

Faculty of Science

Abstract Models of Transfinite Reductions

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

21st International Conference on Rewriting Techniques and Applications, July 11-13, 2010

Making Things Abstract

2

- abstract axiomatic model of transfinite reductions
 - abstract objects: no commitment to terms or graphs etc.
 - abstract convergence: no commitment to the notion of convergence

Making Things Abstract

Goal

- abstract axiomatic model of transfinite reductions
 - abstract objects: no commitment to terms or graphs etc.
 - abstract convergence: no commitment to the notion of convergence
- less abstract instantiations of the axiomatic model, choosing between different notions of convergence
 - convergence based on a metric space or on a partial order
 - weak convergence and strong convergence

2

Making Things Abstract

- abstract axiomatic model of transfinite reductions
 - abstract objects: no commitment to terms or graphs etc.
 - abstract convergence: no commitment to the notion of convergence
- less abstract instantiations of the axiomatic model, choosing between different notions of convergence
 - convergence based on a metric space or on a partial order
 - weak convergence and strong convergence

Why bother?

- framework for systematic study of infinitary rewriting
- to apply infinitary rewriting in other settings like graphs
- to study the interrelation of fundamental properties (SN $^{\infty}$, CR $^{\infty}$ etc.)

Abstract Reduction System

Definition (abstract reduction system)

An abstract reduction system (ARS) A is a quadruple (A, Φ, src, tgt) with

- A a set of objects,
- Φ a set of reduction steps, and
- src: $\Phi \rightarrow A$ and tgt: $\Phi \rightarrow A$.

Notation: $\varphi: a \to_{\mathcal{A}} b$ whenever $\operatorname{src}(\varphi) = a$ and $\operatorname{tgt}(\varphi) = b$.

3

Abstract Reduction System

Definition (abstract reduction system)

An abstract reduction system (ARS) A is a quadruple (A, Φ, src, tgt) with

- A a set of objects,
- Φ a set of reduction steps, and
- src: $\Phi \rightarrow A$ and tgt: $\Phi \rightarrow A$.

Notation: $\varphi: a \rightarrow_{\mathcal{A}} b$ whenever $\operatorname{src}(\varphi) = a$ and $\operatorname{tgt}(\varphi) = b$.

Example (Term Rewriting Systems)

The ARS induced by a TRS $\mathcal{R} = (\Sigma, R)$, denoted $\mathcal{A}_{\mathcal{R}}$, is given by

 $tgt(\varphi)$

•
$$A = \mathcal{T}^{\infty}(\Sigma, \mathcal{V})$$

• $\Phi = \{(s, \pi, \rho, t) \mid s \to_{\pi, \rho} t\},$
• for each $\varphi = (s, \pi, \rho, t) \in \Phi$ define $\begin{cases} \operatorname{src}(\varphi) = s \\ f \in \mathcal{V}(\varphi) = t \end{cases}$

Definition (transfinite reduction)

A transfinite reduction in an ARS \mathcal{R} is a transfinite sequence $S = (\varphi_{\iota})_{\iota < \alpha}$ of reduction steps in \mathcal{A} if consecutive steps are compatible, i.e. there is a transfinite sequence $(a_{\iota})_{\iota < \widehat{\alpha}}$ s.t. $\varphi_{\iota} : a_{\iota} \to a_{\iota+1}$.

Definition (transfinite reduction)

A transfinite reduction in an ARS \mathcal{R} is a transfinite sequence $S = (\varphi_{\iota})_{\iota < \alpha}$ of reduction steps in \mathcal{A} if consecutive steps are compatible, i.e. there is a transfinite sequence $(a_{\iota})_{\iota < \widehat{\alpha}}$ s.t. $\varphi_{\iota} : a_{\iota} \to a_{\iota+1}$.

This definition of transfinite reductions is only meaningful for finite reductions.

Definition (transfinite reduction)

A transfinite reduction in an ARS \mathcal{R} is a transfinite sequence $S = (\varphi_{\iota})_{\iota < \alpha}$ of reduction steps in \mathcal{A} if consecutive steps are compatible, i.e. there is a transfinite sequence $(a_{\iota})_{\iota < \widehat{\alpha}}$ s.t. $\varphi_{\iota} : a_{\iota} \to a_{\iota+1}$.

This definition of transfinite reductions is only meaningful for finite reductions.

Example

Consider
$$\mathcal{R} = \{a \rightarrow f(a), b \rightarrow g(b)\}$$
, and the reduction

$$a
ightarrow f(a)
ightarrow f(f(a))
ightarrow \ \ldots \ b
ightarrow g(b)
ightarrow g(g(b))
ightarrow \ \ldots$$

Definition (transfinite reduction)

A transfinite reduction in an ARS \mathcal{R} is a transfinite sequence $S = (\varphi_{\iota})_{\iota < \alpha}$ of reduction steps in \mathcal{A} if consecutive steps are compatible, i.e. there is a transfinite sequence $(a_{\iota})_{\iota < \widehat{\alpha}}$ s.t. $\varphi_{\iota} : a_{\iota} \to a_{\iota+1}$.

This definition of transfinite reductions is only meaningful for finite reductions.

Example

Consider $\mathcal{R} = \{a
ightarrow f(a), \quad b
ightarrow g(b)\}$, and the reduction

please insert continuity here! -

Definition (transfinite reduction)

A transfinite reduction in an ARS \mathcal{R} is a transfinite sequence $S = (\varphi_{\iota})_{\iota < \alpha}$ of reduction steps in \mathcal{A} if consecutive steps are compatible, i.e. there is a transfinite sequence $(a_{\iota})_{\iota < \widehat{\alpha}}$ s.t. $\varphi_{\iota} : a_{\iota} \to a_{\iota+1}$.

This definition of transfinite reductions is only meaningful for finite reductions.

Example

Consider $\mathcal{R} = \{a \to f(a), b \to g(b)\}$, and the reduction $a \to f(a) \to f(f(a)) \to \dots b \to g(b) \to g(g(b)) \to \dots$ please insert continuity here! and convergence here!

Definition (transfinite abstract reduction system)

A transfinite abstract reduction system (TARS) \mathcal{T} is an ARS $\mathcal{A} = (A, \Phi, \text{src}, \text{tgt})$ together with a notion of convergence conv.

5

Definition (transfinite abstract reduction system)

A transfinite abstract reduction system (TARS) \mathcal{T} is an ARS $\mathcal{A} = (A, \Phi, \text{src}, \text{tgt})$ together with a notion of convergence conv.

Axioms of convergence - respect my authoritah!

A notion of convergence is a partial function conv: $\text{Red}(\mathcal{A}) \rightarrow \mathcal{A}$, which satisfies the following two axioms:

$$\mathsf{conv}(\langle \varphi \rangle) = \mathsf{tgt}(\varphi) \quad \text{for all } \varphi \in \Phi \qquad \qquad (\mathsf{step})$$

Definition (transfinite abstract reduction system)

A transfinite abstract reduction system (TARS) \mathcal{T} is an ARS $\mathcal{A} = (A, \Phi, \text{src}, \text{tgt})$ together with a notion of convergence conv.

Axioms of convergence - respect my authoritah!

A notion of convergence is a partial function conv: $\text{Red}(\mathcal{A}) \rightarrow \mathcal{A}$, which satisfies the following two axioms:

$$\operatorname{conv}(\langle \varphi \rangle) = \operatorname{tgt}(\varphi) \quad \text{for all } \varphi \in \Phi \qquad \qquad (\operatorname{step})$$

 $\operatorname{conv}(S) = a \operatorname{and} \operatorname{conv}(T) = b \iff \operatorname{conv}(S \cdot T) = b$ (concatenation)

for all $a, b \in A$, $S, T \in \text{Red}(A)$ with T starting in a.

Definition (transfinite abstract reduction system)

A transfinite abstract reduction system (TARS) \mathcal{T} is an ARS $\mathcal{A} = (A, \Phi, \text{src}, \text{tgt})$ together with a notion of convergence conv.

Axioms of convergence - respect my authoritah!

A notion of convergence is a partial function conv: $\text{Red}(\mathcal{A}) \rightarrow \mathcal{A}$, which satisfies the following two axioms:

$$\mathsf{conv}(\langle \varphi \rangle) = \mathsf{tgt}(\varphi) \quad \text{for all } \varphi \in \Phi \qquad (\mathsf{step})$$

 $\operatorname{conv}(S) = a \implies \operatorname{conv}(S \cdot T) = \operatorname{conv}(T)$ (composition) $\operatorname{conv}(S \cdot T)$ defined $\implies \operatorname{conv}(S) = a$ (continuity)

for all $a, b \in A$, $S, T \in \text{Red}(A)$ with T starting in a.

Continuity and Convergence of Reductions

Definition (continuity/convergence of reductions)

Let $\mathcal{T} = (A, \Phi, \operatorname{src}, \operatorname{tgt}, \operatorname{conv})$ be a TARS and $S \in \operatorname{Red}(\mathcal{T})$ a non-empty reduction starting in $a \in A$.

- convergence: $S: a \rightarrow T b$ iff conv(S) = b.
- ② continuity: S: $a \to T$... iff for every $S_1, S_2 \in \text{Red}(T)$ with S = S₁ ⋅ S₂, S₁ converges to the object S₂ is starting in.

6

Continuity and Convergence of Reductions

Definition (continuity/convergence of reductions)

Let $\mathcal{T} = (A, \Phi, \operatorname{src}, \operatorname{tgt}, \operatorname{conv})$ be a TARS and $S \in \operatorname{Red}(\mathcal{T})$ a non-empty reduction starting in $a \in A$.

- convergence: $S: a \twoheadrightarrow_{\mathcal{T}} b$ iff $\operatorname{conv}(S) = b$.
- **2** continuity: $S: a \to T$... iff for every $S_1, S_2 \in \text{Red}(T)$ with $S = S_1 \cdot S_2$, S_1 converges to the object S_2 is starting in.

Remark (continuity)

$$\operatorname{\mathsf{conv}}(S \cdot T) \operatorname{defined} \implies \operatorname{\mathsf{conv}}(S) = a \qquad \qquad (\operatorname{\mathsf{continuity}})$$

Continuity and Convergence of Reductions

Definition (continuity/convergence of reductions)

Let $\mathcal{T} = (A, \Phi, \operatorname{src}, \operatorname{tgt}, \operatorname{conv})$ be a TARS and $S \in \operatorname{Red}(\mathcal{T})$ a non-empty reduction starting in $a \in A$.

- convergence: $S: a \rightarrow T b$ iff conv(S) = b.
- **2** continuity: $S: a \to T$... iff for every $S_1, S_2 \in \text{Red}(T)$ with $S = S_1 \cdot S_2$, S_1 converges to the object S_2 is starting in.

Remark (continuity)

$$\operatorname{\mathsf{conv}}(S \cdot T) \operatorname{defined} \implies \operatorname{\mathsf{conv}}(S) = a \qquad \qquad (\operatorname{\mathsf{continuity}})$$

(continuity) is equivalent to

$$S: a \twoheadrightarrow_{\mathcal{T}} b \implies S: a \twoheadrightarrow_{\mathcal{T}} \dots \qquad (\text{continuity'})$$

Finite Convergence

Example (finite convergence)

Let $\mathcal{A} = (A, \Phi, \operatorname{src}, \operatorname{tgt})$ be an ARS. finite convergence of \mathcal{A} is the TARS $\mathcal{A}^f = (A, \Phi, \operatorname{src}, \operatorname{tgt}, \operatorname{conv})$, where $\operatorname{conv}(S) = b$ iff $S: a \to_{\mathcal{A}}^* b$.

Finite Convergence

Example (finite convergence)

Let $\mathcal{A} = (A, \Phi, \operatorname{src}, \operatorname{tgt})$ be an ARS. finite convergence of \mathcal{A} is the TARS $\mathcal{A}^f = (A, \Phi, \operatorname{src}, \operatorname{tgt}, \operatorname{conv})$, where $\operatorname{conv}(S) = b$ iff $S: a \to_{\mathcal{A}}^* b$.

 \rightsquigarrow TARSs are merely a generalisation of what is considered a well-formed/meaningful reduction.

Finite Convergence

Example (finite convergence)

Let $\mathcal{A} = (A, \Phi, \text{src}, \text{tgt})$ be an ARS. finite convergence of \mathcal{A} is the TARS $\mathcal{A}^f = (A, \Phi, \text{src}, \text{tgt}, \text{conv})$, where conv(S) = b iff $S: a \to_{\mathcal{A}}^* b$.

 \rightsquigarrow TARSs are merely a generalisation of what is considered a well-formed/meaningful reduction.

Goal

Generalise finitary properties (SN, CR etc.) to the transfinite setting s.t. applied to \mathcal{A}^{f} they are equivalent to the original finitary properties of \mathcal{A} .

Interrelations of TARS Properties

Proposistion (confluence properties)

For every TARS, the following implications hold:

Proposistion (SN $^\infty$ is stronger than WN $^\infty$)

For every TARS \mathcal{T} , it holds that SN^{∞} implies WN^{∞} for every object in \mathcal{T} .

The Metric Model of Transfinite Reductions

Definition (metric reduction system)

A metric reduction system (MRS) \mathcal{M} consists of

- an ARS $\mathcal{A} = (A, \Phi, src, tgt)$,
- **2** a metric d: $A \times A \rightarrow \mathbb{R}^+_0$ on A, and
- **3** a function hgt: $\Phi \to \mathbb{R}^+$ s.t. φ : $a \to_{\mathcal{A}} b$ implies $\mathbf{d}(a, b) \leq hgt(\varphi)$.

The Metric Model of Transfinite Reductions

Definition (metric reduction system)

A metric reduction system (MRS) \mathcal{M} consists of

- an ARS $\mathcal{A} = (A, \Phi, src, tgt)$,
- **2** a metric d: $A \times A \rightarrow \mathbb{R}^+_0$ on A, and
- $\textbf{ o a function hgt: } \Phi \to \mathbb{R}^+ \text{ s.t. } \varphi \text{ : } a \to_{\mathcal{A}} b \text{ implies } \mathsf{d}(a,b) \leq \mathsf{hgt}(\varphi).$

Example (MRS semantics of TRSs)

The MRS $\mathcal{M}_{\mathcal{R}}$ induced by a TRS $\mathcal{R} = (\Sigma, R)$ is given by

$$\ \, \bullet \ \, \mathcal{A}=\mathcal{A}_{\mathcal{R}}, \ \, \mathsf{the} \ \, \mathsf{ARS} \ \, \mathsf{induced} \ \, \mathsf{by} \ \, \mathcal{R}, \ \,$$

2 the metric **d** on
$$\mathcal{T}^{\infty}(\Sigma, \mathcal{V})$$
, and

3 hgt
$$(arphi)=2^{-|\pi|}$$
, where $arphi\colon t o_{\pi,
ho}t'$

Definition (weak and strong convergence of MRSs)

Let $\mathcal{M} = (\mathcal{A}, \mathbf{d}, \mathsf{hgt})$ be an MRS.

• weak convergence: $\mathcal{M}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \lim_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota : a_\iota \to a_{\iota+1})_{\iota < \alpha}$

Definition (weak and strong convergence of MRSs)

Let $\mathcal{M} = (\mathcal{A}, \mathbf{d}, \mathsf{hgt})$ be an MRS.

• weak convergence: $\mathcal{M}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \lim_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota : a_\iota \to a_{\iota+1})_{\iota < \alpha}$

Continuous core

The continuous core $\overline{\operatorname{conv}}$: $\operatorname{Red}(\mathcal{A}) \rightharpoonup \mathcal{A}$ of a partial function conv: $\operatorname{Red}(\mathcal{A}) \rightharpoonup \mathcal{A}$. For each non-empty reduction $S = (a_{\iota} \rightarrow a_{\iota+1})_{\iota < \alpha}$ in \mathcal{A} we define

$$\overline{\operatorname{conv}}(S) = \begin{cases} \operatorname{conv}(S) & \text{if } \forall 0 < \beta < \alpha \quad \operatorname{conv}(S|_{\beta}) = a_{\beta} \\ \text{undefined} & \text{otherwise} \end{cases}$$

Definition (weak and strong convergence of MRSs)

Let $\mathcal{M} = (\mathcal{A}, \mathsf{d}, \mathsf{hgt})$ be an MRS.

- weak convergence: $\mathcal{M}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \lim_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota : a_\iota \to a_{\iota+1})_{\iota < \alpha}$
- Strong convergence: $\mathcal{M}^s = (\mathcal{A}, \overline{\operatorname{conv}}^s)$, with $\operatorname{conv}^s(S) = \lim_{\iota \to \widehat{\alpha}} a_\iota$ iff S is closed or $\lim_{\iota \to \alpha} \operatorname{hgt}(\varphi_\iota) = 0$.

Continuous core

The continuous core $\overline{\text{conv}}$: $\text{Red}(\mathcal{A}) \rightarrow A$ of a partial function conv: $\text{Red}(\mathcal{A}) \rightarrow A$. For each non-empty reduction $S = (a_{\iota} \rightarrow a_{\iota+1})_{\iota < \alpha}$ in \mathcal{A} we define

$$\overline{\operatorname{conv}}(S) = \begin{cases} \operatorname{conv}(S) & \text{if } \forall 0 < \beta < \alpha \quad \operatorname{conv}(S|_{\beta}) = a_{\beta} \\ \text{undefined} & \text{otherwise} \end{cases}$$

Definition (weak and strong convergence of MRSs)

Let $\mathcal{M} = (\mathcal{A}, \mathsf{d}, \mathsf{hgt})$ be an MRS.

- weak convergence: $\mathcal{M}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \lim_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota: a_\iota \to a_{\iota+1})_{\iota < \alpha}$
- Strong convergence: $\mathcal{M}^s = (\mathcal{A}, \overline{\operatorname{conv}}^s)$, with $\operatorname{conv}^s(S) = \lim_{\iota \to \widehat{\alpha}} a_\iota$ iff S is closed or $\lim_{\iota \to \alpha} \operatorname{hgt}(\varphi_\iota) = 0$.

Fact (equivalence of weak and strong convergence)

Let \mathcal{M} be an MRS with $hgt(\varphi) = \mathbf{d}(a, b)$ for every reduction step $\varphi: a \to_{\mathcal{M}} b$. Then for each reduction S in \mathcal{M} we have $\mathbf{O}: S: a \to_{\mathcal{M}^{W}} b$ iff $S: a \to_{\mathcal{M}^{S}} b$, and $\mathbf{O}: S: a \to_{\mathcal{M}^{W}} \dots$ iff $S: a \to_{\mathcal{M}^{S}} \dots$

Partial Order Model of Transfinite Reductions

Definition (partial reduction system)

- A partial reduction system (PRS) \mathcal{P} consists of
 - an ARS $\mathcal{A} = (A, \Phi, src, tgt)$,
 - **2** a partial order \leq on A,
 - 3 a function cxt: $\Phi \to A$, s.t. φ : $a \to_{\mathcal{A}} b$ implies cxt $(\varphi) \leq a, b$.

Partial Order Model of Transfinite Reductions

Definition (partial reduction system)

A partial reduction system (PRS) \mathcal{P} consists of

- an ARS $\mathcal{A} = (A, \Phi, src, tgt)$,
- **2** a partial order \leq on A,
- **3** a function cxt: $\Phi \to A$, s.t. φ : $a \to_{\mathcal{A}} b$ implies cxt $(\varphi) \leq a, b$.

Example (PRS semantics of TRSs)

The PRS $\mathcal{P}_{\mathcal{R}}$ induced by a TRS $\mathcal{R} = (\Sigma, R)$ is given by

- $\bullet \ \mathcal{A}=\mathcal{A}_{\mathcal{R}}, \ \text{the ARS induced by} \ \mathcal{R}_{\perp}=(\Sigma_{\perp},R),$
- ② the partial order \leq_{\perp} on $\mathcal{T}^{\infty}(\Sigma_{\perp}, \mathcal{V})$, and
- $\operatorname{cxt}(\varphi) = t[\bot]_{\pi}$, where $\varphi: t \to_{\pi,\rho} t'$.

Definition (convergence of PRSs)

- Let $\mathcal{P} = (\mathcal{A}, \leq, \mathsf{cxt})$ be a PRS.
 - weak convergence: $\mathcal{P}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \liminf_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota: a_\iota \to a_{\iota+1})_{\iota < \alpha}$

12

Definition (convergence of PRSs)

- Let $\mathcal{P} = (\mathcal{A}, \leq, \mathsf{cxt})$ be a PRS.
 - weak convergence: $\mathcal{P}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \liminf_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota : a_\iota \to a_{\iota+1})_{\iota < \alpha}$

Limit inferior

$$\liminf_{\iota\to\alpha} a_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} a_\iota$$

intuition on terms: eventual persistence of nodes of the terms

Definition (convergence of PRSs)

Let $\mathcal{P} = (\mathcal{A}, \leq, \mathsf{cxt})$ be a PRS.

• weak convergence: $\mathcal{P}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \liminf_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota: a_\iota \to a_{\iota+1})_{\iota < \alpha}$

Strong convergence: $\mathcal{P}^s = (\mathcal{A}, \overline{\operatorname{conv}}^s)$, $\operatorname{conv}^s(S) = \liminf_{\iota \to \alpha} \operatorname{ext}(\varphi_\iota)$ if S is open, and $\operatorname{conv}^s(S) = a_\alpha$ otherwise.

Limit inferior

$$\liminf_{\iota\to\alpha}a_\iota=\bigsqcup_{\beta<\alpha}\prod_{\beta\leq\iota<\alpha}a_\iota$$

intuition on terms: eventual persistence of nodes of the terms

Definition (convergence of PRSs)

Let $\mathcal{P} = (\mathcal{A}, \leq, \mathsf{cxt})$ be a PRS.

- weak convergence: $\mathcal{P}^w = (\mathcal{A}, \overline{\operatorname{conv}}^w)$, with $\operatorname{conv}^w(S) = \liminf_{\iota \to \widehat{\alpha}} a_\iota$ for $S = (\varphi_\iota: a_\iota \to a_{\iota+1})_{\iota < \alpha}$
- Strong convergence: $\mathcal{P}^s = (\mathcal{A}, \overline{\operatorname{conv}}^s)$, $\operatorname{conv}^s(S) = \liminf_{\iota \to \alpha} \operatorname{cxt}(\varphi_\iota)$ if S is open, and $\operatorname{conv}^s(S) = a_\alpha$ otherwise.

Fact (equivalence of weak and strong convergence)

Let \mathcal{P} be a PRS with a complete semilattice and $cxt(\varphi) = a \sqcap b$ for every reduction step φ : $a \rightarrow_{\mathcal{P}} b$. Then for each reduction S in \mathcal{P} we have

1
$$S: a \rightarrow _{\mathcal{P}^w} b$$
 iff $S: a \rightarrow _{\mathcal{P}^s} b$, and

Relation between PRSs and MRSs

Freakin' Sweet!

Definition (total reduction)

A reduction $(a_{\iota} \rightarrow a_{\iota+1})_{\iota < \alpha}$ in a PRS \mathcal{P} is total if it each object a_{ι} is maximal w.r.t. the partial order of \mathcal{P} .

Relation between PRSs and MRSs

Freakin' Sweet!

Definition (total reduction)

A reduction $(a_{\iota} \rightarrow a_{\iota+1})_{\iota < \alpha}$ in a PRS \mathcal{P} is total if it each object a_{ι} is maximal w.r.t. the partial order of \mathcal{P} .

Theorem (PRS semantics extends MRS semantics for TRSs)

For each TRS
$$\mathcal{R}$$
, the following holds for each $c \in \{w, s\}$:
1 $S: s \to \mathcal{P}_{\mathcal{R}}^{c}$ t is total iff $S: s \to \mathcal{M}_{\mathcal{R}}^{c}$ t.
2 $S: s \to \mathcal{P}_{\mathcal{R}}^{c}$... is total iff $S: s \to \mathcal{M}_{\mathcal{R}}^{c}$...

Relation between PRSs and MRSs

Freakin' Sweet!

Definition (total reduction)

A reduction $(a_{\iota} \rightarrow a_{\iota+1})_{\iota < \alpha}$ in a PRS \mathcal{P} is total if it each object a_{ι} is maximal w.r.t. the partial order of \mathcal{P} .

Theorem (PRS semantics extends MRS semantics for TRSs)

For each TRS
$$\mathcal{R}$$
, the following holds for each $c \in \{w, s\}$:
1 $S: s \to \mathcal{P}_{\mathcal{R}}^{c}$ t is total iff $S: s \to \mathcal{M}_{\mathcal{R}}^{c}$ t.
2 $S: s \to \mathcal{P}_{\mathcal{R}}^{c}$... is total iff $S: s \to \mathcal{M}_{\mathcal{R}}^{c}$...

The same result can be shown for term graph rewriting systems, at least for weak convergence!

Conclusion

Transfinite Abstract Reduction Systems

- simple framework for presenting/analysing/comparing different models of infinitary rewriting
- powerful enough to generalise some interrelations between confluence and termination properties
- generalisation of finite convergence

Conclusion

Transfinite Abstract Reduction Systems

- simple framework for presenting/analysing/comparing different models of infinitary rewriting
- powerful enough to generalise some interrelations between confluence and termination properties
- generalisation of finite convergence

Metric vs. Partial Order Model

- similarity in their discrimination between weak and strong convergence
- is there a common model?
- partial order model superior to metric model (for terms and term graphs)

Conclusion

Transfinite Abstract Reduction Systems

- simple framework for presenting/analysing/comparing different models of infinitary rewriting
- powerful enough to generalise some interrelations between confluence and termination properties
- generalisation of finite convergence

Metric vs. Partial Order Model

- similarity in their discrimination between weak and strong convergence
- is there a common model?
- partial order model superior to metric model (for terms and term graphs)

Instances of these models

- first-order term rewriting
- term graph rewriting
- higher-order term rewriting(?)

References

] Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Meaningless terms in rewriting.

Journal of Functional and Logic Programming, 1999(1):1–35, February 1999.

Jeroen Ketema. *Böhm-Like Trees for Rewriting.* PhD thesis, Vrije Universiteit Amsterdam, 2006.

Stefan Blom.

An approximation based approach to infinitary lambda calculi. *Rewriting Techniques and Applications*, RTA, 2004.

Properties of TARSs

Generalising ARS properties (1)

Simply replace \rightarrow^* with \rightarrow :

- CR^{∞} : If $b \ll a \twoheadrightarrow c$, then $b \twoheadrightarrow d \ll c$.
- WN^{∞} : For each *a*, there is a normal form *b* with *a* \rightarrow *b*.
- $UN_{\rightarrow}^{\infty}$: If $b \leftarrow a \twoheadrightarrow c$ and b, c are normal forms, then b = c.

Properties of TARSs

Generalising ARS properties (1)

Simply replace \rightarrow^* with \rightarrow :

- CR^{∞} : If $b \ll a \twoheadrightarrow c$, then $b \twoheadrightarrow d \ll c$.
- WN^{∞} : For each *a*, there is a normal form *b* with *a* \rightarrow *b*.
- $UN_{\rightarrow}^{\infty}$: If $b \twoheadleftarrow a \twoheadrightarrow c$ and b, c are normal forms, then b = c.

Definition (transfinite convertibility)

 $a \iff b$ iff there is a finite sequence of objects $a = a_0, a_1, \ldots, a_n = b$ with $a_i \implies a_{i+1}$ or $a_i \ll a_{i+1}$.

Properties of TARSs

Generalising ARS properties (1)

Simply replace \rightarrow^* with \rightarrow :

- CR^{∞} : If $b \ll a \twoheadrightarrow c$, then $b \twoheadrightarrow d \ll c$.
- WN^{∞} : For each *a*, there is a normal form *b* with *a* \rightarrow *b*.
- $UN_{\rightarrow}^{\infty}$: If $b \twoheadleftarrow a \twoheadrightarrow c$ and b, c are normal forms, then b = c.

Definition (transfinite convertibility)

 $a \iff b$ iff there is a finite sequence of objects $a = a_0, a_1, \ldots, a_n = b$ with $a_i \implies a_{i+1}$ or $a_i \ll a_{i+1}$.

Generalising ARS properties (2)

- NF^{∞} : For each *a* and normal form *b* with *a* \iff *b*, we have *a* \implies *b*.
- UN^{∞} : All normal forms a, b with $a \leftrightarrow b$ are identical.
- CR^{∞} : If $a \leftrightarrow b$, then $a \rightarrow c \leftarrow b$. (alt. characterisation)

Definining Transfinite Termination

Notation

- Conv (\mathcal{T}, a) : class of converging reductions starting in a
- Cont (\mathcal{T}, a) : class of continuous reductions starting in a

Both sets are ordered by the prefix order \leq on transfinite sequences.

17

Definining Transfinite Termination

Notation

- Conv (\mathcal{T}, a) : class of converging reductions starting in a
- Cont (\mathcal{T}, a) : class of continuous reductions starting in a

Both sets are ordered by the prefix order \leq on transfinite sequences.

Definition (transfinite termination)

An object *a* in a TARS \mathcal{T} is SN^{∞} if each chain in $Conv(\mathcal{T}, a)$ has an upper bound in $Conv(\mathcal{T}, a)$.

Definining Transfinite Termination

Notation

- Conv (\mathcal{T}, a) : class of converging reductions starting in a
- Cont (\mathcal{T}, a) : class of continuous reductions starting in a

Both sets are ordered by the prefix order \leq on transfinite sequences.

Definition (transfinite termination)

An object *a* in a TARS \mathcal{T} is SN^{∞} if each chain in $Conv(\mathcal{T}, a)$ has an upper bound in $Conv(\mathcal{T}, a)$.

Proposistion (transfinite termination)

An object a in a TARS \mathcal{T} is SN $^{\infty}$ iff

$$lacksim \mathsf{Cont}(\mathcal{T}, a) \subseteq \mathsf{Conv}(\mathcal{T}, a)$$
, and

2 every chain in $Conv(\mathcal{T}, a)$ is a set.