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In�nitary Term Rewriting

Example (In�nite lists)

Rnats =
{

from(x)→ x : from(s(x))

from(0)

intuitively this converges to the in�nite list 0 : 1 : 2 : 3 : 4 : 5 : . . . .

In�nitary term rewriting provides models that formalise the intuition above!

What is in�nitary rewriting?

Term rewriting without the restriction to �nite reductions.

formalisation of the �outcome� of an in�nite reduction sequence
 Re�nement of non-termination!

allows reduction sequences of any ordinal number length

deals with terms of possibly in�nite size

2
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The Metric Model of In�nitary Term Rewriting

Complete metric space T ∞(Σ,V)

convergence is de�ned in terms of �usual� complete metric space on
possibly in�nite terms terms

metric distance between terms is inversely proportional to the
shallowest depth at which they di�er:

d(s, t) = 2−sim(s,t)

sim(s, t) � depth of the shallowest discrepancy of s and t

Convergence of reductions (a.k.a. strong convergence)

convergence in the metric space, and

rewrite rules have to (eventually) be applied at increasingly large depth

 convergence of a reduction: depth at which the rewrite rules are
applied tends to in�nity
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Example: Convergence of a Reduction

R = {a→ g(a)}

f

a
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Example: Non-Convergence of a Reduction

R =

{
a→ g(a)

h(x)→ h(g(x))

f

a h
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a h
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. . .
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Issues of the Metric Model

Notion of convergence is too restrictive!
(no notion of local convergence)

Orthogonal TRSs are not in�nitary con�uent!

In�nitary con�uence

t

t1 t2

t ′

For every t, t1, t2 ∈ T ∞(Σ,V)
with t1 � t � t2

there is a t ′ ∈ T ∞(Σ,V)
with t1 � t ′ � t2
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In�nitary Con�uence

R = {f (x)→ x g(x)→ x}

f

g

f

g

f

g

g

f

g

f

g

f

f

f

x ← f (x)

x ← f (x)

x ← f (x)

g(x)→ x

g(x)→ x

g(x)→ x

gω f ω
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Meaningless Terms [Kennaway et al. 1999]
In�nitary con�uence can be obtained by rewriting modulo meaningless
terms:

De�nition (root-active terms)

A term t is root-active if for each t →∗ t ′ there is a t ′ →∗ s with s a redex.

De�nition (Böhm extension)

The Böhm extension B of a TRS R extends R by a fresh symbol ⊥ and
additional rules t → ⊥, where t 6= ⊥ is a root-active term with some of its
root-active subterms substituted by ⊥.

Theorem ([Kennaway et al. 1999])

The Böhm extension B of an orthogonal TRS is both in�nitarily con�uent

and in�nitarily normalising.

The unique normal form of a term w.r.t. B is called its Böhm tree.

8
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Partial Order Model of In�nitary Term Rewriting

Partial order on terms

partial terms: terms with additional constant ⊥ (read as �unde�ned�)

partial order ≤⊥ reads as: �is less de�ned than�

≤⊥ is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

formalised by the limit inferior:

lim inf
ι→α

tι =
⊔
β<α

l

β≤ι<α
tι

intuition: eventual persistence of nodes of the terms

convergence: limit inferior of the contexts of the reduction
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Properties of the Partial Order Model

Bene�ts

reduction sequences always converge

more �ne-grained than the metric model

more intuitive than the metric model

subsumes metric model, i.e. both models agree on total reductions

De�nition (total reduction)

A reduction is called total if all its terms are total.

Theorem (total p-convergence = m-convergence)

1 For every reduction S in a TRS, S : s �p t is total i� S : s �m t.

2 For orthogonal TRS, s �p t i� s �m t, provided s, t are total.

12



Properties of the Partial Order Model

Bene�ts

reduction sequences always converge

more �ne-grained than the metric model

more intuitive than the metric model

subsumes metric model, i.e. both models agree on total reductions

De�nition (total reduction)

A reduction is called total if all its terms are total.

Theorem (total p-convergence = m-convergence)

1 For every reduction S in a TRS, S : s �p t is total i� S : s �m t.

2 For orthogonal TRS, s �p t i� s �m t, provided s, t are total.

12



Properties of the Partial Order Model

Bene�ts

reduction sequences always converge

more �ne-grained than the metric model

more intuitive than the metric model

subsumes metric model, i.e. both models agree on total reductions

De�nition (total reduction)

A reduction is called total if all its terms are total.

Theorem (total p-convergence = m-convergence)

1 For every reduction S in a TRS, S : s �p t is total i� S : s �m t.

2 For orthogonal TRS, s �p t i� s �m t, provided s, t are total.

12



Properties of the Partial Order Model

Bene�ts

reduction sequences always converge

more �ne-grained than the metric model

more intuitive than the metric model

subsumes metric model, i.e. both models agree on total reductions

De�nition (total reduction)

A reduction is called total if all its terms are total.

Theorem (total p-convergence = m-convergence)

1 For every reduction S in a TRS, S : s �p t is total i� S : s �m t.

2 For orthogonal TRS, s �p t i� s �m t, provided s, t are total.

12



Partial Order Model vs. Metric Model

Properties of orthogonal systems

property metric partial order

compression

4 4

�nite approximation

4 4

complete developments

8 4

in�nitary con�uence

8 4

in�nitary normalisation

8 4
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Partial Order Model vs. Metric Model

Properties of orthogonal systems

property metric partial order

compression 4 4

�nite approximation 4 4

complete developments 8 4

in�nitary con�uence 8 4

in�nitary normalisation 8 4

Unique normal forms

In an orthogonal TRS, every term has a unique normal form w.r.t.
p-convergence.
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And Böhm Trees?

Recall: total p-reachability = m-reachability

If R is an orthogonal TRS and s, t total terms, then

s �p R t i� s �m R t.

Theorem (p-reachability = Böhm-reachability)

If R is an orthogonal TRS and B the Böhm extension of R, then

s �p R t i� s �m B t.

Böhm Trees

The unique normal form of a term in an orthogonal TRS w.r.t.
p-convergence is its Böhm Tree (w.r.t. root-active terms).
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What have we gained?

Bene�ts over the metric model

local notion of convergence (eventual persistence of nodes)

 more intuitive than the metric model

reduction sequences always converge

more �ne-grained than the metric model

subsumes metric model, i.e. both models agree on total reductions

orthogonal systems are in�nitarily con�uent and normalising

Bene�ts over Böhm extensions

it is simpler and more natural

Böhm extensions contain in general in�nitely many rules with in�nite
left-hand sides

provides intrinsic characterisation of root-active terms
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