems			
property	metric	partial order	
compression	~	 ✓ 	
finite approximation			
complete developments			
infinitary confluence			
infinitary normalisation			

Compression

Every reduction can be performed in at most ω steps:

$$s \twoheadrightarrow^{\alpha} t \implies s \twoheadrightarrow^{\leq \omega} t$$

Properties of orthogonal systems				
property	metric	partial order		
compression	 ✓ 	 ✓ 		
finite approximation				
complete developments				
infinitary confluence				
infinitary normalisation				

Finite approximation

Every outcome can be approximated by a finite reduction arbitrary well:

$$s \twoheadrightarrow^{lpha} t \implies orall d \in \mathbb{N} \exists t' iggl\{ s \to^* t' \ t ext{ and } t' ext{ coincide up to depth } d
ight\}$$

Properties of orthogonal systems			
property	metric	partial order	
compression	 ✓ 	 ✓ 	
finite approximation	 Image: A second s	 ✓ 	
complete developments			
infinitary confluence			
infinitary normalisation			

Finite approximation

Every outcome can be approximated by a finite reduction arbitrary well:

$$s \twoheadrightarrow^{lpha} t \implies orall d \in \mathbb{N} \exists t' \begin{cases} s \to^* t' \\ t ext{ and } t' ext{ coincide up to depth } d \end{cases}$$

Properties of orthogonal systems			
property	metric	partial order	
compression	 ✓ 	 ✓ 	
finite approximation complete developments infinitary confluence infinitary normalisation	~	V	

Complete developments

reductions simulating simultaneous contraction of a set of redexes

Properties of orthogonal systems		
property	metric	partial order
compression	v	 ✓
finite approximation	v	 ✓
complete developments	×	 ✓
infinitary confluence		
infinitary normalisation		

Complete developments

reductions simulating simultaneous contraction of a set of redexes

Properties of orthogonal s	ystems	
property	metric	partial order
compression	 ✓ 	 ✓
finite approximation	 ✓ 	 ✓
complete developments	×	 ✓
infinitary confluence		
infinitary normalisation		

Infinitary confluence

Properties of orthogonal systems			
property	metric	partial order	
compression	~	 ✓ 	
finite approximation	 V 	 ✓ 	
complete developments	×	 ✓ 	
infinitary confluence	×	 ✓ 	
infinitary normalisation			

Infinitary confluence

Properties of orthogonal systems			
property	metric	partial order	
compression	 ✓ 	 ✓ 	
finite approximation	 ✓ 	 Image: A set of the set of the	
complete developments	×	 ✓ 	
infinitary confluence	×	 ✓ 	
infinitary normalisation			

Infinitary normalisation

every term has a normal form reachable by a possibly infinite reduction

Properties of orthogonal s	systems	
property	metric	partial order
compression	 	 ✓
finite approximation	v	 ✓
complete developments	×	 ✓
infinitary confluence	×	 Image: A set of the set of the
infinitary normalisation	×	 Image: A set of the set of the

Infinitary normalisation

every term has a normal form reachable by a possibly infinite reduction

Properties of orthogonal systems			
property	metric	partial order	
compression	 	 ✓ 	
finite approximation	v	 ✓ 	
complete developments	×	 ✓ 	
infinitary confluence	×	 ✓ 	
infinitary normalisation	×	 Image: A set of the set of the	

Unique normal forms

In an orthogonal TRS, every term has a unique normal form w.r.t. *p*-convergence.

And Böhm Trees?

Recall: total p-reachability = m-reachability

If $\mathcal R$ is an orthogonal TRS and s, t total terms, then

 $s \xrightarrow{p}_{\mathcal{R}} t$ iff $s \xrightarrow{m}_{\mathcal{R}} t$.

14

And Böhm Trees?

Recall: total p-reachability = m-reachability

If $\mathcal R$ is an orthogonal TRS and s, t total terms, then

$$s \xrightarrow{p}_{\mathcal{R}} t$$
 iff $s \xrightarrow{m}_{\mathcal{R}} t$.

Theorem (*p*-reachability = Böhm-reachability)

If ${\cal R}$ is an orthogonal TRS and ${\cal B}$ the Böhm extension of ${\cal R},$ then

$$s \xrightarrow{p}_{\mathcal{R}} t$$
 iff $s \xrightarrow{m}_{\mathcal{B}} t$.

And Böhm Trees?

Recall: total p-reachability = m-reachability

If $\mathcal R$ is an orthogonal TRS and s, t total terms, then

$$s \xrightarrow{p}_{\mathcal{R}} t$$
 iff $s \xrightarrow{m}_{\mathcal{R}} t$.

Theorem (*p*-reachability = Böhm-reachability)

If ${\cal R}$ is an orthogonal TRS and ${\cal B}$ the Böhm extension of ${\cal R},$ then

$$s \xrightarrow{p}_{\mathcal{R}} t$$
 iff $s \xrightarrow{m}_{\mathcal{B}} t$.

Böhm Trees

The unique normal form of a term in an orthogonal TRS w.r.t. *p*-convergence is its Böhm Tree (w.r.t. root-active terms).

What have we gained?

Benefits over the metric model

- local notion of convergence (eventual persistence of nodes)
- → more intuitive than the metric model
 - reduction sequences always converge
 - more fine-grained than the metric model
 - subsumes metric model, i.e. both models agree on total reductions
 - orthogonal systems are infinitarily confluent and normalising

What have we gained?

Benefits over the metric model

- local notion of convergence (eventual persistence of nodes)
- → more intuitive than the metric model
 - reduction sequences always converge
 - more fine-grained than the metric model
 - subsumes metric model, i.e. both models agree on total reductions
 - orthogonal systems are infinitarily confluent and normalising

Benefits over Böhm extensions

- it is simpler and more natural
- Böhm extensions contain in general infinitely many rules with infinite left-hand sides
- provides intrinsic characterisation of root-active terms

References

🔋 Salvador Lucas. Transfinite Rewriting Semantics for Term Rewriting Systems. *Rewriting Techniques and Applications*, RTA, 2001.

- 🔋 Stefan Blom Term Graph Rewriting - Syntax and Semantics. PhD Thesis, Vrije Universiteit te Amsterdam, 2001.
- Kennaway, Klop, Sleep and de Vries. On the adequacy of graph rewriting for simulating term rewriting. ACM TOPLAS, 1994.
- 📄 Paola Inverardi and Monica Nesi.

Deciding observational congruence of finite-state CCS expressions by rewriting.

Theoretical Computer Science, 1995.

References (contd.)

Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Meaningless terms in rewriting.

Journal of Functional and Logic Programming, 1999(1):1–35, February 1999.

Jeroen Ketema. *Böhm-Like Trees for Rewriting.* PhD thesis, Vrije Universiteit Amsterdam, 2006.

Stefan Blom.

An approximation based approach to infinitary lambda calculi. *Rewriting Techniques and Applications*, RTA, 2004.

