Partial Order Infinitary Term Rewriting and Böhm Trees

Patrick Bahr paba@diku.dk
University of Copenhagen
Department of Computer Science

21st International Conference on Rewriting Techniques and Applications, July 11-13, 2010

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from(0)

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from (0) $\rightarrow 0:$ from (1)

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from (0) $\rightarrow^{2} 0: 1:$ from (2)

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from (0) $\rightarrow^{3} 0: 1: 2:$ from (3)

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from (0) $\rightarrow^{4} 0: 1: 2: 3:$ from (4)

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from (0) $\rightarrow^{5} 0: 1: 2: 3: 4:$ from (5)

Infinitary Term Rewriting

Example (Infinite lists)

$$
\begin{aligned}
& \mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \text { from }(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6)
\end{aligned}
$$

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {mats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from $(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5:$ from $(6) \rightarrow \ldots$

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

from $(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5:$ from $(6) \rightarrow \ldots$
intuitively this converges to the infinite list $0: 1: 2: 3: 4: 5$

Infinitary Term Rewriting

Example (Infinite lists)

$$
\mathcal{R}_{n a t s}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x))
$$

$$
\text { from }(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6) \rightarrow \ldots
$$

intuitively this converges to the infinite list $0: 1: 2: 3: 4: 5$
Infinitary term rewriting provides models that formalise the intuition above!

Infinitary Term Rewriting

Example (Infinite lists)

$$
\begin{aligned}
& \mathcal{R}_{\text {nats }}=\{\quad \text { from }(x) \rightarrow x: \text { from }(s(x)) \\
& \text { from }(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: \text { from }(6) \rightarrow \ldots
\end{aligned}
$$

intuitively this converges to the infinite list $0: 1: 2: 3: 4: 5$
Infinitary term rewriting provides models that formalise the intuition above!

What is infinitary rewriting?

Term rewriting without the restriction to finite reductions.

- formalisation of the "outcome" of an infinite reduction sequence \rightsquigarrow Refinement of non-termination!
- allows reduction sequences of any ordinal number length
- deals with terms of possibly infinite size

The Metric Model of Infinitary Term Rewriting

Complete metric space $\mathcal{T}^{\infty}(\Sigma, \mathcal{V})$

- convergence is defined in terms of "usual" complete metric space on possibly infinite terms terms
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)$ - depth of the shallowest discrepancy of s and t

The Metric Model of Infinitary Term Rewriting

Complete metric space $\mathcal{T}^{\infty}(\Sigma, \mathcal{V})$

- convergence is defined in terms of "usual" complete metric space on possibly infinite terms terms
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)$ - depth of the shallowest discrepancy of s and t
Convergence of reductions (a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules have to (eventually) be applied at increasingly large depth

The Metric Model of Infinitary Term Rewriting

Complete metric space $\mathcal{T}^{\infty}(\Sigma, \mathcal{V})$

- convergence is defined in terms of "usual" complete metric space on possibly infinite terms terms
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$
\mathbf{d}(s, t)=2^{-\operatorname{sim}(s, t)}
$$

$\operatorname{sim}(s, t)$ - depth of the shallowest discrepancy of s and t
Convergence of reductions (a.k.a. strong convergence)

- convergence in the metric space, and
- rewrite rules have to (eventually) be applied at increasingly large depth \rightsquigarrow convergence of a reduction: depth at which the rewrite rules are applied tends to infinity

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

$\mathcal{R}=\{a \rightarrow g(a)\}$

Example: Convergence of a Reduction

Example: Convergence of a Reduction

$$
\mathcal{R}=\{a \rightarrow g(a)\}
$$

Example: Convergence of a Reduction

$f(a) \rightarrow \underset{\mathcal{R}}{\omega} f\left(g^{\omega}\right)$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{array}{c}
a \rightarrow g(a) \\
h(x) \rightarrow h(g(x))
\end{array}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Example: Non-Convergence of a Reduction

$$
\mathcal{R}=\left\{\begin{aligned}
a & \rightarrow g(a) \\
h(x) & \rightarrow h(g(x))
\end{aligned}\right.
$$

Issues of the Metric Model

- Notion of convergence is too restrictive!
(no notion of local convergence)
- Orthogonal TRSs are not infinitary confluent!

Issues of the Metric Model

- Notion of convergence is too restrictive!
(no notion of local convergence)
- Orthogonal TRSs are not infinitary confluent!

Infinitary confluence

For every $t, t_{1}, t_{2} \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_{1} \leftrightarrow t \rightarrow t_{2}$

Issues of the Metric Model

- Notion of convergence is too restrictive!
(no notion of local convergence)
- Orthogonal TRSs are not infinitary confluent!

Infinitary confluence

For every $t, t_{1}, t_{2} \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_{1} \leftrightarrow t \rightarrow t_{2}$ there is a $t^{\prime} \in \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$ with $t_{1} \rightarrow t^{\prime} \leftrightarrow t_{2}$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Infinitary Confluence

$$
\mathcal{R}=\{f(x) \rightarrow x \quad g(x) \rightarrow x\}
$$

Meaningless Terms [Kennaway et al. 1999]

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)
A term t is root-active if for each $t \rightarrow^{*} t^{\prime}$ there is a $t^{\prime} \rightarrow^{*} s$ with s a redex.

Meaningless Terms [Kennaway et al. 1999]

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^{*} t^{\prime}$ there is a $t^{\prime} \rightarrow^{*} s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \rightarrow \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp.

Meaningless Terms [Kennaway et al. 1999]

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^{*} t^{\prime}$ there is a $t^{\prime} \rightarrow^{*} s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \rightarrow \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp.

Theorem ([Kennaway et al. 1999])

The Böhm extension \mathcal{B} of an orthogonal TRS is both infinitarily confluent and infinitarily normalising.

Meaningless Terms [Kennaway et al. 1999]

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^{*} t^{\prime}$ there is a $t^{\prime} \rightarrow^{*} s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \rightarrow \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp.

Theorem ([Kennaway et al. 1999])

The Böhm extension \mathcal{B} of an orthogonal TRS is both infinitarily confluent and infinitarily normalising.
The unique normal form of a term w.r.t. \mathcal{B} is called its Böhm tree.

Meaningless Terms [Kennaway et al. 1999]

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^{*} t^{\prime}$ there is a $t^{\prime} \rightarrow^{*} s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a TRS \mathcal{R} extends \mathcal{R} by a fresh symbol \perp and additional rules $t \rightarrow \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp.

Example (infinitary confluence)

$$
f(g(f(g(\ldots)))) \longrightarrow g^{\omega}
$$

$$
\mathcal{R}=\left\{\begin{array}{l}
f(x) \rightarrow x \\
g(x) \rightarrow x
\end{array}\right.
$$

Meaningless Terms [Kennaway et al. 1999]

Infinitary confluence can be obtained by rewriting modulo meaningless terms:

Definition (root-active terms)

A term t is root-active if for each $t \rightarrow^{*} t^{\prime}$ there is a $t^{\prime} \rightarrow^{*} s$ with s a redex.

Definition (Böhm extension)

The Böhm extension \mathcal{B} of a $\operatorname{TRS} \mathcal{R}$ extends \mathcal{R} by a fresh symbol \perp and additional rules $t \rightarrow \perp$, where $t \neq \perp$ is a root-active term with some of its root-active subterms substituted by \perp.

Example (infinitary confluence)

$$
\mathcal{R}=\left\{\begin{array}{l}
f(x) \rightarrow x \\
g(x) \rightarrow x
\end{array}\right.
$$

Outline

(1) Introduction

- Infinitary Term Rewriting
- The Metric Model
- Issues of the Metric Model
- Meaningless Terms and Böhm Trees
(2) The Partial Order Model
- Formal Definition
- Properties of the Partial Order Model
- And Böhm Trees?
(3) Conclusion

Partial Order Model of Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice ($=$ cpo + glbs of non-empty sets)

Partial Order Model of Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice ($=$ cpo + glbs of non-empty sets)

Convergence

- formalised by the limit inferior:

$$
\liminf _{\iota \rightarrow \alpha} t_{\iota}=\bigsqcup_{\beta<\alpha} \prod_{\beta \leq \iota<\alpha} t_{\iota}
$$

Partial Order Model of Infinitary Term Rewriting

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice ($=$ cpo + glbs of non-empty sets)

Convergence

- formalised by the limit inferior:

$$
\liminf _{\iota \rightarrow \alpha} t_{\iota}=\bigsqcup_{\beta<\alpha} \prod_{\beta \leq \iota<\alpha} t_{\iota}
$$

- intuition: eventual persistence of nodes of the terms
- convergence: limit inferior of the contexts of the reduction

An Example

An Example

An Example

Properties of the Partial Order Model

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Properties of the Partial Order Model

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Definition (total reduction)

A reduction is called total if all its terms are total.

Properties of the Partial Order Model

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Definition (total reduction)

A reduction is called total if all its terms are total.
Theorem (total p-convergence $=m$-convergence)
(1) For every reduction S in a $T R S, S: s \xrightarrow{p} t$ is total iff $S: s \xrightarrow{m} t$.

Properties of the Partial Order Model

Benefits

- reduction sequences always converge
- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model, i.e. both models agree on total reductions

Definition (total reduction)

A reduction is called total if all its terms are total.

Theorem (total p-convergence $=m$-convergence)

(1) For every reduction S in a TRS, $S: s_{\xrightarrow{p}} t$ is total iff $S: s \xrightarrow{m} t$.
(2) For orthogonal TRS, s $\xrightarrow[\rightarrow]{p_{\rightarrow}} t$ iff $s \xrightarrow{m} t$, provided s, t are total.

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric partial order	
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Compression
Every reduction can be performed in at most ω steps:

$$
s \rightarrow^{\alpha} t \quad \Longrightarrow \quad s \rightarrow \leq \omega t
$$

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric partial order	
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Compression
Every reduction can be performed in at most ω steps:

$$
s \rightarrow^{\alpha} t \quad \Longrightarrow \quad s \rightarrow \leq \omega t
$$

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Finite approximation

Every outcome can be approximated by a finite reduction arbitrary well:

$$
s \rightarrow^{\alpha} t \quad \Longrightarrow \quad \forall d \in \mathbb{N} \exists t^{\prime}\left\{\begin{array}{l}
s \rightarrow^{*} t^{\prime} \\
t \text { and } t^{\prime} \text { coincide up to depth } d
\end{array}\right.
$$

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Finite approximation

Every outcome can be approximated by a finite reduction arbitrary well:

$$
s \rightarrow^{\alpha} t \quad \Longrightarrow \quad \forall d \in \mathbb{N} \exists t^{\prime}\left\{\begin{array}{l}
s \rightarrow^{*} t^{\prime} \\
t \text { and } t^{\prime} \text { coincide up to depth } d
\end{array}\right.
$$

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Complete developments

 reductions simulating simultaneous contraction of a set of redexes
Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression	\checkmark	\checkmark
finite approximation	\checkmark	\checkmark
complete developments	\times	\checkmark
infinitary confluence		
infinitary normalisation		

Complete developments reductions simulating simultaneous contraction of a set of redexes

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression	\checkmark	\checkmark
finite approximation	\checkmark	\checkmark
complete developments	x	\checkmark
infinitary confluence		
infinitary normalisation		

Infinitary confluence

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression	\checkmark	
finite approximation	\checkmark	
complete developments	x	
infinitary confluence	x	
infinitary normalisation		

Infinitary confluence

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression	\checkmark	\checkmark
finite approximation	\checkmark	\checkmark
complete developments	x	\checkmark
infinitary confluence	x	\checkmark
infinitary normalisation		

Infinitary normalisation

every term has a normal form reachable by a possibly infinite reduction

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression	\checkmark	\checkmark
finite approximation	\checkmark	\checkmark
complete developments	x	\checkmark
infinitary confluence	x	\checkmark
infinitary normalisation	X	\checkmark

Infinitary normalisation

every term has a normal form reachable by a possibly infinite reduction

Partial Order Model vs. Metric Model

Properties of orthogonal systems

property	metric	partial order
compression		
finite approximation	\boxed{x}	
complete developments	X	
infinitary confluence	X	
infinitary normalisation	X	

Unique normal forms

In an orthogonal TRS, every term has a unique normal form w.r.t. p-convergence.

And Böhm Trees?

Recall: total p-reachability $=m$-reachability
If \mathcal{R} is an orthogonal TRS and s, t total terms, then

$$
s \stackrel{p}{\rightarrow}_{\mathcal{R}} t \quad \text { iff } \quad s \xrightarrow{m}_{\mathcal{R}} t .
$$

And Böhm Trees?

Recall: total p-reachability $=m$-reachability
If \mathcal{R} is an orthogonal TRS and s, t total terms, then

$$
s{\xrightarrow{p_{\rightarrow}} \mathcal{R}} t \quad \text { iff } \quad s \xrightarrow{m}_{\mathcal{R}} t .
$$

Theorem (p-reachability = Böhm-reachability)
If \mathcal{R} is an orthogonal TRS and \mathcal{B} the Böhm extension of \mathcal{R}, then

$$
s \xrightarrow{p}_{\mathcal{R}} t \quad \text { iff } \quad s \xrightarrow{m}_{\mathcal{B}} t .
$$

And Böhm Trees?

Recall: total p-reachability $=m$-reachability
If \mathcal{R} is an orthogonal TRS and s, t total terms, then

$$
s \xrightarrow{p_{\rightarrow}} \mathcal{R} t \quad \text { iff } \quad s \xrightarrow{m}_{\mathcal{R}} t
$$

Theorem (p-reachability = Böhm-reachability)
If \mathcal{R} is an orthogonal TRS and \mathcal{B} the Böhm extension of \mathcal{R}, then

$$
s \xrightarrow{p}_{\mathcal{R}} t \quad \text { iff } \quad s \xrightarrow{m}_{\mathcal{B}} t .
$$

Böhm Trees

The unique normal form of a term in an orthogonal TRS w.r.t. p-convergence is its Böhm Tree (w.r.t. root-active terms).

What have we gained?

Benefits over the metric model

- local notion of convergence (eventual persistence of nodes)
\rightsquigarrow more intuitive than the metric model
- reduction sequences always converge
- more fine-grained than the metric model
- subsumes metric model, i.e. both models agree on total reductions
- orthogonal systems are infinitarily confluent and normalising

What have we gained?

Benefits over the metric model

- local notion of convergence (eventual persistence of nodes) \rightsquigarrow more intuitive than the metric model
- reduction sequences always converge
- more fine-grained than the metric model
- subsumes metric model, i.e. both models agree on total reductions
- orthogonal systems are infinitarily confluent and normalising

Benefits over Böhm extensions

- it is simpler and more natural
- Böhm extensions contain in general infinitely many rules with infinite left-hand sides
- provides intrinsic characterisation of root-active terms

References

國 Salvador Lucas．
Transfinite Rewriting Semantics for Term Rewriting Systems．
Rewriting Techniques and Applications，RTA， 2001.
國 Stefan Blom
Term Graph Rewriting－Syntax and Semantics．
PhD Thesis，Vrije Universiteit te Amsterdam， 2001.
Kennaway，Klop，Sleep and de Vries．
On the adequacy of graph rewriting for simulating term rewriting． ACM TOPLAS， 1994.

國 Paola Inverardi and Monica Nesi．
Deciding observational congruence of finite－state CCS expressions by rewriting．
Theoretical Computer Science， 1995.

References (contd.)

围 Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries.
Meaningless terms in rewriting.
Journal of Functional and Logic Programming, 1999(1):1-35, February 1999.

國 Jeroen Ketema.
Böhm-Like Trees for Rewriting.
PhD thesis, Vrije Universiteit Amsterdam, 2006.
Stefan Blom.
An approximation based approach to infinitary lambda calculi. Rewriting Techniques and Applications, RTA, 2004.

