
Infinitary Rewriting
–

Theory and Applications

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science
Computational Logic MSc

im Rahmen des Studiums

Computational Logic

eingereicht von

Patrick Bahr
Matrikelnummer 0827963

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuer: Ao. Univ. Prof. Dr. Bernhard Gramlich

Wien, 24. September 2009
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

http://www.tuwien.ac.at

Infinitary Rewriting
–

Theory and Applications
Patrick Bahr

September 24, 2009

Abstract

Infinitary rewriting generalises usual finitary rewriting by providing infinite reduc-
tion sequences with a notion of convergence. The idea of – at least conceptually –
assigning a meaning to infinite derivations is well-known, for example, from lazy func-
tional programming or from process calculi. Infinitary rewriting makes it possible to
apply rewriting in order to obtain a formal model for such infinite derivations. The
goal of this thesis is to comprehensively survey the field of infinitary term rewriting, to
point out its shortcomings, and to try to overcome some of these shortcomings. The
most significant problem that arises in infinitary rewriting is the inherent difficulty to
finitely represent and, hence, to implement it. To this end, we consider term graph
rewriting, which is able to finitely represent restricted forms of infinitary term rewrit-
ing. Moreover, we study different models that are used to formalise infinite reduction
sequences: The well-established metric approach as well as an alternative approach
using partial orders. Both methods together with the consequent infinitary versions of
confluence and termination properties are analysed on an abstract level. Based on this,
we argue that the partial order model has more advantageous properties and represents
the intuition of convergence in a more natural way. This assessment is also backed up
by the results that we obtain for infinitary term rewriting: Unlike the metric approach,
the partial order approach admits to generalise some results known from finitary or-
thogonal term rewriting – most importantly, confluence. It is also shown that so-called
Böhm trees, usually constructed rather intricately, naturally arise as normal forms in
the partial order model. Finally, we devise a complete ultrametric and a complete
semilattice on term graphs both of which are used to introduce infinitary term graph
rewriting. This is supposed to serve as a tool in order to investigate the limitations of
term graph rewriting for implementing infinitary term rewriting.

Zusammenfassung

Infinitäre Ersetzungssysteme erweitern finitäre Ersetzungssysteme durch das Ein-
führen eines Konvergenzbegriffs für unendliche Reduktionsfolgen. Die Idee, auch un-
endlichen Ableitungen zumindest konzeptionell eine Bedeutung zuzuordnen, ist zum
Beispiel von der nicht-strikten funktionalen Programmierung oder auch von Prozess-
kalkülen her bekannt. Infinitäre Ersetzung ermöglicht es, diese unendlichen Ableitun-
gen durch Ersetzungssysteme zu formalisieren. Die vorliegende Arbeit verfolgt das Ziel,
einen umfassenden Überblick über das Gebiet der infinitären Termersetzungssysteme
darzulegen, dessen Defizite aufzuzeigen und zu versuchen einige dieser Defizite zu be-
heben. Das bedeutendste Problem, welches sich bei infinitären Systemen zeigt, ist die
inhärente Schwierigkeit diese endlich darzustellen, um somit eine Implementierung zu
ermöglichen. Zu diesem Zweck werden Termgraphersetzungssysteme betrachtet, welche
es erlauben eingeschränkte Formen infinitärer Termersetzung endlich darzustellen. Da-
rüber hinaus untersuchen wir verschiedene Modelle der infinitären Ersetzung: die etab-
lierte metrische Methode sowie eine alternative Methode unter Zuhilfenahme von Hal-
bordnungen. Beide Ansätze werden – zusammen mit den daraus resultierenden infinitä-
ren Varianten von Konfluenz- und Terminierungseigenschaften – auf abstrakter Ebene
analysiert. Darauf aufbauend erörtern wir, dass das Halbordnungsmodell vorteilhaftere
Eigenschaften besitzt und die Intuition von Konvergenz natürlicher wiedergeben kann.
Diese Einschätzung wird ebenso von unseren Erkenntnissen belegt, die wir für infinitä-
re Termersetzungssysteme erhalten: Im Gegensatz zum metrischen Ansatz erlaubt es
der Halbordnungsansatz einige Resultate zu verallgemeinern, die von finitären orthog-
onalen Systemen bekannt sind – insbesondere Konfluenz. Es wird außerdem gezeigt,
dass sogenannte Böhm-Bäume, welche üblicherweise relativ aufwendig konstruiert wer-
den müssen, als Normalformen im Halbordnungsmodell entstehen. Schließlich werden
eine vollständige Ultrametrik und ein vollständiger Halbverband auf Termgraphen en-
twickelt, welche beide genutzt werden um infinitäre Termgraphersetzung einzuführen.
Dies soll als Instrument dienen, um die Grenzen der Möglichkeiten der Termgrapher-
setzung für die Implementierung der infinitären Termersetzung zu untersuchen.

Contents

Contents i

List of Figures iii

1 Introduction 1
1.1 Reduction Systems . 1
1.2 Motivation . 2
1.3 Structure of the Thesis . 4
1.4 Main Contributions . 5

2 Preliminaries 7
2.1 Set Theory . 7

2.1.1 Partial Orders . 8
2.1.2 Ordinal Numbers and Sequences . 9
2.1.3 Limits in Partial Orders . 12

2.2 Topology . 13
2.2.1 Topological Spaces . 14
2.2.2 Metric Spaces . 15

2.3 Reduction Systems . 18
2.3.1 Abstract Reduction Systems . 18
2.3.2 Terms . 20
2.3.3 Term Rewriting Systems . 23

3 Transfinite Reductions 27
3.1 Metric Reduction Systems . 28
3.2 Partial Reduction Systems . 36
3.3 Transfinite Abstract Reduction Systems . 42

3.3.1 Properties of Transfinite Reductions . 42
3.3.2 Relating MRSs to PRSs . 45

3.4 Alternative Models of Transfinite Reductions 47

4 Term Graphs 49
4.1 Graphs and Term Graphs . 50
4.2 Homomorphisms . 53
4.3 Canonical Term Graphs . 57
4.4 A Partial Order on Term Graphs . 62
4.5 A Metric on Term Graphs . 75

5 Infinitary Term Rewriting 87
5.1 Finitary Properties on Infinite Terms . 88

5.1.1 Termination Properties . 88
5.1.2 Confluence Properties . 89

5.2 MRS vs. PRS Model of Infinitary Term Rewriting 90

i

5.3 Weakly Convergent MRS Reductions . 91
5.3.1 Compression and Approximation . 92
5.3.2 Confluence . 93
5.3.3 Connection to Strongly Convergent Reductions 95

5.4 Strongly Convergent MRS Reductions . 96
5.4.1 Compression and Approximation . 97
5.4.2 Complete Developments . 98
5.4.3 Tiling Diagrams and Projections . 102
5.4.4 Confluence . 105
5.4.5 Meaningless Terms and Böhm Trees . 107
5.4.6 Reduction Strategies . 110
5.4.7 Termination . 114

5.5 Strongly Convergent PRS Reductions . 114
5.5.1 Descendants . 117
5.5.2 Complete Developments . 123
5.5.3 Relation to Böhm Trees . 133

6 Term Graph Rewriting 139
6.1 Term Graph Rewriting Systems . 139
6.2 Simulating Term Rewriting . 148

7 Conclusions 157
7.1 Summary . 157
7.2 Future Work and Possible Applications . 158

Bibliography 161

Index 169

Symbols 176

List of Figures

1.1 Reduction sequences generating infinite list of natural numbers. 3
1.2 Cyclic term graph rewriting. 4

3.1 Weakly convergent reduction sequence. 31
3.2 Strongly convergent reduction sequence. 32
3.3 Reduction sequence with stable context. 39
3.4 Limits of the PRS reduction sequence. 39
3.5 Alternative definition of the infinitary normal form property. 43

4.1 Example for a tree representation of a term; generalisation to graphs. 50
4.2 Example for a replacement of a node by a term graph. 53
4.3 Isomorphism between ∆-homomorphisms. 57
4.4 Example of a �-homomorphism injective in non-�-nodes. 63
4.5 Counterexample for candiate partial orders. 64
4.6 Least upper bound g ⊔� h of compatible term graphs g and h. 69
4.7 Example for truncation. 77
4.8 �-depth in truncated term graphs. 79
4.9 Fringe nodes and strong �-homomorphisms. 81

5.1 Semi-ω-confluence of Theorem 5.3.9. 94
5.2 Descendants by a single step. 99
5.3 Diamond property of complete developments according to Corollary 5.4.19. . . . 102
5.4 Tiling diagram. 103
5.5 The Infinitary Strip Lemma. 104
5.6 Semi-infinitary confluence according to Corollary 5.4.24. 104
5.7 Infinitary confluence modulo hypercollapsing terms. 106
5.8 Binary trees. 112
5.9 A parallel-outermost reduction. 113
5.10 Reduction sequence with volatile positions. 116
5.11 A path. 125
5.12 Turning a PRS reduction into a Böhm reduction. 134

6.1 Example term graph and term graph rewrite rule. 141
6.2 Alternative definition of term graph rewriting. 145
6.3 Weak completeness of term graph rewriting. 153
6.4 Example for weak completeness of term graph rewriting. 154
6.5 Necessity of (infinitary) CR for weak completeness of term graph rewriting. . . . 155
6.6 Infinitary term graph rewriting vs. infinitary term rewriting. 155

iii

Chapter 1

Introduction

In this introduction we first sketch the background of this thesis, viz. reduction systems
and their basic idea. Afterwards, we motivate the benefits of considering infinitely long
reductions and show how they can be used for certain applications. Finally, a summary of
the contents of the thesis is provided and the main contributions are briefly explained.

1.1 Reduction Systems

Reduction systems and in particular term rewriting systems are a well-established theory in
computer science. The first such systems, the λ-calculi introduced by Church [Chu32], were
originally conceived to serve as a logical foundation for mathematics. Later on, the main
motivation for considering reduction systems was their ability to provide a formal model for
computations.

Reduction systems usually consist of a set of rules defined on a particular set of objects,
which in most cases consist of a language of terms. The rules of the system determine how
the objects of the system can be rewritten. Each such rewrite step is usually supposed to
model some kind of elementary computation step that is performed on some object.

A simple example is a system that operates on arithmetic expressions such as (5+3)⋅(2+3)
and that has rules to simplify sums and products of two numbers. Such a system would, for
example, contain the rules 5 + 3→ 8, 8 ⋅ 5→ 40 etc. which state how sums and products can
be replaced by a single number. This allows the following reduction:

(5 + 3) ⋅ (2 + 3) → 8 ⋅ (2 + 3) → 8 ⋅ 5→ 40

The above reduction consists of three reduction steps. The underlining indicates the subex-
pressions to which rewrite rules are applied. There is no rule that can be applied to the
numeral 40. Such irreducible objects are also called normal forms. They are usually consid-
ered to be the result of a computation.

Reduction systems can, however, be non-terminating, i.e. yielding infinite reduction se-
quences. If the above system would also contain rules which allow to employ the commuta-
tivity of addition and multiplication, viz. the rules x + y → y + x and x ⋅ y → y ⋅ x, then the
system would admit an infinite reduction

5 + 3→ 3 + 5→ 5 + 3→ . . .

Such a reduction has no “final result”. Hence, the system is not terminating.
One of the most important classes of reduction systems is the class of term rewriting

systems. These systems work on a term language by replacing subterms according to their
rules. The system illustrated above is an example of a term rewriting system. The language
it operates on consists of two binary symbols + and ⋅ as well as a constant symbol n for each
natural number n ∈ N.

1

2 Chapter 1 Introduction

The rules of a term rewriting system can be seen as the program of the system. The
execution of this program consists of performing rewriting steps according to these rules.
Functional programming languages are based on this idea. In most cases, for a program
to be useful, we need it to be terminating, i.e. not allowing infinite computations. Hence,
in this setting, infinite reduction sequences as the one shown above should be avoided. In
some functional programming languages, usually referred to as lazy functional programming
languages (cf. [Lau93, Jos89]), non-termination is not necessarily problematic but is, in fact,
desirable as it allows a more declarative style of programming. These functional program-
ming languages are based on the idea of lazy evaluation, an evaluation strategy that only
evaluates an expression when it is “needed” by some function.

We will see some examples in the next section which illustrate that infinite reductions
may have a meaningful result.

1.2 Motivation

A computation that runs infinitely long is usually not desirable. One notable exception is
the class of reactive systems [HP85] which are designed to interact with their environment
and, thus, need not have a run time that is bounded a priori. The methods of infinitary
term rewriting were successfully applied in this setting (e.g. in [IN95]). This is, however, not
the subject of the thesis. Even in a setting in which a computation is performed in order
to compute an output value for a given input value, infinitely long computations might still
be adequate. A computation might try to approximate some value without reaching it in
finite time but improving the accuracy of the approximation with each step. The various
iterative algorithms to compute the transcendental number π are an example for this.

For a simple example in terms of reduction systems, consider the term rewriting system
containing the rule a→ f(a) that rewrites a subterm a to a term f(a). This systems allows
to construct an infinite reduction

a→ f(a) → f(f(a)) → f(f(f(a))) → . . .

of increasingly large terms. In fact, the constant a cannot be reduced to a normal form.
Although the above reduction sequence does not terminate, i.e. it does not reach a

normal form after finitely many steps, intuitively the reduction approximates the infinite
term fω = f(f(f(f(. . .)))) that consists of infinitely many f symbols. A finite prefix of this
reduction is able to reach a term that coincides with fω up to an arbitrary depth. To put
it in other terms: The reduction sequence converges to the term fω.

As another example consider the term rewrite rule h(x) → c(x,h(s(x))) and the induced
infinite reduction

h(0) → c(0, h(s(0))) → c(0, c(s(0), h(s2(0)))) → c(0, c(s(0), c(s2(0), h(s3(0))))) → . . .

This might seem a bit obscure. However, if we interpret the binary function symbol c as the
list constructor operator “∶”, and terms of the form sn(0) as natural numbers n, then the
above reduction sequence looks like this:

h(0) → 0 ∶ h(1) → 0 ∶ 1 ∶ h(2) → 0 ∶ 1 ∶ 2 ∶ h(3) → . . .

The reduction produces increasingly large lists of natural numbers. The intuitive limit of
that sequence is the infinite list of all natural numbers 0 ∶ 1 ∶ 2 ∶ . . . = [0,1,2, . . .]. By
depicting the tree representation of the terms as illustrated in Figure 1.1, this can be seen
more directly. In each step, the part of the tree that keeps unchanged grows. This growing
stable part more and more resembles the tree representation of the infinite list [0,1,2, . . .].

Yet, it does not need to end here. That is, a reduction does not have to stop after ω steps.
Reconsider the rewrite rule a → f(a) and the infinite reduction sequence that converges to

1.2 Motivation 3

h

0

c

0 h

s

0

c

0 c

s

0

h

s

s

0

. . .

Figure 1.1: Reduction sequences generating infinite list of natural numbers.

the term fω. This term does not have to be a normal form. Suppose that there is an
additional rule f(x) → g(x). Then we can continue the reduction like this:

a→ f(a) → f(f(a)) → . . . fω → g(fω) → g(g(fω)) → g(g(g(fω))) → . . . gω

Let us return to the example of the system generating the infinite list [0,1,2, . . .]. Using
functions that generate infinite data structures and in particular infinite lists is an ubiquitous
technique in lazy functional programming. For example, in the lazy functional language
Haskell, in order to write a function number that takes a list and numbers its elements by
putting the i-th element e of the list in a pair (i, e), one can conveniently make use of infinite
lists:

from n = n : from (n + 1)
number l = zip (from 0) l

The function from is equivalent to the function h that generates infinite lists of natural
numbers. The employed function zip takes two lists and returns a list whose i-th element
is a pair consisting of the i-th element of the first list and the i-th element of the second
list. Because zip stops as soon as the end of either argument lists is reached, we have to
provide a list [0,1,. . .,n-1] as the first argument that has at least the same length as l.
Since the argument list l can be of arbitrary size, we have to compute its length and then
generate a list of appropriate length. Alternatively, we simply use an infinite list [0,1,. . .]
which is generated by from 0 in the same way h(0) has generated such an infinite list in
the example above. The fact that from 0 does not terminate does not pose a problem in
this setting. Provided the list l is finite, zip only “needs” a finite prefix of the infinite list
[0,1,. . .], and such a prefix can be obtained by only finitely often evaluating from.

The evaluation of the function number can also be seen in the sense of infinitary term
rewriting: Before zip is applied to its two arguments they are evaluated to normal form. For
from 0, this is a problem as it does not have a normal form in the finitary setting. However,
it reaches a normal form after infinitely many steps, viz. the infinite list [0,1,. . .]. Then
zip can be applied to these normal forms of its arguments. This yields the same result as
the lazy evaluation. In this sense, infinitary term rewriting can be used as a natural model
of lazy functional programming.

Rewriting can also be adopted for term graphs. Term graphs generalise terms by allowing
to share common subterms. For example, the term a(s(0), s(s(0))) can be represented by
the term graph

4 Chapter 1 Introduction

c

0 c

0 c

0
(a) Infinite list [0,0, . . .]

c

0

(b) Term graph.

c

1

(c) Reduct.

c

1 c

1 c

1
(d) Infinite list [1,1, . . .]

Figure 1.2: Cyclic term graph rewriting.

a

s

s

0

Term graph rewriting constitutes an important technique for efficiently implementing func-
tional languages. In this setting, term graphs arise which contain cycles. Term graph
rewriting is supposed to be an efficient implementation of term rewriting. However, as soon
as cyclic graphs are present, a single term graph rewriting step might simulate an infinite
number of term rewriting steps.

To see this, consider the infinite list [0,0, . . .] consisting of ’0’s. Again taking c as the
list constructor, this list is represented by the term depicted in Figure 1.2a. This term can
be represented by the term graph shown in Figure 1.2b. When the term graph is unravelled,
we obtain the term [0,0, . . .]. Now consider the rule 0 → 1. If this rule is applied to the
term graph, then we obtain the term graph in Figure 1.2c which represents the infinite list
[1,1, . . .] shown in Figure 1.2d. All ’0’s in the list were rewritten to ’1’s in one go. If we
want to do this on the term side, i.e. if we want to rewrite the term [0,0, . . .] to the term
[1,1, . . .] using the rule 0→ 1, we need infinitely many steps.

Hence, we need infinitary term rewriting to model this. But this can also be seen in
the other direction: Term graph rewriting can serve as a tool to implement infinitary term
rewriting since at least some infinite terms and some infinite reductions on them can be
represented by finite term graphs and finite reductions on them.

1.3 Structure of the Thesis

Before we begin dealing with the topic of this thesis we provide, in Chapter 2, a brief
summary of the fundamental mathematical tools that are needed for our presentation of
infinitary rewriting. This includes basic set theory, order theory, topology and, most impor-
tantly, reduction systems. Topological spaces and partial orders will be of great importance
as they are used to formalise transfinite reductions and their limits.

Subsequently, in Chapter 3, several models for formalising transfinite reductions are
presented. The analysis of these models is performed on an abstract level. That is, we
provide extensions to the notion of abstract reduction systems which allow to form limits
of infinite reduction sequences. Two different approaches are investigated: The well-known
method of endowing the system with a metric and a new method which uses a partial order.

1.4 Main Contributions 5

Both approaches distinguish between a weak and a strong variant of transfinite reductions.
We compare the resulting four different notions of transfinite rewriting, give criteria for
which some of them coincide, and investigate their common properties. Moreover, transfinite
versions of well-known finitary properties, such as termination and confluence properties,
are introduced, and their interrelations are analysed.

In Chapter 4, term graphs are introduced together with several different notions of
homomorphisms on them. The thus obtained theory is then used to introduce a metric
and a partial order on term graphs which extend the usual metric resp. the usual partial
order on terms. This provides the foundation for the two subsequent chapters, in particular
Chapter 6.

Chapter 5 forms the core of this thesis. It provides an overview of the field of infinitary
term rewriting. At first we discuss how the consideration of infinite terms changes the be-
haviour of (finitary) termination and confluence properties. Then it is shown that the partial
order model provides a conservative extension to the well-known metric model of infinitary
term rewriting. Subsequently, we summarise the most important results on infinitary term
rewriting in the literature. This includes both the weak and the strong variant of transfinite
reductions in the metric model. Finally, we investigate the properties of transfinite reduc-
tions in the partial order model and analyse in which cases the metric and the partial order
approach yield equivalent reductions.

In Chapter 6, term graphs are reconsidered. We will present a notion of term graph
rewriting and discuss some of its properties known from the literature. Moreover, we use the
results of Chapter 4 in order to extend term graph rewriting such that it admits transfinite
reductions. The focus is set on the ability of term graph rewriting to simulate term rewriting
and, most importantly, infinitary term rewriting. This also includes an informal treatment
of how infinitary term rewriting can be practically implemented by transforming a term
rewriting system into a term graph rewriting system.

Finally, in Chapter 7, we conclude this thesis with a summary of its results and an
outlook on possible future work.

1.4 Main Contributions

A large part of this thesis consists of presenting the current state of research in the field of
infinitary rewriting. Nevertheless, we were also able to develop some new results:

• Kennaway [Ken92] developed an extension to abstract reduction systems which mod-
els transfinite reductions via metric spaces. In this thesis, a similar extension using
partial orders is developed. We show that both approaches yield transfinite reduc-
tion sequences exhibiting a behaviour similar to that of finite reduction sequences, in
particular in the way they can be composed. Additionally, we are able to show that
the infinitary versions of confluence and termination properties are related to each
other in the same way as they are in the finitary case. Finally, we provide a crite-
rion which ensures that reductions described by the metric method are also reductions
w.r.t. the partial order method. Both infinitary term rewriting systems and infinitary
term graph rewriting systems are shown to meet this criterion.

• We investigate the newly introduced notion of strongly convergent reductions of term
rewriting systems formalised by the partial order approach. The analysis is chiefly
restricted to orthogonal systems. Our findings include:

– orthogonal systems are infinitary confluent
– orthogonal systems are infinitary normalising
– orthogonal systems allow arbitrary complete developments
– orthogonal systems have the compression property, i.e. reductions can always be

performed in at most ω steps

6 Chapter 1 Introduction

We argue that this shows that strongly convergent reductions in the partial order ap-
proach are more well-behaved than corresponding reductions in the metric approach.
Additionally, it is shown that reduction sequences do always weakly and strongly con-
verge and that the metric model is subsumed by the partial order model. Furthermore,
we show that partial order reductions are equivalent to metric reductions in the corre-
sponding Böhm reduction system. Böhm reduction systems are term rewriting systems
that are augmented by additional rules which assure that certain terms are identified
by the system. This offers new insights both into Böhm reductions, including the
entailed notion of Böhm trees, and into the partial order approach to infinitary term
rewriting.

• We introduce a partial order and a metric on term graphs which extend the partial
order and the metric on terms, respectively. Moreover, we show that the partial order
forms a complete semilattice on term graphs and that the metric is, in fact, a complete
ultrametric. Both results extend corresponding properties of the partial order and the
metric on terms, respectively. This allows us to define infinitary term graph rewriting
both in the partial order and the metric approach.

The positive results for partial order infinitary term rewriting indicate that it has more
advantageous properties than infinitary term rewriting in the metric model. Since all reduc-
tion sequences do converge in the partial order model and the metric model is subsumed,
we obtain a model of infinitary term rewriting which is superior to the well-known metric
model. It also provides a more fine-grained view of convergence. Instead of the two possibil-
ities – convergence or divergence – which the metric model provides, the partial order model
allows to identify several intermediary states between full convergence and full divergence.

The equivalence of partial order infinitary term rewriting and metric infinitary term
rewriting in the Böhm reduction illustrates the fundamental difference between the two
models of convergence quite concisely. Moreover, it shows that the rather intricate con-
struction of Böhm trees can also be performed quite naturally.

The application of the models of infinitary rewriting to the setting of term graph rewriting
allows to compare term rewriting and term graph rewriting also in terms of their transfinite
reductions. In the past, this was conducted in an informal way only. In addition, we hope
that infinitary term graph rewriting can be employed as a tool for investigating which class
of infinitary term rewriting can be finitely implemented using term graph rewriting. We also
think that the partial order on term graphs can be used to generalise Böhm trees of term
rewriting systems to “Böhm graphs” of term graph rewriting systems.

Chapter 2

Preliminaries

This chapter introduces the basic concepts, notations and theorems that are necessary for
the investigations made in this thesis. This comprises – with few exceptions – well-known
facts and notions of the respective branches of mathematics. Most of the material presented
in this chapter can be found in the corresponding standard textbooks. At the beginning of
each section we mention some of the relevant textbooks that can be consulted for a more
detailed presentation. For some theorems that are mentioned here, the author was not able
to find them in a textbook. In this case, an argument for the claimed property is given.

2.1 Set Theory

This section covers the basic concepts of set theory including partial orders and ordinal
numbers. A detailed treatment of these subjects can be found in [Lev79] and [Sie65].

We use N+ to denote the set of positive integers {1,2, . . .}, N for the set of non-negative
integers N+ ∪ {0}, R for the set of all real numbers, R+ for the set of positive real numbers
{r ∈ R ∣ r > 0}, and R+

0 for the set of non-negative real numbers R+ ∪ {0}.
Let f ∶ A → B, g∶ B → C be two functions. We use g ○ f to denote the composition of f

and g, i.e. the function (g ○ f)∶ A→ C with (g ○ f)(a) = g(f(a)) for all a ∈ A. Moreover, we
write range(f) to denote the range of f , i.e. the set {f(a) ∣a ∈ A}. For the identity function
on the set A, we write idA, i.e. we have idA(a) = a for all a ∈ A. A function h∶ B → A is
called the inverse of f iff h ○ f = idA and f ○ h = idB . There is at most one such inverse for
each function. If it exists for a function f , then we use f−1 to denote it.

Let f ∶ A ⇀ B, g∶ B ⇀ C be two partial functions. The domain of f , written dom(f),
is the set {a ∈ A ∣ f(a) is defined}. Accordingly, the range of f , denoted range(f), is the
set {f(a) ∣a ∈ dom(f)}. The composition of f and g, written as g ○ f ∶ A ⇀ C, is defined
as (g ○ f)(a) = g(f(a)) for all a ∈ dom(f) with f(a) ∈ dom(g). For all other a ∈ A, the
value (g ○ f)(a) is not defined. Hence, dom(g ○ f) = {a ∈ dom(f) ∣ f(a) ∈ dom(g)}. Note
that (partial) function composition is associative. A partial function h∶ B ⇀ A is called the
inverse of f if we have h(f(a)) = a for each a ∈ dom(f) and f(h(b)) = b for each b ∈ dom(h).
Also for partial functions, such an inverse, if existent, is unique and we use f−1 to denote it.

Whenever we have a function f ∶ A → B and sets A′ ⊆ A, B′ ⊆ B, then we write f(A′)
for the set {f(a) ∣a ∈ A′ } and f−1(B′) for the set {a ∈ A ∣ f(a) ∈ B′ }.

Let R,S ⊆ A ×A be two binary relations over a set A. We write aRb as a shorthand for
(a, b) ∈ R. Moreover, we use R ○ S to denote the composition of R and S, i.e. the binary
relation over A with R○S = {(a, b) ∣ ∃c ∈ A. aRc, cSb}. Just as for functions, the composition
○ is associative. Additionally, we use the following definitions:

R0 = ∆A = {(a, a) ∣a ∈ A} , R+ = ⋃
n>0

Rn

Rn+1 = Rn ○R R∗ = ⋃
n≥0

Rn

7

8 Chapter 2 Preliminaries

R+ is known to be the transitive closure of R, i.e. the least transitive relation containing R;
and R∗ is known to be the reflexive, transitive closure of R, i.e. the least reflexive, transitive
relation containing R. Also note that R1 = R and Rn+1 = R ○Rn.

For an equivalence relationR on a set A, i.e. a transitive, reflexive and symmetric relation,
we use A/R to denote the quotient of A by R. That is, A/R = {[a]R ∣a ∈ A}, where [a]R
denotes the equivalence class {b ∈ A ∣aRb} for each a ∈ A.

2.1.1 Partial Orders
In this section we give an overview over partial orders.

Definition 2.1.1 (ordered class)

(i) Let A be a class. A binary relation < ⊆ A×A is called a partial order (or simply order)
on A if it is irreflexive and transitive.

(ii) A partial order < on a class A is called well-founded if any non-empty subclass B of A
has a minimal element a ∈ B w.r.t. <, i.e. there is no b ∈ B with b < a.

(iii) A partial order < on a class A is called a well-order if it is left-narrow, i.e. {a ∈ A ∣a < b}
is a set for all b ∈ A, and every non-empty subclass B of A has a least element a ∈ B
w.r.t. <, i.e. a < b for all b ∈ B.

(iv) A pair (A,<) consisting of a class (resp. set) A and a partial order < on it is called
a partially ordered class (resp. partially ordered set). If < is a well-order, then (A,<)
is called a well-ordered class (resp. well-ordered set). Usually, if < is clear from the
context, we simply refer to A as the partially ordered class.

Notation 2.1.2. Usually, we denote a partial order as < (possibly with some index). In some
cases it is convenient to refer to the reflexive closure of < which we will denote by ≤. This
refers to the relation {(a, b) ∈ A ×A ∣a < b or a = b}, which is then reflexive, antisymmetric
and transitive.

Definition 2.1.3 (monotone functions)
Let (A,<A) and (B,<B) be two partially ordered classes. A function f ∶ A → B is called
monotone, if, for all a, a′ ∈ A with a <A a′, also f(a) <B f(a′) holds. If, additionally, f
is surjective and, for all a, a′ ∈ A with f(a) <B f(a′), also a <A a′ holds, then f is called
an order isomorphism. If such an order isomorphism exists, then (A,<A) and (B,<B) are
called order isomorphic (or simply isomorphic), written (A,<A) ≅ (B,<B)

Definition 2.1.4 (bounds, directed set)
Let (A,<) be a partially ordered class and B ⊆ A a subset.

(i) An upper bound resp. a lower bound of B is an element a ∈ A with b ≤ a resp. a ≤ b for
all b ∈ B .

(ii) An upper bound resp. a lower bound b of B is called greatest element resp. least element
in B if b ∈ B.

(iii) Two elements a, a′ ∈ A are called compatible if the set {a, a′} has an upper bound.

(iv) The least upper bound (lub) resp. greatest lower bound (glb) of B, denoted ⊔B resp.
⊓B, is the least element of {a ∈ A ∣a upper bound of B } resp. the greatest element of
{a ∈ A ∣a lower bound of B }.

(v) B is called directed if it is non-empty and each pair of elements in B has an upper
bound in B, i.e.

∀a, b ∈ B∃c ∈ B a, b ≤ c.

2.1 Set Theory 9

Notation 2.1.5. We make use of some abbreviations for lubs and glbs: Instead of ⊔{x, y}
we also write x ⊔ y, and instead of ⊔{xi ∣P (i)}, for some condition P on i, we also write
⊔P (i) xi. Accordingly, we use the notation x ⊓ y and ⊓P (i) xi for glbs.

Definition 2.1.6 (complete partial order, bounded complete partial order, com-
plete semilattice)
Let (<,A) be a partially ordered class.

(i) < is called a complete partial order (cpo) if it has a least element and every directed
subset of A has a least upper bound.

(ii) < is called a bounded complete partial order (bcpo) if every subset of A that has an
upper bound has a least upper bound.

(iii) < is called a complete semilattice if it is a bounded complete cpo.

Note that, although the terminology may suggest it, cpos and bcpos are incomparable
concepts. That is, neither is a cpo necessarily a bcpo nor is a bcpo necessarily a cpo. For
instance, N endowed with the natural order < constitutes a bcpo. Yet, it is not a cpo as the
set N itself is directed but does not have a lub. On the other hand, the partial order given
by the Hasse diagram

c d

a b

�

is a cpo but not a bcpo. It fails to be a bcpo since the set {a, b} has an upper bound, viz.
both c and d, however, it does not have a lub.

Proposition 2.1.7 (cpos and complete semilattices, [KP93])
A complete partial order is a complete semilattice iff every pair of compatible elements has
a least upper bound.

Proposition 2.1.8 (bcpos admit glbs, [KP93])
In a bounded complete partial order, any non-empty set has a greatest lower bound.

2.1.2 Ordinal Numbers and Sequences
In this section we summarise the relevant notions for ordinal numbers and sequences.

Definition 2.1.9 (ordinal number)

(i) A class A is called transitive if every member of a member of A is a member of A, i.e.
if a ∈ A implies a ⊆ A.

(ii) A set α is called an ordinal if it is transitive and well-ordered by the relation < =
{(a, b) ∈ α × α ∣a ∈ b}, i.e. a < b iff a ∈ b. We use On to denote the class of all ordinals.

Proposition 2.1.10 (ordinals are sets of ordinals)
Every member of an ordinal is an ordinal. That is, for each ordinal α, also every element
β ∈ α is an ordinal.

Proposition 2.1.11 (On is a well-ordered proper class)

(i) < = {(a, b) ∈ On ×On ∣a ∈ b} is a well-order on On.

(ii) On is a proper class.

10 Chapter 2 Preliminaries

Proposition 2.1.12 (construction of ordinals)

(i) If A is a set of ordinals, then ⋃A is an ordinal. ⋃A is the least upper bound of A.
Thus every set of ordinals is bounded, and an unbounded class of ordinals is a proper
class.

(ii) For every ordinal α, also α ∪ {α} is an ordinal and there is no β such that α < β <
α ∪ {α}.

Notation 2.1.13. If α is an ordinal, we write S(α) to denote its successor, the ordinal
α ∪ {α}. Moreover, we use 0 to denote the least ordinal ∅, 1 to denote its successor {0}, 2
for {0,1} etc. ω is used to denote the least infinite ordinal {0,1,2, . . .}. Additionally, we
use ω1 to denote the least uncountable ordinal {α ∈ On ∣α is countable}.

Definition 2.1.14 (successor ordinal, limit ordinal)

(i) α is called a successor ordinal if there is an ordinal β such that α = S(β).

(ii) α is called a limit ordinal if it is neither 0 nor a successor ordinal.

Note that ⋃α is α′ if α = S(α′), and α if α is not a successor ordinal.

Lemma 2.1.15 (limit ordinals)
If α is a limit ordinal and β < α, then there is an ordinal γ such that β < γ < α; in particular
β < S(β) < α.

Proposition 2.1.16 (lub of countably many countable ordinals is countable)
Let M be a countable subset of ω1. Then ⋃M < ω1. That is, the lub of a countable set of
countable ordinals is again a countable ordinal.

Proposition 2.1.17 (principle of well-founded induction/recursion)
Let A be a class partially ordered by a left-narrow well-founded order <.

(i) Let B be a subclass of A. If, for each b ∈ A, it holds that {a ∈ A ∣a < b} ⊆ B implies
b ∈ B, then A = B.

(ii) Let G be a binary function on V , the class of all sets. Then there is a unique function
F such that F (a) = G(a,F ∣{b∈A∣ b<a }).

It is immediate from the definition that a well-order is also a left-narrow well-founded
partial order. Since On is well-ordered, well-founded induction and well-founded recursion
can also be applied to On or any ordinal. In this case we rather refer to these principles
as transfinite induction resp. transfinite recursion. An instance of the transfinite recursion
principle is the following definition of addition and multiplication on ordinals.

Definition 2.1.18 (ordinal arithmetic)

(i) Addition + on On:

α + 0 = α
α + S(β) = S(α + β)

α + λ = ⋃{α + β ∣β < λ} if λ is a limit ordinal

(ii) Multiplication ⋅ on On:

α ⋅ 0 = 0
α ⋅ S(β) = (α ⋅ β) + α

α ⋅ λ = ⋃{α ⋅ β ∣β < λ} if λ is a limit ordinal

2.1 Set Theory 11

Lemma 2.1.19 (properties of ordinal addition)

(i) + is associative, i.e. α + (β + γ) = (α + β) + γ.

(ii) If α ≤ γ, then there is a unique ordinal β such that α + β = γ. Moreover, β is a limit
ordinal iff γ is.

Definition 2.1.20 (sequence)
Let α be an ordinal. A sequence S of length α (also called an α-sequence) in a set A, written
(aι)ι<α, is a function from α to A with ι↦ aι for all ι ∈ α. If α is a limit ordinal, S is called
open. Otherwise, it is called closed. If α is a finite ordinal, S is called finite. Otherwise, it
is called transfinite (or also infinite).

Notation 2.1.21. Let M be a set. We use the notations Mα, M≤α and M<α to denote the
set of all sequences in M of length α, ≤ α and < α, respectively. Instead of M<ω we use the
more common notation M∗. We use ε to denote the empty sequence. In order to refer to
the length of a sequence S, we write ∣S∣.

Definition 2.1.22 (concatenation of sequences)
Let S = (aι)ι<α, T = (bι)ι<β be two sequences in some set A. Then the sequence S ⋅T , called
the concatenation of S and T , is the sequence (a′ι)ι<δ, where δ = α + β and a′ι = aι for ι < α
and a′α+ι = bι for ι < β.

From the definition, it is immediate that the concatenation of sequences is associative.
Hence, we take the convenience of omitting brackets when concatenating several sequences.
That is, we write R ⋅ S ⋅ T for the sequence (R ⋅ S) ⋅ T = R ⋅ (S ⋅ T).

Definition 2.1.23 (subsequence, segment, prefix, suffix)
Let S = (aι)ι<α be an α-sequence. A β-sequence T = (bι)ι<β is called a subsequence of S
if there is a monotone function f ∶ β → α such that bι = af(ι). To indicate this, we write
S/f for the subsequence T . If f(ι) = f(0) + ι for all ι < α, then S/f is called a segment of
S. Furthermore, such a segment S/f is called a prefix resp. a suffix of S if f(0) = 0 resp.
if f(0) + β = α. A subsequence S/f is called proper if f is not a surjection, i.e. S/f has a
smaller length than S.

Two distinct sequences S,T are called disjoint if neither S is a prefix of T nor vice versa.
Moreover, if S is a prefix of T , then T is called an extension of S.

Notation 2.1.24. Let S = (aι)ι<α be an α-sequence and β ≤ γ < α. Then S∣[β,γ) or
equivalently (aι)β≤ι<γ denotes the segment S/f , where f ∶ α′ → α is the mapping defined by
f(ι) = β + ι for all ι < α′, and α′ is the unique ordinal with α = β + α′ (cf. Lemma 2.1.19).

When dealing with segments, the definition above is a bit cumbersome to work with.
The following lemma provides more insight into the definition and makes it easier to reason
about segments. It follows immediately from the definition of concatenation and the different
forms of segments.

Lemma 2.1.25 (characterisation of segments)
Let S and S′ be two sequences.

(i) S′ is a (proper) segment of S iff there are two sequences R,T such that S = R ⋅ S′ ⋅ T
(and not both R and T are empty).

(ii) S′ is a (proper) prefix of S iff there is a (non-empty) sequence T such that S = S′ ⋅ T .

(iii) S′ is a (proper) suffix of S iff there is a (non-empty) sequence R such that S = R ⋅ S′.

Notation 2.1.26. For two sequences S and T , we write S ≤ T if S is a prefix of T , and
S < T if S is a proper prefix of T . When used in this way, we refer to ≤ and < as the
(strict) prefix order. One can easily see that the prefix order ≤ is indeed a partial order.
Proposition 2.1.28 below shows that it even a complete semilattice.

12 Chapter 2 Preliminaries

With this knowledge of sequences we can generalise addition of ordinal numbers to
arbitrary sequences of ordinal numbers.

Definition 2.1.27 (general addition of ordinals)
Let (βι)ι<α be a sequence of ordinals. The sum of (βι)ι<α, written ∑ι<α βι, is defined as
follows:

u∑
ι<α

βι = 0 if α = 0

∑
ι<α

βι = ∑
ι<α′

βι + βα′ if α = α′ + 1

∑
ι<α

βι = ⋃
⎧⎪⎪⎨⎪⎪⎩
∑
ι<γ

βι

RRRRRRRRRRR
γ < α

⎫⎪⎪⎬⎪⎪⎭
if α is a limit ordinal

To also generalise concatenation to arbitrary sequences of sequences, we need a means
for defining limits on sequences. The following proposition shows that the prefix order does
provide such a means.

Proposition 2.1.28 (prefix order on sequences is a complete semilattice)
The prefix order ≤ on sequences is a complete semilattice.

Proof. That ≤ is a partial order is obvious. In the following, we will show that ≤ is a
cpo and that two compatible sequences have a lub. The proposition then follows from
Proposition 2.1.7.

The empty sequence is the least element for ≤. Let D be a directed set of sequences
(over the same set). We will show that D has a lub. Define α = ⋃{∣S∣ ∣S ∈D}. α is the
length of the sequence S that we will construct. Define S = (aι)ι<α by choosing, for each
γ < α, some sequence (bι)ι<β ∈ D with β > γ and setting aγ = bγ . One can easily check that
S is well-defined and is indeed the lub of D. This shows that ≤ is a cpo.

Next consider two compatible sequences S1 and S2. That is, there is a sequence Ŝ with
S1, S2 ≤ Ŝ. Hence, there are two sequences T1 and T2 with S1 ⋅ T1 = Ŝ = S2 ⋅ T2. One can
easily see that then S1 ≤ S2 or vice versa. In the former case, S2 is the lub of {S1, S2}, in
the latter case, it is S1.

Definition 2.1.29 (general concatenation of sequences)
Let (Sι)ι<α be a sequence of sequences over a common set. The concatenation of (Sι)ι<α,
written ∏ι<α Sι, is defined as follows:

∏
ι<α

Sι = ε if α = 0

∏
ι<α

Sι = ∏
ι<α′

Sι ⋅ Sα′ if α = α′ + 1

∏
ι<α

Sι = ⊔
⎧⎪⎪⎨⎪⎪⎩
∏
ι<γ

Sι

RRRRRRRRRRR
γ < α

⎫⎪⎪⎬⎪⎪⎭
if α is a limit ordinal

Remark 2.1.30. The general concatenation of sequences of sequences is well-defined in the
limit ordinal case since the set {∏ι<γ Sι ∣γ < α} is directed as one can easily see. Proposi-
tion 2.1.28 then yields that the lub of this set exists.

2.1.3 Limits in Partial Orders

In this section we provide a means to define limits for sequences using a partial order.

2.2 Topology 13

Definition 2.1.31 (limit inferior)
Let (A,≤) be a partial order and (aι)ι<α a non-empty α-sequence in A. The limit inferior
of (aι)ι<α, written lim inf

ι→α
aι, is defined as:

lim inf
ι→α

aι = ⊔
β<α

⎛
⎝ ⊓
β≤ι<α

aι
⎞
⎠

It is easy to see that the limit inferior of closed sequences is simply the last element of
the sequence. This is, however, only a special case of the following more general proposition:

Proposition 2.1.32 (invariance of limit inferior)
Let (aι)ι<α be a sequence in a partially ordered set and (bι)ι<β a non-empty suffix of (aι)ι<α.
Then lim infι→α aι = lim infι→β bι.

Proof. Since lim infι→α aι = ⊔γ<α⊓γ≤ι<α aι, we have to show that

a = ⊔
γ<α

⊓
γ≤ι<α

aι = ⊔
β≤γ<α

⊓
γ≤ι<α

aι = a′ holds for each β < α.

Let bγ = ⊓γ≤ι<α aι for each γ < α, A = {bγ ∣γ < α} and A′ = {bγ ∣β ≤ γ < α}. Note that
a = ⊔A and a′ = ⊔A′. Since A′ ⊆ A, we have that a′ ≤ a. On the other hand, since bγ ≤ bγ′
for γ ≤ γ′, we find, for each bγ ∈ A, some bγ′ ∈ A′ with bγ ≤ bγ′ . Hence, a ≤ a′. Therefore,
due to the antisymmetry of ≤, we can conclude that a = a′.

For sequences of limit ordinal length, the limit inferior might not exist. The following
proposition provides a sufficient condition for the partial order that guarantees the existence
of the limit inferior.

Proposition 2.1.33 (limit inferior for complete semilattices)
The limit inferior is defined for any non-empty sequence in a complete semilattice.

Proof. Let (A,≤) be complete semilattice and (aι)ι<α a non-empty sequence in A. As ≤ is
also a cpo, it suffices to show that D = {⊓β≤ι<α aι ∣β < α} is a directed set. Let a, b ∈D, i.e.
there are β′, β′′ < α such that a = ⊓Mβ′ and b = ⊓Mβ′′ for Mβ = {aι ∣β ≤ ι < α}. Assume
w.l.o.g. that β′ ≤ β′′. Thus, Mβ′′ ⊆Mβ′ and, consequently, a ≤ b. A fortiori, a and b have an
upper bound in D.

Proposition 2.1.34 (limit inferior of open sequences)
Let (A,≤) be a complete semilattice and (aι)ι<λ an open sequence in A. Then it holds that
lim infι<λ aι = lim infι<λ(aι ⊓ aι+1).

Proof. Let a = lim infι<λ aι and â = lim infι<λ(aι ⊓ aι+1). Since aι ⊓ aι+1 ≤ aι for each
ι < λ, we have â ≤ a. On the other hand, consider the sets Aα = {aι ∣α ≤ ι < λ} and
Âα = {aι ⊓ aι+1 ∣α ≤ ι < λ} for each α < λ. Of course, we then have ⊓Aα ≤ aι for all
α ≤ ι < λ, and thus also ⊓Aα ≤ aι ⊓ aι+1 for all α ≤ ι < λ. Hence, ⊓Aα is a lower bound of
Âα which implies that ⊓Aα ≤ ⊓ Âα. Consequently, a ≤ â and, due to the antisymmetry of
≤, we can conclude that a = â.

2.2 Topology

In this section the basic notions of topological and in particular metric spaces are recapitu-
lated. A recent textbook on this matter is [Mun00].

14 Chapter 2 Preliminaries

2.2.1 Topological Spaces
At first we give an overview over general topological spaces.

Definition 2.2.1 (topological space)

(i) A topology on a set X is a class T of subsets of X having the following properties:

(1) ∅,X ∈ T
(2) If A ⊆ T , then ⋃A ∈ T
(3) If U,V ∈ T , then U ∩ V ∈ T .

(ii) A set X together with a topology T on it is called a topological space.

Definition 2.2.2 (open/closed set, neighbourhood, Hausdorff space)
Let X be a topological space with topology T .

(i) A subset U ⊆ X is called open resp. closed if U ∈ T resp. U ∖X ∈ T . A set V ⊆ X is
called a neighbourhood of a point p ∈ X if it contains an open set that contains p, i.e.
p ∈ U ⊆ V for some U ∈ T .

(ii) X is called a Hausdorff space if, for each pair x1, x2 of distinct points in X, there exist
neighbourhoods U1 and U2 of x1 and x2, respectively, that are disjoint.

The notion of a basis for a topology helps to define a topology on a set.

Definition 2.2.3 (basis for a topology)

(i) Let X be a set. A basis for a topology on X is a class B of subsets of X, called basis
elements, such that

(1) For each x ∈X, there is at least one basis element B ∈ B containing x.
(2) If x belongs to the intersection of two basis elements B1,B2 ∈ B, then there is a

basis element B ∈ B containing x such that B ⊆ B1 ∩B2.

(ii) If B is a basis for a topology on X, the topology T generated by B is defined as
{⋃B ∣B ⊂ B}.

Example 2.2.4 (ordinal spaces)
The concept of a basis can be used to conveniently define the standard topology on ordi-
nals. Every ordinal α can be endowed with a topology Tα that is generated by the basis
Bα = {[β, γ) ∣β, γ ≤ α;β not a limit ordinal}, where [β, γ) = {δ ∣β ≤ δ < γ }. The resulting
topological space is called an ordinal space.

Definition 2.2.5 (continuity)
Let X and Y be topological spaces. A function f ∶ X → Y is called continuous at point x ∈X
if, for each neighbourhood V of f(x), there is a neighbourhood U of x such that f(U) ⊆ V . A
function f ∶ X → Y is called continuous if it is continuous at each point x ∈X. In particular,
if f is a sequence, i.e. X is an ordinal space, we call the sequence f a continuous sequence.

It is easy to see from this definition, that a sequence is continuous at any non-limit
ordinal point. So, for checking continuity of sequences, only limit ordinal points have to be
considered. This is summarised in the following lemma:

Lemma 2.2.6 (continuity of sequences)
Let (xι)ι<α be a sequence in a topological space X. (xι)ι<α is continuous iff, for each limit
ordinal γ < α and each neighbourhood V of xγ , there is an ordinal βV < γ such that xι ∈ V
for each βV < ι < γ.

2.2 Topology 15

Proof. For the “if” direction, let γ < α and V be a neighbourhood of xγ . To show that
(xι)ι<α is continuous, we have to provide a neighbourhood U of γ with xι ∈ V for all ι ∈ U .
Suppose γ is not a limit ordinal. Then {γ} is an open set and we choose U = {γ}. If γ is
a limit ordinal, we use the hypothesis and choose U = {ι ∈ α ∣βV < ι < γ }. For the “only if”
direction, let (xι)ι<α be a continuous sequence, i.e., for each γ < α and each neighbourhood
V of xγ , there is a neighbourhood U of γ such that xι ∈ V for all ι ∈ U . We consider
the particular case where γ is a limit ordinal. One can easily see that in this case the
neighbourhood V of xγ has to contain an open set {ι ∈ α ∣βV < ι < γ } for some βV < γ.

Definition 2.2.7 (convergence)
Let X be a topological space and (xι)ι<α a non-empty sequence in X. The sequence (xι)ι<α
converges to a point x ∈ X if, for each neighbourhood U of x, there is a γ < α such that
xι ∈ U for all γ < ι < α. Then x is called a limit of (xι)ι<α.

Note that S(α)-sequences (aι)ι<S(α) uniquely converge to the point aα. The notion of
convergence is only non-trivial for open sequences.

Proposition 2.2.8 (Hausdorff spaces admit at most one limit point)
If X is a Hausdorff space, then any sequence in X converges to at most one point.

Notation 2.2.9. If (xι)ι<α is a sequence in a Hausdorff space, we write limι→α xι = x
whenever (xι)ι<α converges to x.

In particular, every ordinal space is a Hausdorff space and, thus, admits at most one
limit point.

Lemma 2.2.10 (concatenation of sequences)
Let X be a topological space and S = (aι)ι<α, T = (bι)ι<β two non-empty sequences in X.
Then the following holds:

(i) S ⋅ T is continuous iff S and T are continuous, and S is closed or converges to b0.

(ii) S ⋅ T converges to a iff T converges to a.

Proof. This follows immediately from Lemma 2.2.6 and Lemma 2.1.19.

2.2.2 Metric Spaces
In this section we consider a particular class of topological spaces – metric spaces.

Definition 2.2.11 ((ultra-)metric space)

(i) Let M be a set. A function d∶ M ×M → R+
0 is called a metric on M if the following

properties hold for all x, y, z ∈M :
(1) d(x, y) = 0 iff x = y (identity)
(2) d(x, y) = d(y, x) (symmetry)
(3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

If d instead of (3) satisfies the stronger property
(3’) d(x, z) ≤ max {d(x, y),d(y, z)} , (strong triangle)

it is called an ultrametric.

(ii) A metric space is a pair (M,d), where M is a set and d is a metric on M . If d is even
an ultrametric, (M,d) is called an ultrametric space.

An example for a complete metric space that is not an ultrametric space is the set R of
real numbers together with the usual metric d(x, y) = ∣x − y∣. Later we will see an example
for an ultrametric space.

16 Chapter 2 Preliminaries

Definition 2.2.12 (metric topology)
Let (M,d) be a metric space.

(i) Let m ∈M and ε ∈ R+. The open ε-ball centred at m, denoted Bd(m,ε) is defined as

Bd(m,ε) = {n ∣d(m,n) < ε} .

(ii) The class B = {Bd(m,ε) ∣m ∈M,ε ∈ R+ } of open ε-balls is a basis for a topology on
M . The generated topology T on M is called metric topology.

Metric topologies are Hausdorff, i.e., in particular, limits of sequences are unique if they
exist. With the above definition of metric topologies the criterion for the continuity and for
the convergence of sequences in a metric space can be formulated as follows:

Lemma 2.2.13 (continuity and convergence in metric spaces)
Let (M,d) be a metric space and (mι)ι<α a sequence in M .

(i) The sequence (mι)ι<α converges to a point m ∈M iff, for each ε ∈ R+, there is a β < α
such that d(m,mι) < ε for every β < ι < α.

(ii) The sequence (mι)ι<α is continuous iff, for each limit ordinal λ < α and ε ∈ R+, there
is a β < λ such that d(mλ,mι) < ε for every β < ι < λ; in other words, for each limit
ordinal λ < α, the prefix (mι)ι<λ converges to mλ.

Definition 2.2.14 (Cauchy sequence)
Let (M,d) be a metric space and (mι)ι<α a sequence in M . (mι)ι<α is called a Cauchy
sequence if, for any ε ∈ R+, there is a β < α such that, for all β < ι < ι′ < α, we have that
d(mδ,m

′
δ) < ε.

It is clear that every closed sequence is a Cauchy sequence. If one deals with ultrametric
spaces, there is a simpler characterisation of open Cauchy sequences:

Lemma 2.2.15 (Cauchy sequence in ultrametric spaces)
Let (M,d) be an ultrametric space. An open continuous sequence (mι)ι<α is Cauchy iff
limι→α d(mι,mι+1) = 0.

Proof. The “only if” direction follows straightforwardly from the definition of Cauchy se-
quences. For the “if” direction, suppose (mι)ι<α is an open continuous sequence with
limι→α d(mι,mι+1) = 0. That is, according to Lemma 2.2.13, for each ε ∈ R+, there is a
βε < α such that

d(mι,mι+1) < ε for all βε < ι < α. (1)

We will show that this implies d(mδ,mγ) < ε for all βε < δ < γ < α, which proves that
(mι)ι<α is Cauchy. We will proceed by transfinite induction on γ > δ.

If γ = δ + 1, then d(mδ,mγ) < ε follows from (1). If γ = γ′ + 1 > δ, then we get
d(mδ,mγ′) < ε by applying the induction hypothesis. From (1), we obtain d(mγ′ ,mγ) < ε.
By combining these inequalities using the stronger triangle inequality of the ultrametric, we
get

d(mδ,mγ) ≤ max {d(mδ,mγ′),d(mγ′ ,mγ)} < ε.

Let γ > δ be a limit ordinal. Since (mι)ι<α is continuous, according to Lemma 2.2.13,
there is a δ′ < γ such that d(mγ ,mι) < ε for each δ′ < ι < γ. In particular, this holds for
some ι > δ. Additionally, we can apply the induction hypothesis to get d(mδ,mι) < ε. These
two inequalities can be combined by the triangle inequality and the symmetry of d:

d(mδ,mγ) ≤ max {d(mδ,mι),d(mι,mγ)} = {d(mδ,mι),d(mγ ,mι)} < ε.

2.2 Topology 17

From the definition of Cauchy sequences, it is easy to see that the following holds:

Fact 2.2.16 (convergences implies Cauchy)
Every converging sequence in a metric space is Cauchy.

Then the following property of continuous sequences in metric spaces is obvious:

Corollary 2.2.17 (continuous sequences in metric spaces)
For every continuous sequence (mι)ι<α in a metric space, limι→λ d(mι,mι+1) = 0 holds for
each limit ordinal λ < α.

Proof. This follows immediately from Lemma 2.2.13 and Fact 2.2.16.

Definition 2.2.18 (completeness of a metric space)
Let (M,d) be a metric space.

(i) M is called α-complete if every Cauchy sequence of length α is converging.

(ii) M is called complete if it is α-complete for each ordinal α ≠ 0.

Note that in the literature mostly ω-sequences are considered and, therefore, the notion
of ω-completeness is simply called completeness in these contexts. But this will cause no
confusion since both notions actually coincide:

Lemma 2.2.19 (completeness)
Let (M,d) be a metric space.

(i) M is α-complete for every successor ordinal α.

(ii) M is ω-complete iff M is complete.

Proof. (i) Trivial.
(ii) The “if” direction is trivial. For the “only if” direction, let S = (aι)ι<α be a non-

empty Cauchy sequence over an ω-complete metric space (M,d). We have to show that
S converges. If α is a successor ordinal, this is trivial. If, on the other hand, α is a limit
ordinal, consider an ω-sequence (εi)i<ω in R+ that converges to 0, e.g. εi = 1

i
. Since S is a

Cauchy sequence, for each εi with i < ω, there is an ordinal γi < α such that

d(aδ, aδ′) < εi for all γi < δ, δ′ < α. (1)

Since α is a limit ordinal, Lemma 2.1.15 allows us to choose the γi’s such that f ∶ ω → α
given by i ↦ γi is a monotone function. Consider the subsequence S′ = S/f . In order to
see that this is a Cauchy ω-sequence, let ε ∈ R+. Since (εi)i<ω converges to 0, there is some
n < ω with εn ≤ ε. Because, according to (1), d(aδ, aδ′) < εn ≤ ε for all γn < δ, δ′ < α and
because of the monotonicity of f , we have

d(a′i, a′j) = d(af(i), af(j)) < εn ≤ ε for all n < i, j < ω.

Hence, S′ = (a′i)i<ω is a Cauchy ω-sequence and, thus, converges to some a ∈ M by the
ω-completeness of M . That is, for each ε ∈ R+, there is some nε < ω such that

d(a, a′i) < ε for all nε < i < ω. (2)

We will show that also S converges to a. To this end, let ε ∈ R+. Then, by (2), we have

d(a, a′i) <
ε

2
for all n ε

2
< i < ω. (3)

Since (εi)i<ω converges to 0, there is some n ε
2
< k < ω such that εk ≤ ε

2 . Consequently, as an
instance of (1) we have

d(aδ, aδ′) < εk ≤
ε

2
for all f(k) < δ, δ′ < α

18 Chapter 2 Preliminaries

In particular, we get
d(af(k+1), aδ) <

ε

2
for all f(k) < δ < α (4)

As k + 1 > n ε
2
, we obtain from (3) that

d(a, af(k+1)) = d(a, a′k+1) <
ε

2
. (5)

By combining (4) and (5) using the triangle inequality, we get

d(a, aδ) ≤ d(a, af(k+1)) + d(af(k+1), aδ) <
ε

2
+ ε

2
= ε.

Consequently, S converges to a as well.

Definition 2.2.20 (dense set)
Let (M,d) be a metric space. A subset N ⊆M is called dense if

M = {lim
i→ω

mi ∣mi ∈ N for all i < ω} .

That is, M is the set of limits of all convergent ω-sequences in N .

For any metric space M , one can construct a complete metric space M that contains M
as a dense subspace. M is unique up to isomorphism. It is called the completion of M .

2.3 Reduction Systems

In this section the most fundamental notions and results in the field of reduction systems,
most importantly term rewriting systems, are collected in order to set the preparations for
the investigations in this thesis. For more details, we recommend consulting [BN98] and
[Ter03].

2.3.1 Abstract Reduction Systems
At first we consider abstract reduction systems.

Definition 2.3.1 (abstract reduction system)
An abstract reduction system (ARS) is a quadruple A = (A,Φ, src, tgt) consisting of a set of
objects A, a set of steps Φ, and the source and target functions src∶ Φ → A and tgt∶ Φ → A,
respectively. We write ϕ∶ a→A b whenever there are ϕ ∈ Φ, a, b ∈ A such that src(ϕ) = a and
tgt(ϕ) = b. Usually, the name of the involved step is not needed to be explicitly indicated
in which case we simply write a →A b. If the ARS is clear from the context, we drop the
explicit reference to it and write a→ b instead.

This definition is rather technical and, for most purposes, it is too cumbersome to define
the components Φ, src, tgt explicitly. Therefore, we allow to “reverse” the notation that we
have introduced above to use it also to define an ARS. We want to be able to define an ARS
by giving a collection of statements of the form a → b, where a, b are objects of the ARS.
The set Φ is then defined to be the set of these statements a → b, i.e. pairs of objects, and
we define src(a→ b) = a and tgt(a→ b) = b.

Remark 2.3.2. The usual definition of an ARS comprises a pair consisting of a set of
objects and a binary relation on this set. The reason for choosing a finer structured system
becomes clearer when we extend this concept to transfinite abstract reduction systems in
Chapter 3 and even more so when we extend the semantics of (infinitary) term rewriting
systems to transfinite abstract reduction systems. To this end, consult Remark 3.1.5 for a
motivation of this definition.

2.3 Reduction Systems 19

Definition 2.3.3 (reduction sequence)
An α-sequence S = (ϕι)ι<α of reduction steps in an ARS A is called an α-reduction sequence
(or simply reduction sequence) if there is a sequence of objects (aι)ι<α′ in the underlying set
A, where α′ = α if S is open, α′ = α+1 if S is closed, such that ϕι∶ aι → aι+1 for all ι < α. For
such a sequence, we also write (ϕ∶ aι → aι+1)ι<α or simply (aι → aι+1)ι<α. The reduction
sequence S is said to start from a whenever a = a0. In some cases we are not interested in
the actual sequence of steps of a reduction sequence, in which case we will simply call it a
reduction.

Remark 2.3.4. For now, reduction sequences of length greater than ω are not meaningful.
One can easily see that, for example, the ω-th step in such a sequence is not related to
the preceding steps of the reduction sequence. This holds in general for all reduction steps
indexed by a limit ordinal. For successor ordinals, this is not a problem as by the above
definition the (β + 1)-st step is required to start in the object that the β-th step ends in.
Meaningful definitions for reduction sequences of length beyond ω have to include a notion of
continuity which bridges the gaps caused by limit ordinals. A variety of different approaches
to such a notion is given in Chapter 3.

Notation 2.3.5. Let A be an ARS, and S = (ai → ai+1)i<n a finite reduction sequence in
A of length n. To indicate this fact, we write S∶ a →∗

A an. For the special case of n = 1
and n > 0, we write S∶ a0 →A an resp. S∶ a0 →+

A an. On some occasions it is convenient to
“reverse” this notation in which case we will use S∶ an ←∗

A a0, S∶ an ←A a0, and S∶ an ←+
A a0,

respectively. If A is clear from the context, it is omitted from the notation. If the name of
the sequence is not of relevance, it is omitted as well.

Whenever a→⋆
A b we say that a reduces to b in A or that b is a reduct of b in A.

In some contexts the direction, in which reductions are performed, is irrelevant. In this
case we will consider the symmetric closure of an ARS:

Definition 2.3.6 (symmetric closure of an ARS)
Let A = (A,Φ, src, tgt) be an ARS. The symmetric closure As = (A,Φs, srcs, tgts) of A is
constructed by adjoining, for each step ϕ in A, a symmetric copy ϕ′ of it. More specifically,
Φs = ϕ⊎{ϕ′ ∣ϕ ∈ Φ}; and srcs(ϕ) = src(ϕ), tgts(ϕ) = tgt(ϕ), srcs(ϕ′) = tgt(ϕ), and tgts(ϕ′) =
src(ϕ) for all ϕ ∈ Φ. That is, whenever ϕ∶ a →A b, then we have both ϕ∶ a →As b and
ϕ′∶ b→As a.

Notation 2.3.7. Usually, we will use the symmetric closure As of an ARS A only implicitly.
A finite reduction sequence in As is called a finite conversion sequence in A. And, referring
to Notation 2.3.5, we will use the notations S∶ a↔∗

A b, S∶ a↔A b, and S∶ a↔+
A b instead of

S∶ a→∗
As b, S∶ a→As b, and S∶ a→+

As b, respectively.

Notation 2.3.8. To make statements about one or more ARSs more concise, we will further
shorten the notation by using →A (or simply →) to refer to the relation

{(a, b) ∈ A ×A ∣a→A b} .

The same is done for the other “arrow notations” such as →∗
A, ↔A etc. One can then

easily verify that →+
A is the transitive closure, →∗

A the reflexive transitive closure, and ←A
the reverse of →A. Furthermore, ↔A is its symmetric closure, ↔+

A its symmetric transitive
closure, and ↔∗

A its reflexive symmetric transitive closure.

Definition 2.3.9 (properties of ARSs)
Let A = (A,Φ, src, tgt) be an ARS.

(i) Every element a ∈ A is called a normal form of A if there is no b ∈ A such that a → b.
We use NFA to denote the set of all normal forms of A.

(ii) A is confluent (CR) if ←∗ ○ →∗⊆→∗ ○ ←∗.

20 Chapter 2 Preliminaries

(iii) A has the diamond property (DP) if ← ○ →⊆→ ○ ←.

(iv) A is terminating (SN) if there is no ω-reduction sequence in A.

(v) A is normalising (WN) if every element in A reduces to a normal form.

(vi) A is complete (COMP) if it is both confluent and terminating.

(vii) A has the normal form property (NF) if a ↔⋆ b implies a →⋆ b for all a ∈ A and any
normal form b ∈ A.

(viii) A has the unique normal form property (UN) if a ↔⋆ b implies a = b for all normal
forms a, b ∈ A.

(ix) A has the unique normal form property w.r.t. reduction (UN→) if a ←⋆ c →⋆ b implies
a = b for all normal forms a, b ∈ A and all c ∈ A.

Notation 2.3.10. For a property P of an ARS, we take the convenience of writing P (A)
if we want to indicate that the ARS has the property P . Moreover, if P is a universal
property, i.e. a property that states that all elements should have a certain property P ′, we
choose to write P (A, a) whenever the object a of A satisfies the property P ′. Moreover, if
we have two universal properties P1, P2, we write P1 Ô⇒ P2 to indicate that, for any ARS
A and any object a in A, we have that P1(A, a) implies P2(A, a). Note, that in this case
we also have that P1(A) implies P2(A).

2.3.2 Terms

In this section we provide an overview over finite and infinite terms.

Definition 2.3.11 (finite terms)

(i) A signature is a countable set Σ of function symbols each of which is associated with
a natural number denoting its arity, i.e. the number of its arguments. Σ(n) denotes
the set of function symbols in Σ of arity n. We use ar(f) as a shorthand to denote the
arity of the symbol f in Σ, i.e. ar(f) = k iff f ∈ Σ(k).

(ii) The set T (Σ,V) of finite terms over a signature Σ and some (usually countably infi-
nite) set V of variables with Σ ∩ V = ∅ is the smallest set T containing V such that
f(t1, . . . , tn) ∈ T whenever f ∈ Σ(n) and t1, . . . , tn ∈ T . T (Σ) = T (Σ,∅) denotes the set
of finite ground terms, i.e. terms without variables.

In fact, to be able to have an appropriate concept of transfinite reductions over terms,
we need to extend the notion of terms. The set of finite terms is defined inductively. If we
turn this definition into a coinductive one, it turns out, as we will show later, that we get
precisely the desired notion of infinite terms that we will need for our purposes.

Definition 2.3.12 (infinitary terms)
The set T ∞(Σ,V) of infinitary terms over a signature Σ and some set V of variables with
Σ ∩ V = ∅ is the greatest set T such that, for each element t ∈ T , we either have t ∈ V or
t = f(t1, . . . , tk), where k ≥ 0, f ∈ Σ(k), and t1, . . . , tk. T ∞(Σ) = T ∞(Σ,∅) denotes the set
of infinitary ground terms, i.e. infinitary terms without variables. Usually, as we are mostly
interested in the general setting of infinitary terms, we omit the adjective “infinitary” and
simply say set of terms or set of ground terms, respectively.

Remark 2.3.13. The duality between finite and infinitary terms becomes more explicit if
one considers the category-theoretic formulations of inductive and coinductive definitions.

2.3 Reduction Systems 21

The definition of the set of finite terms T (Σ,V) as given in Definition 2.3.11 is equivalent to
the definition of the initial FΣ,V -algebra, where the functor FΣ,V ∶ Set→ Set is defined by

X ↦ ∐
n≥0

(Σ(n) ×Xn) + V

On the other hand, the set of infinitary terms T ∞(Σ,V) as defined in Definition 2.3.12
can equivalently be defined as the final FΣ,V -coalgebra. By abuse of notation, we will identify
the final FΣ,V -coalgebra with its underlying set T ∞(Σ,V).

Note that not all elements of the set of infinitary terms are infinite. In fact, it is a
superset of the set of finite terms, i.e. T (Σ,V) ⊆ T ∞(Σ,V). This inclusion is strict iff Σ
contains at least one non-nullary symbol or V is not empty. Thus, subsequently, we will
define several concepts for the set of infinitary terms T ∞(Σ,V) which will then also apply to
the set of finite trees T (Σ,V). However, we have to be careful since the usual technique of
defining concepts inductively on the structure of terms does not work as we are also dealing
with infinite terms. This is explicitly taken care of in the following definition of positions in
terms.

Definition 2.3.14 (position, subterm)
Let t ∈ T ∞(Σ,V) be a term.

(i) A position is a finite sequence over N. The set of positions in the term t, denoted P(t),
is defined by

π ∈ P(t) ∶ ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

π = ε or
π = i ⋅ π′, t = f(t0, . . . , tk−1), k > 0,0 ≤ i < k, π′ ∈ P(ti)

The set P(t) is sometimes also referred to as the set of occurrences in t. Accordingly,
elements of P(t) are called positions or occurrences. The latter notion is preferred
whenever the subterm at a particular position is referred to rather than the position
itself.

(ii) The set of subterms of the term t, denoted S(t), is the least set S such that

(a) t ∈ S, and
(b) if f(t1, . . . , tk) ∈ S, then also t1, . . . , tk ∈ S.

A term s is called a subterm of t if s ∈ S(t). A subterm s of t is called proper if s ≠ t.

Since positions are sequences, all notions that we have for sequences carry over to posi-
tions. The most important ones are the prefix order ≤ and the disjointness of two sequences.

Note that P(t) is well-defined for all terms t as, in the right-hand side occurrence of
the ⋅ ⋅ ⋅ ∈ P(. . .) statement in the recursive definition, the referred position π′ is smaller
than the position π on the left-hand side. Subsequently, we will often use induction on
(the length of) the positions of terms rather than induction on the structure of terms in
order to be able make definitions and proofs work also on infinite terms. Alternatively, we
will use coinductive definitions and arguments, i.e. we will make use of the finality of the
FΣ,V -coalgebra T ∞(Σ,V).

Beside these formal difficulties also practical problems arise. The foremost of these
problems is that of how to represent infinite terms. We deal with a partial solution to this
problem in Chapter 4. But also when presenting examples, we need a notation for denoting
infinite terms. One abbreviation that we will use is the notation fω for the infinite term
f(f(f(. . .))).

Definition 2.3.15 (positions as pointers)
Let s, t ∈ T ∞(Σ,V) be terms and π ∈ P(t) be a position in t.

22 Chapter 2 Preliminaries

(i) The subterm of t at π, denoted t∣π, is inductively defined as

t∣π ∶=
⎧⎪⎪⎨⎪⎪⎩

t if π = ε
ti∣π′ if π = i ⋅ π′, t = f(t0, . . . , tk−1) and 0 ≤ i < k

(ii) The symbol of t at π, denoted t(π), is defined as t∣π if t∣π ∈ V and f if t∣π = f(t1, . . . , tk),
k ≥ 0.

(iii) If π ∈ P(s) and s(π) = t(π), then we say that s and t coincide in π.

(iv) The replacement of the subterm of t at π by s, denoted by t[s]π, is inductively defined
as

t[s]π ∶=
⎧⎪⎪⎨⎪⎪⎩

s if π = ε
f(t0, . . . , ti−1, ti[s]π′ , ti+1, . . . , tk−1) if π = i ⋅ π′ and t = f(t0, . . . , tk−1)

Notation 2.3.16. Sometimes we need to restrict the occurrences in a term t to the non-
variable occurrences, i.e. the set {π ∈ P(t) ∣ t(π) ∈ Σ}. We denote this set of non-variable
occurrences in a term t as PΣ(t). Moreover, we use the notation Var(t) to denote the set
{t(π) ∣ t(π) ∈ V } of variables occurring in t.

Remark 2.3.17. Infinitary terms in T ∞(Σ,V) can also be specified by a mapping ϕ∶ D →
Σ ∪ V where D is a subset of N∗ such that, for each π ⋅ i ∈D, we have

π ∈D, and (closure under prefixes)
0 ≤ i < ar(ϕ(π)). (ranked)

This mapping then uniquely determines a term t ∈ T ∞(Σ,V) with P(t) =D and t(π) = ϕ(π)
for all π ∈D.

Definition 2.3.18 (context, substitution)

(i) A context is a “term with holes” which are represented by a distinguished variable
◻. We write C[, . . . ,] for a context with at least one occurrence of ◻, C⟨, . . . , ⟩ for a
context with zero more occurrences of ◻, C{, . . . ,} for a context different from ◻ having
zero or more occurrences of ◻, and C[] for a context with exactly one occurrence of
◻. C[t1, . . . , tn] denotes the result of replacing the occurrences of ◻ in C (from left to
right) by t1, . . . , tn. C⟨t1, . . . , tn⟩ and C{t1, . . . , tn} are defined accordingly.

(ii) A substitution σ is a mapping from V to T ∞(Σ,V). Its domain, denoted dom(σ), is the
set {x ∈ V ∣σ(x) ≠ x} of variables not mapped to itself by σ. If the range of σ is a subset
of T (Σ,V), we call it a finite substitution. Substitutions are uniquely extended to mor-
phisms from T ∞(Σ,V) to T ∞(Σ,V), by the finality of the FΣ,V -coalgebra T ∞(Σ,V),
via σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for f ∈ Σ(n) and t1, . . . , tn ∈ T (Σ,V). Instead
of σ(s) we shall also write sσ.

On T ∞(Σ,V) we can define the following metric: Let t, t′ ∈ T ∞(Σ,V). At first define
the similarity of t and t′, denoted sim(t, t′), as the minimal depth where t and t′ differ, i.e.

sim(t, t′) = min {∣π∣ ∣π ∈ N∗, t(π) ≠ t′(π)} ∪ {∞}

Note that sim(t, t′) = ∞ iff t = t′. Now we define the distance d as

d(t, t′) = 2−sim(t,t′),

where we interpret 2−∞ as 0.
If not stated otherwise, we will consider T ∞(Σ,V) and all subsets of it (in particu-

lar T (Σ,V)) always with this metric. The following can be shown for the metric space
T ∞(Σ,V).

2.3 Reduction Systems 23

Proposition 2.3.19 (properties of the metric space T ∞(Σ,V), [AN80])

(i) (T ∞(Σ,V),d) is an ultrametric space.

(ii) (T ∞(Σ,V),d) is complete.

(iii) (T (Σ,V),d) is dense in T ∞(Σ,V).

(iv) (T ∞(Σ,V),d) is the metric completion of (T (Σ,V),d).

The set of terms can also be endowed with a partial order ≤�, assuming a special constant
symbol � that is supposed to denote “undefinedness”. We write Σ� to denote the signature
Σ ⊎ {�}. The terms in T ∞(Σ�,V) are also called partial terms over Σ. If it is necessary
to make it explicit, we refer to the terms in T ∞(Σ,V) as total terms. ≤� is defined on
T ∞(Σ�,V) as the least partial order with � ≤ t for all t ∈ T ∞(Σ�,V) that is monotone,
where monotone means that, for all k > 0, f ∈ Σ(k) and s, t0, . . . , tk−1 ∈ T ∞(Σ�,V), we have
that

tj ≤� s with 0 ≤ j < k implies f(t0, . . . , tj , . . . , tk−1) ≤� f(t0, . . . , s, . . . , tk−1)

Equivalently, the order can be characterised as follows: For two terms s, t ∈ T ∞(Σ�,V),
we have s ≤� t iff there is a context C⟨, . . . , ⟩ ∈ T ∞(Σ�,V) and terms t1, . . . , tn ∈ T ∞(Σ�,V)
such that s = C⟨�, . . . ,�⟩ and t = C⟨t1, . . . , tn⟩.

Proposition 2.3.20 (≤� is a complete semilattice, [GTWW77])
≤� is a complete semilattice on T ∞(Σ�,V).

Notation 2.3.21. Since the symbol � in partial terms is supposed to denoted undefined-
ness, it is often necessary to neglect the �-occurrences in a term. To this end, we use the
notation P∖�(t) to denote the set of occurrences of subterms in t different from �, i.e. the set
{π ∈ P(t) ∣ t(π) ≠ �}. Analogously, we use the notation P�(t) for the set {π ∈ P(t) ∣ t(π) = �}
of �-occurrences in t.

2.3.3 Term Rewriting Systems
In this section we introduce the basic theory of term rewriting.

Definition 2.3.22 ((infinitary) term rewriting system)
Let Σ be a signature.

(i) A term rewrite rule (or simply rewrite rule) over Σ is a pair (l, r) of finite terms in
T (Σ,V) with l ∉ V and Var(r) ⊆ Var(l). Instead of (l, r) we usually write l → r and
call l its left-hand side and r its right-hand side. If also infinitary terms in T ∞(Σ,V)
are allowed for the right-hand side, we call l → r an infinitary term rewrite rule.

(ii) An infinitary term rewriting system (ITRS) over Σ is a pair R = (Σ,R) consisting of
a signature Σ and a set R of infinitary term rewrite rules over Σ. If R is a set of term
rewrite rules, then R is called a term rewriting system (TRS).

(iii) Let R be an ITRS over Σ. We say that t is a term in R if t ∈ T ∞(Σ,V). Analogously,
we say that t is a partial term in R if t ∈ T ∞(Σ�,V).

Notation 2.3.23. Sometimes it is convenient to give a rewrite rule a name. In this case,
we write ρ∶ l → r to indicate that the rule l → r has been given the name ρ.

In the following, we will define some notions for ITRSs. As before, since TRSs are a
special case of ITRSs, these notions are also applicable to TRSs. This is particularly true
for the definition of the semantics of ITRSs which associates an ARS to an ITRS.

24 Chapter 2 Preliminaries

Definition 2.3.24 (semantics of ITRSs)
Let R = (Σ,R) be an ITRS.

(i) A prestep of R is a triple (t, π, ρ) consisting of a term t ∈ T ∞(Σ,V), a position π ∈ P(t),
and a rule ρ ∈ R.

(ii) A rule ρ∶ l → r ∈ R is applicable to a term t ∈ T ∞(Σ,V) at π ∈ P(t) if there is a
substitution σ such that lσ = t∣π. The term t[rσ]π is called the result of the application
of ρ to t at position π. Moreover, the subterm lσ is called a ρ-redex, the position π
is called a ρ-redex occurrence. The reference to the rule ρ may be omitted if it is
irrelevant.

(iii) A prestep ϕ = (t, π, ρ) is called a step if ρ is applicable to t at π.

(iv) The induced ARS of R, denoted AR, is given by the tuple (A,Φ, src, tgt), where the set
of objects A is the set of terms T ∞(Σ,V), and the set of steps Φ is the set consisting
of the steps of R. Let ϕ = (t, π, ρ) be a step of R. We define src(ϕ) = t and tgt(ϕ) = t′,
where t′ is the result of the application of ρ to t at π.

Notation 2.3.25. In virtue of the preceding definition, every ITRS R = (Σ,R) can be
associated with its induced ARS AR. That is why we identify R with AR and consider
ITRSs as a special case of ARSs. In particular, we will write s →R t instead of s →AR t.
Since the steps of an ITRS additionally contain information about the rule that was applied
and the position where it was applied, we sometimes want to make this explicit and use the
notation ϕ∶ s→π,ρ t for a step ϕ = (s, π, ρ).

Definition 2.3.26 (defined symbols and constructors)
Let R = (R,Σ) be an ITRS and f ∈ Σ. f is called a defined symbol of R if there is a rule l → r
with l(ε) = f . The set of all defined symbols is denoted by DR. f is called a constructor
if it is not a defined symbol. We use CR to denote the set of all constructors in R. If it is
clear which ITRS is meant, the subscript R may be dropped.

Definition 2.3.27 (pattern and arguments)
Let ρ∶ l → r be an infinitary term rewrite rule.

(i) The pattern of ρ is the context lσ◻, where σ◻ is the substitution {x↦ ◻ ∣x ∈ V } that
maps all variables to ◻.

(ii) Let t be a ρ-redex. Then the pattern P of ρ is also called a the redex pattern of t w.r.t.
ρ. Let l = P [x1, . . . , xn] and σ the substitution such that t = lσ = P [x1σ, . . . , xnσ]. The
terms x1σ, . . . , xnσ are called the arguments of the redex t.

(iii) When referring to the positions (or occurrences) in a pattern, occurrences of the symbol
◻ are neglected.

Definition 2.3.28 (critical pair)
Let R be an ITRS, ρ1∶ l1 → r1, ρ2∶ l2 → r2 two variable-renamed rules of R not sharing
variables, i.e. Var(l1) and Var(l2) are disjoint, and π a non-variable position in l1 such that
l1∣π and l2 are unifiable with most general unifier σ. Then (l1[r2]πσ, r1σ) is called a critical
pair of ρ1 and ρ2 at position π unless π = ε and ρ1 and ρ2 are two renamed versions of the
same rule. If such a critical pair exists, then ρ2 is said to overlap ρ1 at position π. If π = ε,
then the critical pair is called an overlay. The critical pair is called trivial if l1[r2]πσ = r1σ.
The critical pair is called joinable if l1[r2]πσ and r1σ have a common reduct r1σ, i.e. there
is a term t with l1[r2]πσ →⋆ t←⋆ r1σ.

A related notion is that of conflicting redex occurrences:

2.3 Reduction Systems 25

Definition 2.3.29 (conflicting redex occurrences)
Let R be an ITRS, t a term in R, and u, v two distinct redex occurrences in t. u and v are
called conflicting if there is a position π such that v = u ⋅ π and π is a pattern position of
the redex at u, or, vice versa, u = v ⋅ π and π is a pattern position of the redex at v. If this
is not the case, then u and v are called non-conflicting.

Conflicting redex occurrences correspond to critical pairs which are not overlays. More
precisely, whenever there is a pair of conflicting redex occurrences, say u and v = u ⋅ π, then
there is a critical pair (l1[r2]πσ, r1σ) of ρ1∶ l1 → r1 and ρ2∶ l2 → r2 at position π, with ρ1 a
rule for the redex occurrence u and ρ2 a rule for the redex occurrence v. Consequently, a
system without critical pairs does not admit conflicting redex occurrence. This is one of the
motivations for the following definition:

Definition 2.3.30 (linearity, orthogonality)
Let R be an ITRS.

(i) A term t is called linear if each variable has at most one occurrence in t.

(ii) A rule l → r of R is called left-linear if l is linear.

(iii) R is called left-linear if each rule in R is linear.

(iv) R is called orthogonal if it is left-linear and has no critical pairs.

(v) R is called almost orthogonal if it is left-linear and all its critical pairs are trivial
overlays.

(vi) R is called weakly orthogonal if it is left-linear and all its critical pairs are trivial.

(vii) R is called an overlay system if all its critical pairs are overlays.

It is easy to see that orthogonal ITRSs are also almost orthogonal, and in turn almost
orthogonal ITRSs are also weakly orthogonal. Moreover, it is clear that overlay systems
and, a fortiori, almost orthogonal systems do not admit conflicting redex occurrences.

Theorem 2.3.31 (confluence of weakly orthogonal ITRSs)
Each weakly orthogonal ITRS is confluent.

Definition 2.3.32 (collapsing rules)
Let R be an orthogonal ITRS.

(i) A rule l → r in R is called collapsing if r is a variable. The unique position of the
variable r in l is called the collapsing position of the rule.

(ii) A ρ-redex is called collapsing if ρ is a collapsing rule.

(iii) A collapsing tower is a non-empty sequence (ui)i<α of collapsing redex occurrences in
a term t such that ui+1 = ui ⋅ πi for each i < α, where πi is the collapsing position of
the redex at ui.

(iv) A collapsing tower (ui)i<α in a term t is said to be maximal if it is infinite or if it is
finite and uα−1 ⋅πα−1 is not a collapsing redex occurrence, where πα−1 is the collapsing
position of the redex t∣uα−1 .

Definition 2.3.33 (top-termination)
An ITRS R is called top-terminating if there are no ω-reduction sequences with infinitely
many steps occurring at the root position.

Chapter 3

Transfinite Reductions

The purpose of this chapter is to present models for extending abstract reduction systems in
order to define reduction sequences of transfinite length in a meaningful way. To this end, a
theoretical tool is needed to formalise the intuition of a limit of a sequence of elements. The
most general way of defining such limits is by considering topological spaces (cf. Section 2.2).
In particular, we want to investigate metric spaces as a basis for transfinite reductions. This
results in the theory of metric reduction systems which is presented in Section 3.1.

Another variant of limit constructions that can be explored is that of the limit inferior
and limit superior which is more powerful as it might permit convergence even if a limit
does not exist. This can again be formalised in terms of topological spaces. However, we
restrict our analysis of that matter to the particular case of partial orders and their notion
of limit inferior. We introduce reduction systems utilising this framework in Section 3.2.
The thus obtained reduction systems are called partial reduction systems.

Both approaches to transfinite reductions offer two kinds of reduction sequences: a weak
and a strong variant. The weak variant only takes into account the objects in a reduction
sequence and how they differ from each other. On the other hand, the strong variant
additionally considers how the objects of the reduction sequence have been created, i.e. it
also takes into account the reduction steps “between” the objects. For example, in the
case of term rewriting the position where each reduction rule in the reduction sequence is
applied becomes significant in the strong variant of transfinite reductions. We will see in
more detail what this means concretely for metric reduction systems and partial reduction
systems, respectively.

As the models that we are going to present in this chapter are rather abstract, we will
instantiate them for the case of term rewriting at a very early stage of the discussion in order
to provide an intuition for them and also to create appreciation for their merit. However,
an in-depth exploration of the consequences of the different models for transfinite term
rewriting sequences is deferred until Chapter 5.

In Section 3.3, the different notions of transfinite reduction sequences are compared. This
comprises a discussion of how to lift properties known from finite reductions to the realms of
transfinite reductions and how theses lifted properties behave in comparison to their original
finitary variants. Of course, in general this depends on which variant of transfinite reduction
we consider. However, interestingly enough this choice is in most cases insignificant as we
will see.

Moreover, we present a set of abstract criteria which will guarantee that the reduction
sequences of MRSs and PRSs are the same up to some well-defined subclass of them. This is
going to be crucial for the subsequent chapters, as this allows us to transfer results between
the MRS and the PRS world.

At the end of this chapter, in Section 3.4, we mention other possibilities of defining
transfinite reductions.

27

28 Chapter 3 Transfinite Reductions

3.1 Metric Reduction Systems

In this section we want to formalise the extension of abstract reduction systems by a metric
space which enables us to define reduction sequences of transfinite length. Historically, the
idea of employing a metric space was the first one that was proposed for this purpose (cf.
[DKP89, DK89, DKP91]). Later Kennaway et al. [KKSdV91] proposed a restriction to this
definition of transfinite rewriting which required the depth of the reduction steps to tend to
infinity in order to obtain a limit for reductions of limit ordinal length. This resulted in the
distinction between weak and strong variants of transfinite reductions.

In [Ken92] Kennaway generalised this approach to transfinite reductions to abstract
reduction systems. This section is largely based on this work. The definition below follows
the idea of the notion of metric abstract reduction systems that Kennaway introduced in
[Ken92].

Definition 3.1.1 (metric reduction system [Ken92])
A metric reduction system (MRS) is a tupleM= (A,Φ, src, tgt,d,hgt), such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS ofM,

(ii) d∶ A ×A→ R+
0 is a function such that (A,d) is a metric space,

(iii) hgt∶ Φ→ R+ is a function, called the height function, and

(iv) if ϕ∶ a→A b, then d(a, b) ≤ hgt(ϕ).

If the metric of an MRSM is even an ultrametric, thenM is called an ultrametric reduction
system (URS). Furthermore, an MRS is referred to as complete if the underlying metric space
is complete.

The heart of every MRS is the underlying ARS. The other two parts, viz. the metric and
the height, are needed to define the limit behaviour of transfinite reduction sequences, viz.
continuity and convergence, and to distinguish weak and strong variants thereof, respectively.

Notation 3.1.2. We consider an MRS M as an instance of the underlying ARS A. This
allows us to conveniently use the same notions and notations introduced for ARSs. In
particular, we write ϕ∶ a→M b for a reduction step ϕ∶ a→A b in the underlying ARS. If we
want to explicitly indicate the height of a reduction step inM, we write ϕ∶ a→h b whenever
hgt(ϕ) = h.

We also want to extend the convention of defining ARSs to the concept of MRSs. Instead
of giving the elements Φ, src, tgt,hgt explicitly we choose to define them implicitly where
appropriate. To this end, we provide a collection of statements of the form a →h b, where
a, b are objects of the MRS and h ∈ R+. This defines Φ, src, tgt and hgt as follows: Φ is
the set of the given statements of the form a →h b, src(a →h b) = a, tgt(a →h b) = b, and
hgt(a→h b) = h.

Since the definition of MRSs is indeed rather abstract, we choose to already extend the
semantics of ITRSs to the model of MRSs such that its intuition becomes clear.

Definition 3.1.3 (MRS semantics of ITRSs)
Let R = (Σ,R) be an ITRS. The MRS induced by R, denotedMR, is given by the tuple

(T ∞(Σ,V),Φ, src, tgt,d,hgt),

where (T ∞(Σ,V),Φ, src, tgt) is the ARS AR induced by R, d is the usual ultrametric on
T ∞(Σ,V), and hgt is defined as

hgt(ϕ) = 2−∣π∣, where ϕ∶ t→π,ρ t′.

3.1 Metric Reduction Systems 29

The choice of the definition of the height of a reduction step is made in accordance with
the definition of the metric on terms: Whereas the distance d(s, t) of two terms s and t is
defined as 2−d with d the minimal depth of a discrepancy between s and t (or ∞ if none
exists), the height of a rewrite step s→ t is defined as 2−d′ with d′ the depth of the redex that
was contracted. This illustrates that the height of a rewriting step is an overapproximation of
the actual distance d(s, t) of the involved terms in the sense of clause (iv) of Definition 3.1.1.
In fact, we have the following:

Proposition 3.1.4 (MRS semantics yields a complete URS)
Each ITRS R induces a complete URSMR.

Proof. As shown in Proposition 2.3.19, T ∞(Σ,V) forms a complete ultrametric space.
Hence, it remains to be shown that d(s, t) ≤ hgt(ϕ) for each reduction step ϕ∶ s →π,ρ t.
This is immediate from the definition of d and hgt: Since the reduction step takes place at
π, we have sim(s, t) ≥ ∣π∣ and, therefore, d(s, t) = 2−sim(s,t) ≤ 2−∣π∣ = hgt(ϕ).

Remark 3.1.5. The MRS semantics of ITRSs as given above illustrates the need for reifica-
tion of reduction steps in the definition of ARSs, i.e. making reduction steps distinguishable
objects themselves. For example, consider the TRS with the single rule ρ∶ f(x) → x and
the term f(f(a)). There are two different ways of applying the rule to this term. Either at
position π1 = ε, to the redex f(f(a)), or at position π2 = 1, to the redex f(a). In both cases
we have a rewrite step of the form f(f(a)) → f(a). But to have a well-defined semantics
of ITRSs in terms of MRSs, we need to distinguish these two steps ϕ1∶ f(f(a)) →π1,ρ f(a)
and ϕ2∶ f(f(a)) →π2,ρ f(a) because hgt(ϕ1) = 1 whereas hgt(ϕ2) = 1

2 . The phenomenon
described above, i.e. that the position and/or the applied rule is not necessarily derivable
from the start and the end term of a reduction step, is also known as syntactic accident
[Lév78].

The reification of reduction steps is the major difference in the definition of MRSs in this
thesis and its definition in [Ken92].

Next, we want to revisit the notion of a reduction sequence. Section 2.3.1 already
provided a definition for reduction sequences, even allowing sequences of arbitrary length.
Yet, as mentioned in Remark 2.3.4, reduction sequences of length greater than ω are not
meaningful. For example, considering the term rewriting rules a → f(a) and b → g(b), the
following constitutes a valid reduction sequence of length 2ω according to Definition 2.3.3:

a→ f(a) → f(f(a)) → f(f(f(a))) → . . . b→ g(b) → g(g(b)) → g(g(g(b))) → . . .

The problem that occurs here is that the second half of the reduction sequence, the one
starting with b, is completely arbitrary. The culprit of this phenomenon is that the reduction
step b → g(b) has no immediate predecessor. It is the ω-th step in the reduction sequence.
In general the definition of a reduction sequence, say (aι → aι+1)ι<α, does not stipulate any
relation between the object aλ at a limit ordinal λ < α and the elements aι, ι < λ, that
preceded it. Therefore, a notion of continuity is needed.

Definition 3.1.6 (continuity, convergence)
Let S = (aι →hι aι+1)ι<α be a reduction sequence in an MRSM.

(i) S is called weakly continuous if the underlying sequence (aι)ι<α′ of elements is contin-
uous in the metric space of M. If, additionally, limι→λ hι = 0 for each limit ordinal
λ < α′, then the sequence is called strongly continuous.

(ii) A weakly continuous reduction sequence S = (aι →hι aι+1)ι<α is called weakly conver-
gent if the sequence (aι)ι<α converges, say to some element aα. A strongly continuous
reduction sequence S = (aι →hι aι+1)ι<α is called strongly convergent if it is weakly
convergent and limι→α hι = 0 in case α is a limit ordinal. In the case of weak (resp.

30 Chapter 3 Transfinite Reductions

strong) convergence, we also say that the reduction sequence S weakly (resp. strongly)
converges to aα or, alternatively, that a0 weakly (resp. strongly) converges to aα in α
steps. A weakly (resp. strongly) continuous reduction sequence is called weakly (resp.
strongly) divergent if it is not weakly (resp. strongly) convergent.

(iii) M is called weakly α-convergent or strongly α-convergent, respectively, if any weakly
continuous resp. strongly continuous α-reduction sequence inM is weakly convergent
resp. strongly convergent.

Remark 3.1.7. Note that weak resp. strong convergence of a reduction sequence requires
it also to be weakly resp. strongly continuous. This deviates from the usual topological
notion of convergence which is independent from continuity. The reason for the choice of
this definition is that reduction sequences, which are not weakly or strongly convergent,
are in general not meaningful. The question whether such sequences converge to a limit is,
therefore, also of no relevance.

Returning to the example we had considered before, viz. the reduction sequence
a→ f(a) → f(f(a)) → f(f(f(a))) → . . . b→ g(b) → g(g(b)) → g(g(g(b))) → . . . ,

we can see that this is not a weakly continuous reduction sequence. The prefix
a→ f(a) → f(f(a)) → f(f(f(a))) → . . .

weakly (and also strongly) converges to fω. As we will see later, in order to extend a
reduction sequence by another one, they have to be compatible, i.e. the first sequences has
to weakly/strongly converge to the element the second sequence starts with. In the example,
this means that the extending sequence has to start in fω instead of b. Assuming there is a
rule f(x) → g(x), the following is a weakly (and strongly) continuous reduction sequence of
length 2ω:

a→ f(a) → f(f(a)) → f(f(f(a))) → . . . fω → g(fω) → g(g(fω)) → . . .

Let us have a look at the difference between strong and weak continuity resp. convergence.
If a reduction sequence S = (aι →hι aι+1)ι<α is weakly continuous, then the underlying
sequence (aι)ι<α is continuous in the metric space of the MRS. According to Corollary 2.2.17,
this means that, for each limit ordinal λ < α, it holds that limι→λ d(aι, aι+1) = 0. Because of
the definition of the metric on terms, this means that sim(aι, aι+1) has to tend to infinity as
ι approaches λ. In other words, the minimal depth of discrepancies between two consecutive
terms tends to in infinity, i.e., intuitively, the differences between the terms becomes more
and more insignificant. For strong convergence, it is additionally required that even the
height of the reduction steps ϕ∶ aι → aι+1, which by definition has to overapproximate the
distance d(aι, aι+1) between the involved objects, tends to zero for each limit ordinal, i.e.
limι→λ hι = 0. Due to the definition of the height of reduction steps in ITRSs, this means that
the depth at which reductions are performed tends to infinity as ι approaches λ. The same
intuition is also valid for the difference between weak and strong convergence. For closed
reduction sequences, both notions coincide given strong continuity. For weak convergence
of open reduction sequences, we need, according to Fact 2.2.16, that limι→α d(aι, aι+1) = 0.
And again, for strong convergence, this is strengthened to limι→α hι = 0.

Note that the conditions for weak continuity and convergence that were mentioned above
are only necessary, not sufficient. Only the condition given for weak convergence is sufficient
provided the MRS under consideration is a complete URS (cf. Lemma 2.2.13).

Example 3.1.8
Consider the TRS with the single rule f(g(x)) → f(g(g(x))). The induced reduction se-
quence

S∶ f(g(c)) → f(g2(c)) → f(g3(c)) → . . .

weakly converges to the term f(gω). Yet it does not strongly converge as each reduction
step takes place at the root and, thus, at depth 0. That is, the depth of the contraction

3.1 Metric Reduction Systems 31

f

g

c

f

g

g

c

f

g

g

g

c

f

g

g

g

g

c

f

g

g

g

g

g

c

Figure 3.1: Weakly convergent reduction sequence.

site does not tend to infinity. The behaviour of the reduction sequence S is illustrated in
Figure 3.1. The circles at the top of each term tree and the rewriting arrows indicate the
position where the rewriting step is performed. When we follow the rewriting arrows we can
see that they stay at the same depth. The white circles and the dashed lines indicate the
shallowest position where two consecutive terms differ. The parts of the terms that remain
unchanged are coloured in a darker shade of grey. One can see that these parts become
bigger and bigger as the differing parts are pushed further down the term.

On the other hand, consider the TRS with the single rule g(c) → g(g(c)). In this system
the reduction sequence

T ∶ f(g(c)) → f(g2(c)) → f(g3(c)) → . . .

does both weakly and strongly converge to the term f(gω). The terms of this reduction
sequence are the same as in the reduction sequence S. In T , however, we have a different
reduction rule which is now applied at different positions compared to S. One can see
that the depth where the reduction takes place increases with each step. This can also
be observed in Figure 3.2 which depicts the reduction sequence T in a similar fashion as
Figure 3.1. One can see that the depth where the reduction is performed increases with
each step. In particular, this means that it tends to infinity. Additionally, one can see that
the context, where the reduction takes place and is, thus, kept untouched, grows with each
step as indicated with the yet darker shade of grey.

Remark 3.1.9. One can easily see that the notion of a weakly or a strongly convergent
reduction sequence over an MRS as presented above is a conservative extension of the notion
of a finite reduction sequence over an ARSs. The additional structure that MRSs provide,
as compared with ARSs, is irrelevant for finite reduction sequences. Similarly, the MRS
semantics of TRSs in terms of MRSs is a conservative extension of the usual semantics in
terms of ARSs. Therefore, we adopt all concepts and properties of ARSs for finite reduction
sequences to the world of finite reduction sequences in MRSs. Furthermore, we can focus
on the MRS semantics of TRSs; the usual semantics of ITRSs was only used to illustrate
the MRS semantics appropriately.

32 Chapter 3 Transfinite Reductions

f

g

c

f

g

g

c

f

g

g

g

c

f

g

g

g

g

c

f

g

g

g

g

g

c

Figure 3.2: Strongly convergent reduction sequence.

In order to concisely state the continuity and convergence of reduction sequences or their
lack thereof, we introduce some notation that generalises the notation →⋆ that we already
have for finite reduction sequences.

Notation 3.1.10. Let S = (aι →sι aι+1)ι<α be a weakly continuous reduction sequence of
length α in an MRS A. We also denote this fact as S∶ a0 ↪αA If S weakly converges to
the limit aα, we denote it as S∶ a0 ↪αA aα (cf. [Luc01]) whereas if S is divergent, we denote
it as S∶ a0 4α

A. If the name or the length of the sequence is not of importance, it is omitted,
and we simply write a0 ↪A . . . , a0 ↪A aα or a0 4α, respectively. Also, when the underlying
MRS is clear from the context, it is dropped from the notation. To indicate a condition
on the length of the reduction sequence, we may write this condition instead of the explicit
length annotation. For example, we use a ↪≤α . . . , a ↪≤α a′ or a 4≤α to indicate weakly
continuous, convergent, resp. divergent reduction sequences of length at most α. If it should
be indicated that a reduction sequence is strongly continuous (resp. convergent), we use ↠
instead of ↪ (cf. [Sim06]).

Remark 3.1.11. Note that the definition of a reduction sequence also permits a sequence
of length 0. We consider such a reduction sequence as a reduction starting from any object
and strongly converging to the same object. That is, we write a↠0 a (or also a ↪0 a) for
such a reduction sequence, where a is an arbitrary object in the MRS under consideration.

Before we continue, let us review the definition of infinite reduction sequences in the
light of the example of the MRS semantics of an ITRS. What does weak continuity of a
reduction sequence S = (tι →hι tι+1)ι<α in an ITRS mean? According to Lemma 2.2.13, this
means that, for each limit ordinal λ < α, the distance d(tλ, tι) tends to 0 when ι approaches
λ. Since d(tλ, tι) is defined as 2−sim(tλ,tι), this is equivalent to sim(tλ, tι) tending to infinity
as ι approaches λ. That is, the minimal depth of discrepancies between tλ and tι tends to
infinity, or, informally speaking, the parts that tλ and tι share increase as ι approaches λ.
For strong continuity, it is additionally required that the height of the reduction steps tends
to zero. For the definition of the MRS semantics, this means that the depth at which the
reduction steps take places must tend to infinity. For weak and strong convergence, we can
observe a similar relation: For closed sequences, weak and strong convergence trivially hold,
provided we have strong continuity. For open sequences, there has to be term tα such that

3.1 Metric Reduction Systems 33

sim(tα, tι) tends to infinity in order to obtain weak convergence. To get strong convergence,
we additionally need that the depth at which the reduction steps take place tends to infinity.

By definition, strong continuity resp. strong convergence implies weak continuity resp.
weak convergence:

Fact 3.1.12 (stong continuity/convergence implies weak continuity/convergence)
For every reduction sequence S in an MRS, it holds that

(i) S∶ a↠ . . . implies S∶ a↪ . . . , and that

(ii) S∶ a↠ b implies S∶ a↪ b.

It turns out that, for a strongly continuous reduction sequence (ϕι)ι<α, it does not suffice
to have limι→α hgt(ϕι) = 0 in order to be strongly converging. The reason for this can be
twofold: Either the underlying sequence (aι →sι aι+1)ι<α′ is not Cauchy, which might happen
if the system is not ultrametric or even though the sequence is Cauchy, the limit might not
exists due to the incompleteness of the metric space. The following example illustrates the
former cause by giving a complete MRS which is not a complete URS.

Example 3.1.13
Let M = (R,Φ, src, tgt, d,hgt), where Φ = {an ∣n > 0}, d is the usual metric on R. Φ, src,
tgt, and hgt are given by an →hn an+1, n ≥ 0, where an = ∑nk=1 1

k
and hn = 1

n+1 . Note that if
an →hn an+1, then d(an, an+1) = hn and that (R,d) forms a complete metric space. Yet, it
is not an ultrametric space. So let us consider the ω-reduction sequence (aα →hi ai+1)i<ω.
That is, we have the reduction sequence:

0 →1 1 → 1
2

(1 + 1
2
) → 1

3
(1 + 1

2
+ 1

3
) . . .

It is well-known that the series ∑∞
k=1

1
k

does not converge. Hence, the above reduction
sequence is not weakly convergent. However, it is vacuously strongly continuous, and the
height of the reduction steps tends to 0, i.e. limk→ω hk = limk→ω

1
k
= 0.

This odd behaviour cannot occur in a complete URS.

Proposition 3.1.14 (strong convergence in complete URSs, [Ken92])
Let M be a complete URS. Every strongly continuous reduction sequence (ϕι)ι<α in M is
strongly convergent iff limι→α hgt(ϕι) = 0.

Proof. Let S = (aι →hι aι+1)ι<α be a strongly continuous sequence in a complete URS M.
The “only if” direction is immediate from the definition of strong convergence. For the “if”
direction, assume that limι→α hι = 0. It needs to be shown that the underlying sequence
(aι)ι<α′ is convergent. By Definition 3.1.1, it holds that d(aι, aι+1) ≤ hι. Hence, limι→α hι = 0
implies limι→α d(aι, aι+1) = 0. Since the underlying metric space is an ultrametric and
(aι)ι<α′ is continuous, this shows, by Lemma 2.2.15, that (aι)ι<α′ is Cauchy. This, under
the given assumption that the underlying metric space is complete, shows that (aι)ι<α′ is
convergent.

For reduction sequences of finite length, it holds that the concatenation of two compatible
reduction sequences, i.e. the latter sequence starts with the object the former ends with,
again yields a reduction sequence. The following proposition shows that this also holds for
the different notions of infinite reduction sequences.

Proposition 3.1.15 (concatenation of reduction sequences)
Let S and T be two non-empty reduction sequences over the same MRS M, and a, b two
objects inM.

(i) S ⋅ T ∶ a↪ . . . iff there is an object c inM with S∶ a↪ c and T ∶ c↪

34 Chapter 3 Transfinite Reductions

(ii) S ⋅ T ∶ a↪ b iff there is an object c inM with S∶ a↪ c and T ∶ c↪ b.

(iii) S ⋅ T ∶ a↠ . . . iff there is an object c inM with S∶ a↠ c and T ∶ c↠

(iv) S ⋅ T ∶ a↠ b iff there is an object c inM with S∶ a↠ c and T ∶ c↠ b.

Proof. (i) can be obtained by a straightforward argument using Lemma 2.2.10. Then (ii)
follows from (i) and Lemma 2.2.10. (iii) and (iv) follow from (i) resp. (ii) using Defini-
tion 3.1.6.

From this proposition and the definition of a segment of a sequence, we immediately get
the following corollary that is important for induction proofs:

Corollary 3.1.16 (continuity/convergence of segments)
Let S be a reduction sequence in an MRS. Then the following holds:

(i) If S is weakly (resp. strongly) continuous, then any segment of S is weakly (resp.
strongly) continuous.

(ii) If S is weakly (resp. strongly) convergent, then any segment of S is weakly (resp.
strongly) convergent.

The following proposition reveals the intuition that continuity is simply the convergence
of every proper prefix of limit ordinal length:

Proposition 3.1.17 (continuity and convergence)
Let S = (aι → aι+1)ι<α be a reduction sequence in an MRS. Then the following are equivalent:

(i) S is weakly continuous.

(ii) Each open proper prefix S∣[0,λ) of S weakly converges to aλ.

(iii) Each proper prefix S∣[0,β) of S weakly converges to aβ.

The same holds for strong continuity/convergence.

Proof. The equivalence of (i) and (ii) follows from Lemma 2.2.13. The equivalence of (ii)
and (iii) is obvious as weak convergence is trivial for closed weakly continuous reduction
sequences.

The case of strong continuity/convergence follows easily from the case of weak continu-
ity/convergence proved above.

From this proposition we can easily obtain the following corollary that provides a char-
acterisation of continuity of open reduction sequences.

Corollary 3.1.18 (continuity of open reduction sequences)
Let S be an open reduction sequence in an MRS. Then the following holds:

(i) S is weakly continuous iff every proper prefix of S is weakly continuous.

(ii) S is strongly continuous iff every proper prefix of S is strongly continuous.

Proof. (i) The “only if” direction follows from Proposition 3.1.17. For the converse direc-
tion, suppose that each proper prefix of S = (aι → aι+1)ι<λ is weakly continuous. We will
show that this implies that each proper prefix S∣[0,α) weakly converges to aα. Applying
Proposition 3.1.17 then yields that S is weakly continuous.

If S∣[0,α) is a proper prefix of S, then, according to Lemma 2.1.15, so is S∣[0,α+1). Hence,
S∣[0,α+1) is weakly continuous. Since S∣[0,α) is a proper prefix of S∣[0,α+1), we can employ
Proposition 3.1.17 to obtain that S∣[0,α) weakly converges to aα.

(ii) Analogously.

3.1 Metric Reduction Systems 35

The following theorem provides further insight into the intuition of strong convergence.

Theorem 3.1.19 (characterisation of strong convergence)
Let S be a reduction sequence in an MRSM.

(i) If S is strongly convergent, then, for any h ∈ R+, there are at most finitely many steps
in S whose height is greater than h.

(ii) If S is weakly continuous and, for any h ∈ R+, there are at most finitely many steps in
S whose height is greater than h, then S is strongly continuous. If, additionally,M is
a complete URS, then S is even strongly convergent.

Proof. Let S = (aι →hι aι+1)ι<α be a reduction sequence inM.
(i) (cf. [Ken92]1) Suppose that S is strongly convergent and let h ∈ R+. We show by

transfinite induction on α, the length of S, that the number of steps in S, which are at depth
greater than h, is finite. The use of transfinite induction is justified by Corollary 3.1.16.
The case α = 0 is trivial. If α is a successor ordinal, the claim follows immediately from the
induction hypothesis. Suppose that α is a limit ordinal. Since S is strongly convergent, we
have limι→α hι = 0, i.e. there is some β < α such that hι < h for all β < ι < α. Hence, S has
as many steps of depth greater than h as its proper prefix S∣[0,β). By induction hypothesis,
this number is finite.

(ii) Suppose that S is weakly continuous, and that the set {ι ∣hι > h} is finite for any
h ∈ R+. According to Definition 3.1.6, we have to show that limι→λ hι = 0 for each limit
ordinal λ < α in order to prove that S is strongly continuous. To this end, let ε > 0 be
arbitrary. Then choose some h such that 0 < h < ε. Since, by hypothesis, the set {ι ∣hι > h}
is finite, there is some ordinal β < λ such that hι ≤ h < ε for all β < ι < λ. Hence, limι→λ hι = 0.

For the second part of the statement, we additionally assumeM to be a complete URS.
Moreover, we can assume that α is a limit ordinal since otherwise the statement is trivially
true. The paragraph above proved strong continuity, i.e., according to Proposition 3.1.14,
it remains to be shown, that limι→α hι = 0. Because α is a limit ordinal, we can employ the
same argument as above to show this.

From this theorem, the following corollary follows as shown in [Ken92].

Corollary 3.1.20 (strongly convergent reductions are of countable length, [Ken92])
A strongly convergent reduction sequence has countable length.

By employing an argument similar to the one used in [KdV05] for the particular case of
infinitary term rewriting, we can generalise this to strongly continuous reduction sequences
in complete URSs.

Proposition 3.1.21 (strongly continuous reductions are of countable length)
Every strongly continuous reduction sequences in a complete URS has countable length.

Proof. Suppose there is a strongly continuous reduction sequence S = (mι →hι mι+1)ι<α
of uncountable length. By Corollary 3.1.20, we can assume that S is strongly divergent,
and, by Corollary 3.1.16, we can assume that α is the least uncountable ordinal ω1. As S
is strongly divergent, we can apply Theorem 3.1.19 in order to obtain some h ∈ R+ such
that the set H = {γ ∈ ω1 ∣hγ > h} is infinite. Hence, we can construct a strictly increasing
ω-sequence (γi)i<ω of elements in H. Let β = ⋃i<ω γι. Due to Proposition 2.1.16, it holds
that β < ω1. The proper prefix S∣[0,β) of S then also contains infinitely many steps with
height greater than h. Consequently, according to Theorem 3.1.19, also S∣[0,β) is strongly
divergent. By Proposition 3.1.17, this contradicts the fact that S is strongly continuous.

1Note that the original result in [Ken92] refers to strongly continuous reduction sequences instead, which
are defined in that paper differently. In our terminology, these sequences are actually strongly convergent.
Since the argument of the original proof is rather sloppy, we present a modified argument.

36 Chapter 3 Transfinite Reductions

The above theorem is not true for weakly convergent reduction sequences as the following
example of an arbitrary long weakly convergent reduction sequence shows:

Example 3.1.22 ([Ken92])
Consider the MRS with a single object ●, equipped with the obvious metric, and a single
step given by ● →1 ●. Then, for any ordinal α, the sequence (ϕι∶ ● → ●)ι<α constitutes a
weakly convergent reduction sequence.

3.2 Partial Reduction Systems

This section is along the lines of Section 3.1. We introduce an alternative method for defining
meaningful reduction sequences of transfinite length. The key observation that illustrates the
motivation of searching for an alternative is the existence of (weakly) divergent reduction
sequences. Even in complete MRSs there are reduction sequences that do not (weakly)
converge. This is due to the fact that completeness (of a metric space) only ensures that
Cauchy sequences converge. The goal of considering partial reduction systems, which will
be defined shortly, is to make the requirements for convergence less strict.

For example, suppose that we have a TRS consisting of the rules

f(x, a) → f(s(x), b), f(x, b) → f(s(x), a).

Then we can construct the ω-reduction sequence

f(0, a) → f(s(0), b) → f(s(s(0)), a) → f(s(s(s(0))), b) → . . .

which is neither strongly nor weakly convergent in terms of its MRS semantics. The culprit
is the second argument of the f symbol which constantly changes between a and b. However,
excluding this “flickering”, the reduction sequence seems to converge somehow. The inves-
tigation of partial reduction systems is aimed at formalising this relaxation of the notion of
convergence. With this tool we will be able to identify f(sω,�) as the limit of the reduction
sequence above.

To this end, a partially ordered set is employed rather than a metric space, and the
limit construction is replaced by the limit inferior. The idea of considering the partial
order on terms in order to model infinite reductions was first pursued by Corradini [Cor93,
CG95], however, in a much more restricted setting. Blom [Blo04] investigated the use of the
partial order on terms and its notion of limit inferior in the setting of the λ-calculus. Our
investigation of partial reduction systems was mainly inspired by this work.

Definition 3.2.1 (partial reduction system)
A partial reduction system (PRS) is a tuple P = (A,Φ, src, tgt,≤, cxt) such that

(i) A = (A,Φ, src, tgt) is an ARS, called the underlying ARS of P,

(ii) (A,≤) is a partially ordered set,

(iii) cxt∶ Φ→ A is a function, called the context function, and

(iv) if ϕ∶ a→A b, then cxt(ϕ) ≤ a, b.

If the partial order ≤ is a complete semilattice, then P is called complete.

Notice the similarities of PRSs and MRSs: Both contain an ARS core, of course. The
underlying set of the ARS is endowed with a metric in MRSs and with a partial order
in PRSs. They are needed in order to define the limit behaviour of transfinite sequences.
Additionally, each step in an MRS has a designated height which overapproximates the
distance between the two objects involved in the reduction step. An analogous concept does
exist in PRSs as well: To each step a context is assigned. The intuitive meaning of this

3.2 Partial Reduction Systems 37

context is that it represents some information or structure that is shared between the two
objects involved in the reduction step. This is, in fact, how clause (iv) of Definition 3.2.1
is meant to be interpreted. Shortly, we will see what this means for the concrete example
of term rewriting systems. When reduction sequences will be defined further below, we will
also learn that the context function of PRSs, similarly to the height function of MRSs, is
used to distinguish between weak and strong continuity resp. convergence. If the PRS under
consideration is complete, e.g. in the case of ITRSs, the similarity of contexts in PRSs and
heights in MRS becomes even more evident: Since the glb of arbitrary sets is always defined
for complete semilattices, we can, in fact, rephrase clause (iv) of Definition 3.2.1 as follows:

If ϕ∶ a→A b, then cxt(ϕ) ≤ a ⊓ b.

Intuitively, a⊓b represents the common structure/information of a and b. Therefore, cxt(ϕ)
is an underapproximation of the shared structure/information of a and b. In other words:
Similarly to the height for MRS, also the context possibly overestimates the difference be-
tween the two objects.

Notation 3.2.2. Similar to the case of MRSs we confuse PRSs with their underlying ARSs
in order to use the notation that we already have for ARSs. In particular, we write ϕ∶ a→P b
for a reduction step ϕ∶ a →A b in the underlying ARS A. If we want to explicitly indicate
the context of a reduction step in P, we write ϕ∶ a→c b whenever hgt(ϕ) = c.

To define PRSs in a convenient, way we use an approach similar to that for MRSs:
Instead of statements of the form a →h b, with h ∈ R+, we consider statements of the form
a →c b with c ∈ A. c is then interpreted as the context of the defined reduction step, i.e.
cxt(a→c b) = c.

As promised, we want to present the PRS semantics of ITRSs in order to give an intuition
of the intention of the rather abstract definition of PRSs

Definition 3.2.3 (PRS semantics of ITRSs)
Let R = (Σ,R) be an ITRS. The PRS induced by R, denoted PR, is given by the tuple

(T ∞(Σ�,V),Φ, src, tgt,≤�, cxt),

where (T ∞(Σ�,V),Φ, src, tgt) is the ARS AR′ induced by the ITRS R′ = (Σ�,R), ≤� is the
usual partial order on T ∞(Σ�,V), and cxt is defined as

cxt(ϕ) = t[�]π, where ϕ∶ t→π,ρ t′.

The definition of the PRS semantics of ITRSs shows the intention of the context of
a reduction step: It is, very literally, the context where the rewrite rule is applied and,
thus, represents the structure that is necessarily shared between the original term and its
contraction. The proof of the following proposition establishes this observation formally:

Proposition 3.2.4 (PRS semantics yields a complete PRS)
Each ITRS R induces a complete PRS PR.

Proof. Since ≤� is a complete semilattice on T ∞(Σ�,V), it remains to be shown that for
each rewrite step ϕ∶ t →c t′ it holds that c ≤� t, t′. Let l → r be the rule applied in ϕ. Then
there is a substitution σ and a context C[] such that t = C[lσ], t′ = C[rσ] and c = C[�]. As
� ≤� lσ, rσ and ≤� is monotone, we can conclude that C[�] ≤� C[lσ],C[rσ].

Next we define continuity and convergence for reduction sequences in PRSs. This defi-
nition follows the structure of Definition 3.1.6.

Definition 3.2.5 (continuity, convergence)
Let S = (aι →cι aι+1)ι<α be a reduction sequence in a PRS P.

38 Chapter 3 Transfinite Reductions

(i) S is called weakly continuous if lim infι→λ aι = aλ holds for each limit ordinal λ < α.
If, instead, lim infι→λ cι = aλ holds for each limit ordinal λ < α, then the sequence is
called strongly continuous.

(ii) A weakly continuous reduction sequence S = (aι →cι aι+1)ι<α is called weakly conver-
gent if it is closed or, if it is open and aα = lim infι→α aι exists. A strongly continuous
reduction sequence S = (aι →cι aι+1)ι<α is called strongly convergent if it is closed or,
if it is open and aα = lim infι→α cι exists. In the case of weak (resp. strong) conver-
gence, we also say that the reduction sequence S weakly (resp. strongly) converges
to aα or, alternatively, that a0 weakly (resp. strongly) converges to aα in α steps. A
weakly (resp. strongly) continuous reduction sequence is called weakly (resp. strongly)
divergent if it is not weakly (resp. strongly) convergent.

(iii) P is called weakly α-convergent or strongly α-convergent, respectively, if any weakly
continuous resp. strongly continuous α-reduction sequence in P is weakly convergent
resp. strongly convergent.

We now have a notion of reduction sequences of PRSs which is similar to that of MRSs.
Therefore, we use the same notations for reduction sequences and their properties. In
particular, the notations introduced in Notation 3.1.10 as well as the Remarks 3.1.7, 3.1.11
and 3.1.9 also apply to PRSs.

Before we continue our discussion of PRSs let us have a look at an example that illustrates
the difference between weak and strong convergence for the particular case of TRSs. It will
also show the difference to MRSs.

Example 3.2.6
Consider the TRS with the single rule f(x, y) → f(y, x). This rule induces the following
reduction sequence:

S∶ f(a, f(g(a), g(b))) → f(a, f(g(b), g(a))) → f(a, f(g(a), g(b))) → . . .

S simply alternates between the terms f(a, f(g(a), g(b))) and f(a, f(g(b), g(a))) by swap-
ping the arguments of the inner f occurrence. The reduction sequence is depicted in Fig-
ure 3.3. The picture illustrates the parts of the terms that remain unchanged and those
that remain completely untouched by the corresponding reduction step in the same way as
in Figure 3.2, i.e. by using a lighter shade resp. a darker shade of grey. The unchanged part
corresponds to the glb of the two terms of a reduction step, viz. for the first step

f(a, f(g(a), g(b))) ⊓� f(a, f(g(n), g(a))) = f(a, f(g(�), g(�)))

By symmetry, the glb of the terms of the second step is the same one. It is depicted in Fig-
ure 3.4a. Let (ti)i<ω be the sequence of terms of the reduction S. By definition, S weakly con-
verges to lim infi<ω ti. According to Proposition 2.1.34, this is equal to lim infi<ω(ti ⊓� ti+1).
Since ti ⊓� ti+1 is constantly f(a, f(g(�), g(�))), the reduction sequence weakly converges
to f(a, f(g(�), g(�))).

Similarly, the part of the term that remains untouched by the reduction step corresponds
to the context. For the first step, this is f(a,�). It is depicted in Figure 3.4b. By definition,
S strongly converges to lim infi<ω ci for (ci)i<ω, the sequence of contexts of S. As one can
see in Figure 3.3, the context constantly remains f(a,�). Hence, S strongly converges to
f(a,�). The example sequence is a particularly simple one as both the glbs ti ⊓� ti+1 and
the contexts ci remain stable. In general, this is not necessary, of course.

An important difference to MRSs is that in complete PRSs every weakly or strongly
continuous reduction sequence is also weakly resp. strongly convergent:

Fact 3.2.7 (continuity implies convergence)
In a complete PRS,

3.2 Partial Reduction Systems 39

f

a f

g

a

g

b

f

a f

g

b

g

a

f

a f

g

a

g

b

Figure 3.3: Reduction sequence with stable context.

f

a f

g

�

g

�

(a) Weak limit.

f

a �

(b) Strong limit.

Figure 3.4: Limits of the PRS reduction sequence.

(i) every weakly continuous reduction sequence is weakly convergent, and

(ii) every strongly continuous reduction sequence is strongly convergent.

Proof. This follows immediately from Proposition 2.1.33.

Another very important difference between the metric and the partial order model can
be found in the nature of the distinction between weak and strong continuity/convergence.
Strongly continuous/convergent reduction sequences in MRSs are, by definition, weakly con-
tinuous/convergent reduction sequences satisfying an additional property. That is, strong
continuity/convergence is simply a more restrictive variant of weak continuity/convergence.
The limit construction itself is the same. On the other hand, in PRSs the limit construction
in weakly continuous/convergent reduction is different from the one used for strong conti-
nuity/convergence. The former considers the objects of the reduction sequence, the latter
uses the contexts of the reduction steps. Note that clause (iv) of Definition 3.2.1 relates the
objects and the context of a reduction sequence. However, this is not sufficient to ensure that
strongly continuous/convergent reduction sequences are also weakly continuous/convergent
in general as it is the case for MRSs.

For example, consider the PRS P given by the rules a →� a and � →� a, where the
underlying set A is {a,�} with the partial order ≤ induced by � ≤ a. Then the reduction
sequence

a→� a→� a→� . . .� →� a

is strongly continuous as the sequence of contexts �,�, . . . is constant and, thus, converges
(via limit inferior) to �, the ω-th element in the sequence. On the other hand, this reduction
sequence is not weakly continuous as the sequence of elements a, a, . . . converges to a and,
therefore, not to the ω-th element of the sequence.

40 Chapter 3 Transfinite Reductions

A similar counterexample exists for convergence: Consider the PRS P given by the rules
n →0 n + 1 for each n ∈ N, where the underlying set is N with the natural partial order on
them. Note that the 0 that is indicated for the reduction steps is supposed to be its context
and not its height. The reduction sequence

0→0 1→0 2→0 . . .

does strongly converge to 0 whereas it does not weakly converge. This is rather an artifact
of the fact that the partial order on N is not a complete semilattice. But even if we extend
the order to a complete semilattice (e.g. by adjoining a greatest element ∞), the reduction
sequence is indeed weakly and strongly convergent. Yet, the respective limits are different:
0 for strong convergence and ∞ for weak convergence.

In order for PRSs to exhibit the same relation between strong and weak continuity resp.
convergence that MRSs show, we have to consider total reductions:

Definition 3.2.8 (total reduction sequence)
Let P be a PRS and S = (aι → aι+1)ι<α a reduction sequence in P. S is called total if each
element aι is maximal w.r.t. the partial order of P. If we write S as S∶ a0 ↪ aα or S∶ a0 ↠ aα,
i.e. the convergence of the reduction sequence is explicitly stated, we additionally require
aα to be maximal for S to be total.

For total reduction sequences, we indeed have that strong continuity/convergence implies
weak continuity/convergence:

Proposition 3.2.9 (strong cont./conv. implies weak cont./conv.)
For every total reduction sequence S in a PRS, it holds that

(i) S∶ a↠ . . . implies S∶ a↪ . . . , and that

(ii) S∶ a↠ b implies S∶ a↪ b.2

Proof. Let S = (aι →cι aι+1)ι<α
(i). If S is strongly continuous, then lim infι→λ cι = aλ for each limit ordinal λ < α. We

need to show that then also lim infι→λ aι = aλ. By definition, we have cι ≤ aι for each ι.
Hence, also aλ = lim infι→λ cι ≤ lim infι→λ aι holds. Note that aλ is a maximal element as S
is total. Hence, we can conclude that lim infι→λ aι = aλ.

(ii) Suppose that S strongly converges to b. Then S is also strongly continuous and,
by (i), weakly continuous. If S is closed, then b = aα and S also weakly converges to b.
If S is open, then b = lim infι→α cι. By the same argument used for (i), we obtain that
b = lim infι→α aι, i.e. S weakly converges to b.

Analogously to Proposition 3.1.15 for MRSs, we can easily derive the following properties
for concatenations of reduction sequences in PRSs:

Proposition 3.2.10 (concatenation of partial reduction sequences)
Let S and T be two non-empty reduction sequences over the same PRS P, and a, b two
objects in P.

(i) S ⋅ T ∶ a↪ . . . iff there is an object c in P with S∶ a↪ c and T ∶ c↪ . . .

(ii) S ⋅ T ∶ a↪ b iff there is an object c in P with S∶ a↪ c and T ∶ c↪ b

(iii) S ⋅ T ∶ a↠ . . . iff there is an object c in P with S∶ a↠ c and T ∶ c↠ . . .

(iv) S ⋅ T ∶ a↠ b iff there is an object c in P with S∶ a↠ c and T ∶ c↠ b

2Here it is important that the totality of S also requires the final element b to be maximal.

3.2 Partial Reduction Systems 41

Proof. This follows immediately from the definition of reduction sequences and continuity
resp. convergence.

Again this yields the following corollary – now for PRSs:

Corollary 3.2.11 (continuity/convergence of segments)
Let S be a reduction sequence over some PRS. Then the following holds:

(i) If S is weakly (resp. strongly) continuous, then any segment of S is weakly (resp.
strongly) continuous.

(ii) If S is weakly (resp. strongly) convergent, then any segment of S is weakly (resp.
strongly) convergent.

Also the relation between continuity and convergence in PRSs is the same as in MRSs:

Proposition 3.2.12 (continuity and convergence)
Let S = (aι → aι+1)ι<α be a reduction sequence over some PRS. Then the following are
equivalent:

(i) S is weakly continuous.

(ii) Each open proper prefix S∣[0,λ) of S weakly converges to aλ.

(iii) Each proper prefix S∣[0,β) of S weakly converges to aβ.

The same holds for strong continuity/convergence.

Proof. The implication from (i) to (ii) follows from Corollary 3.2.11, which asserts that the
prefix S∣[0,λ) is continuous as well, and the definition of weak continuity which requires that
lim infι→λ aι = aλ.

Consider the converse implication: If each open proper prefix of S is weakly convergent,
then lim infι→λ aι = aλ holds for each limit ordinal λ < α. Hence, S is continuous.

Items (ii) and (iii) are obviously equivalent as weak convergence is trivial for closed
reduction sequences.

For the case of strong continuity/convergence, the argument is analogous.

Corollary 3.2.13 (continuity of open reduction sequences)
Let S be an open reduction sequence in an PRS. Then the following holds:

(i) S is weakly continuous iff every proper prefix of S is weakly continuous.

(ii) S is strongly continuous iff every proper prefix of S is strongly continuous.

Proof. This can be proved in the same way as Corollary 3.1.18 using Proposition 3.2.12
instead of Proposition 3.1.17.

Recall that strongly continuous reductions in MRSs have at most countable ordinal
length. Such an upper bound for the length of reduction sequences does not exists for
PRSs – neither for weakly nor for strongly convergent reductions. The following example
illustrates this:

Example 3.2.14
Let P be a PRS on the singleton set {●} with the trivial partial order on it and let P have
the reduction step ϕ ∶ ● →● ●. Then any constant sequence containing ϕ is a weakly and also
strongly convergent reduction sequence.

42 Chapter 3 Transfinite Reductions

3.3 Transfinite Abstract Reduction Systems

In this section we want to discuss both MRSs and PRSs. That is, we want to introduce
notions that apply to both systems. To this end, we use the term transfinite abstract
reduction system (TARS) in order to refer to an MRS or a PRS. In the second part of this
section we also introduce some abstract criteria which allow us to relate MRSs to PRSs.

3.3.1 Properties of Transfinite Reductions
Now that we have several meaningful notions of transfinite reductions, we also want to
investigate their properties. Therefore, the question arises which properties of transfinite
reductions are of interest and might have a practical impact.

In principle, all properties known from the finitary setting can be lifted to the present
setting of transfinite reductions (cf. [Ken92]): Simply replace →∗ by ↪ resp. ↠ in the
definition of the property. Confluence (CR), for example, is defined as

∀ b←⋆ a→⋆ c Ô⇒ ∃ b→⋆ d←⋆ b

This can be lifted to infinitary confluence (CR∞) by requiring

∀ b↞ a↠ c Ô⇒ ∃ b↠ d↞ b

when considering strong convergence, or

∀ b↩ a↪ c Ô⇒ ∃ b↪ d↩ b

when considering weak convergence. Usually, it is obvious from the context which variant,
weak or strong, is meant. If not, then we additionally state whether we are considering weak
or strong reductions. The illustrated lifting to infinitary properties can also be applied to
the finitary properties WN and UN→ which yields infinitary normalisation (WN∞) and the
infinitary unique normal form property w.r.t. reduction (UN∞

→), respectively.
Recall that, for the finitary properties NF and UN, the notion of convertibility is needed.

Hence, we need to find an appropriate infinitary variant of convertibility in order to obtain
infinitary versions of NF and UN. Devising a concept of infinitary convertibility is not
straightforward and has to be done carefully as we will see.

The convertibility relation ↔⋆ for ARSs is defined by taking finite reduction sequences
of the symmetric closure of the original ARS (cf. Definition 2.3.6). The construction of
the symmetric closure of an ARS can be straightforwardly generalised to TARSs. Infinitary
convertibility can then be defined as the (possibly transfinite) convergent reduction sequences
of this symmetric closure. That is, assuming we use ↔∞ for infinitary convertibility, we
define a↔∞

T b iff a ↪T s b resp. a↠T s b, for T s the symmetric closure of T . However, one
can argue that this is not a reasonable choice for the notion of convertibility:

Example 3.3.1
Consider the TRS with the rules

f(0) → 0, f(1) → 1

Let T be the induced MRS or PRS of the above system and T s its symmetric closure. That
is, T s, in particular, permits rewriting steps of the form fn+1(0) ← fn(0) and fn+1(1) ←
fn(1). Hence, we have the following two reduction sequences in T s which are both weakly
and strongly convergent for both the MRS and the PRS semantics:

0→ f(0) → f(f(0)) → f(f(f(0))) → . . . fω

1→ f(1) → f(f(1)) → f(f(f(1))) → . . . fω

That is, we have 0 ↔∞ fω as well as 1 ↔∞ fω. However, fω is a normal form in the
symmetric system T s. Hence, there is no convergent sequence from fω to 0 or 1. Therefore,
↔∞ is not symmetric.

3.3 Transfinite Abstract Reduction Systems 43

a

b c ∈ NF
(a) NF∞ according to [KKSdV95a].

b c ∈ NF
s

(b) NF∞ as defined here.

Figure 3.5: Alternative definition of the infinitary normal form property.

Even if we consider the symmetric closure of ↔∞, the resulting relation would not be
transitive: We have 0↔∞ fω and 1↔∞ fω but neither 1↔∞ 0 nor 0↔∞ 1.3

Because of the problem illustrated above, we, instead, define infinitary convertibility
simply as the reflexive transitive symmetric closure of ↪ resp. ↠. This is a reasonable
generalisation of the finitary case as ↔⋆ is also the reflexive transitive symmetric closure of
→⋆.

Definition 3.3.2 (infinitary convertibility, [Ken92])
Let T be a TARS, and a, b objects in T . a and b are called weakly resp. strongly convertible,
written a↔w

T b resp. a↔s
T b, whenever there is a finite sequence of objects a0, . . . , an, n ≥ 0,

inM such that a0 = a, an = b, and, for each 0 ≤ i < n, we have ai ↪T ai+1 resp. ai ↠T ai+1
or ai ↩T ai+1 resp. ai ↞T ai+1. The minimal n of such a sequence is called the length of
a↔w

T b resp. a↔s
T b.

With this notion of convertibility we can establish an alternative characterisation of CR∞

which is analogous to its finitary version:

Proposition 3.3.3 (alternative characterisation of CR∞)
Let T be a TARS. T is CR∞ (for weak reductions) iff

∀ a↔w b Ô⇒ ∃ a↪ c↩ b

The same also holds for strong reductions.

Proof. The argument is the same as for finitary reductions: The “if” direction is trivial, and
the “only if” direction can be proved by and induction on the length of a↔w b.

Remark 3.3.4. The definition of NF∞, the infinitary version of NF, that we are using is:
If b ↔s c for a normal form c, then b ↠ c; cf. Figure 3.5b. In [KKSdV95a] an alternative
definition of NF∞ is employed: If b↞ a↠ c for a normal form c, then b↠ c; cf. Figure 3.5a.
However, both variants are equivalent. The implication from NF∞ to the alternative variant
is trivial. For the converse direction, assume that the system enjoys the alternative NF∞
property and that b↔s c for a normal form c. A straightforward induction on the length of
b↔s c shows that then b↠ c holds.

The same argument is, of course, also valid for weak reductions.

Proposition 3.3.5 (confluence properties)
For every TARS, we have the following implications (for both weak and strong reductions):

(i) CR∞ Ô⇒ NF∞ Ô⇒ UN∞ Ô⇒ UN∞
→

(ii) WN∞ & UN∞
→ Ô⇒ CR∞

3In [Ken92] the very same example is presented for the same purpose. Its author, however, spuriously
argues that it shows that 1, 0 and fω are pairwise infinitarily convertible and, thereby, questions the utility
of this notion of infinitary convertibility.

44 Chapter 3 Transfinite Reductions

Proof. The arguments are the same as for their finitary variants.

Just as for the properties involving convertibility, we also have to be careful when defin-
ing the infinitary version of the termination property. In its finitary version, termination
prohibits infinite reduction sequences. This is certainly not what we want for an infinitary
termination property. As pointed out in [KdV05], another way of interpreting finitary termi-
nation is, that it guarantees that no matter how one extends an existing reduction sequence,
in the end one always reaches a normal form. For transfinite reductions, we have to take
into account that they can be extended by a limit construction. But such a construction
can prohibit further extension of the thus obtained reduction sequence although it might
not end in a normal form. This is precisely the case when we have a reduction sequence
that is continuous but not convergent. Hence, infinitary termination has to require that any
continuous reduction sequences is convergent as well. In a nutshell, the key difference to the
finitary case is that there are not only two possibilities for the final object of a reduction
sequence, viz. being a normal form or not being a normal form, but, in fact, there are tree:
Either it is a normal form, it is not a normal form, or it is not existent due to divergence.

But there is another problem that might prohibit further extension of a reduction se-
quences despite the fact that no normal form was reached, yet: Consider the MRS from
Example 3.1.22. It allows any reduction sequence to be extended to any arbitrary length.
Yet, we can not extend these sequences by a limit construction, as we simply ran out of
ordinal numbers! Hence, we have to additionally require for infinitary termination that there
is an upper bound on the length of continuous reduction sequences. Intuitively speaking,
just as non-terminating reduction sequences in the finitary setting leave the realms of ω, the
finite ordinal numbers, non-terminating reduction sequences in the infinitary sense might
leave the realms of On, the ordinal numbers.4

Definition 3.3.6 (infinitary termination property, [Rod98])
Let T be an TARS and a an object in T . a is said to be infinitarily terminating (SN∞) if

(a) every weakly (resp. strongly) continuous reduction sequence in T starting from a is
weakly (resp. strongly) convergent, and

(b) the lengths of all weakly (resp. strongly) continuous reduction sequences starting from a
are bounded from above, i.e. there is some ordinal β such that a↪α . . . (resp. a↠α . . .)
implies α < β.

The TARS T itself is called infinitarily terminating (SN∞) if every object in T is.

Remark 3.3.7. For strong reductions in MRSs, condition (b) of Definition 3.3.6 is always
met due to Corollary 3.1.20. Therefore, the definition is equivalent to the one presented in
[KdV05]. On the other hand, for complete PRSs, condition (a) of Definition 3.3.6 is always
satisfied for both weak and strong reductions as Fact 3.2.7 shows.

The definition of the infinitary termination property is rather involved compared to its
finitary version. The litmus test for its appropriateness is that it has to imply infinitary
normalisation.

Proposition 3.3.8 (SN∞ is stronger that WN∞)
For every TARS, it holds that SN∞ implies WN∞ for both weak and strong reductions.

Proof. We prove the implication for weak reductions in MRSs. The other cases follow by
the same argument.

In fact, we prove the contraposition of the implication. For this purpose, let M be
an MRS and a some object in M that is not WN∞. We show that then (a) or (b) of

4Strictly speaking, these “sequences” are, therefore, not sequences but rather a functions with domain
On.

3.3 Transfinite Abstract Reduction Systems 45

Definition 3.3.6 is violated. For this purpose, we assume (a) and show that then (b) does
not hold. That is, we have to prove that there is no upper bound for the length of weakly
continuous reductions inM. We do this by defining a function f on the class On of ordinal
numbers such that, for each α ∈ On, (1) f(α) is a weakly continuous reduction of length
α starting in a and (2) f(α) is an extension of f(ι) for all ι < α. The construction of
f is verified by the principle of transfinite recursion, and the properties (1) and (2) are
established by transfinite induction (cf. Proposition 2.1.17).

For α = 0, both (1) and (2) are trivial. Let α be a successor ordinal β + 1. By induction
hypothesis, we have f(β)∶ a↪β By (a), there is some object b inM such that f(β)∶ a↪β
b. Since a is not WN∞, b cannot be a normal form. Hence, there is a step ϕ∶ b → b′ inM.
Define f(α) = f(β)⋅ϕ. That is, f(α)∶ a↪α b′ which shows (1). (2) follows from the induction
hypothesis since f(β) ≤ f(α).

Let α be a limit ordinal. According to the induction hypothesis, f(ι)∶ a ↪ι . . . holds
for each ι < α. Moreover, since, by the induction hypothesis, also (2) holds for all f(ι),
we have that F = {f(ι) ∣ ι < α} is directed. Hence, f(α) = ⊔F is well-defined according to
Proposition 2.1.28. Consequently, all elements in F are prefixes of f(α). This shows (2) and,
additionally, it shows that f(α) is a reduction sequence of length α starting in a. Moreover,
we can employ Corollary 3.1.18 in order to conclude that f(α) is weakly continuous.

The converse, however, is not true in general. As indicated before, Example 3.1.22
provides a counterexample for weak reductions in MRSs. The following example illustrates
this for strong reductions:

Example 3.3.9
Consider the MRSM with object set {a, b} , equipped with an arbitrary metric (which must
also be an ultrametric), and the steps given by a →1 a, and a →h b with h = d(a, b). M is
WN∞ as b is a normal form and, a reduces to b in a single step. Yet, a is not SN∞ as it has
the strongly continuous reduction sequence a→1 a→1 . . . which is not strongly convergent.

Likewise, counterexamples can be constructed for PRSs as well.

3.3.2 Relating MRSs to PRSs
We have seen, especially in the preceding section, that reduction sequences in MRSs and
PRSs share a variety of properties. In order to make a systematic analysis of both kinds
of systems easier, it is desirable to relate MRSs to PRSs in such a way, that we are able to
transfer certain results from MRSs to corresponding PRSs and vice versa. In this section
we want to identify some sufficient criteria that ensure that the weakly/strongly continu-
ous/convergent reduction sequences of an MRS are a well-defined subclass of weakly/strongly
continuous/convergent reduction sequences in a corresponding PRS. The first set of crite-
ria concerns the metric spaces and partially ordered sets which are the foundation of the
limit construction of MRSs and PRSs, respectively. The second set of criteria relates the
reduction steps of the MRS and the PRS:

Definition 3.3.10 (extension of metric spaces by partially ordered sets)

(i) Let (A,d) be a metric space and let (B,≤) be a partially ordered set. (B,≤) is said
to extend (A,d) if

(1) A = {a ∈ B ∣a is maximal w.r.t. ≤} (maximality)
(2) for all sequences (aι)ι<α in A, it holds that (limits)

(a) limι→α aι exists whenever lim infι→α aι ∈ A, and
(b) lim infι→α aι = limι→α aι whenever limι→α aι exists.

(B,≤) is then called an extension of (A,d).

46 Chapter 3 Transfinite Reductions

(ii) Let M = (A,Φ, src, tgt,d,hgt) be an MRS and P = (B,Φ′, src′, tgt′,≤, cxt) be a PRS.
P is said to extend M if

(1) (B,≤) extends (A,d),
(2) Φ ⊆ Φ′,
(3) src(ϕ) = src′(ϕ) and tgt(ϕ) = tgt′(ϕ) for all ϕ ∈ Φ,
(4) src′(ϕ) ∈ B ∖A for all ϕ ∈ Φ′ ∖Φ, and
(5) S∶ a↠P b is total iff S∶ a↠M b for any open reduction sequence S in P.

P is then also called an extension ofM. If all conditions except (5) are met, then P
is said to weakly extend M; P is called a weak extension ofM. In order to emphasise
this distinction, we sometimes also say strong extension instead of just extension.

Condition (1) of Definition 3.3.10(ii) guarantees that the metric space consists of the
maximal elements of the ordered set and that the limit of a sequence of elements is equal
to the limit inferior of the same sequence. Moreover, by the conditions (2) and (3), any
reduction sequence in an MRSM is also a reduction sequence in any PRS P that extends
M. Condition (4) makes sure that the PRS P does not introduce new reduction steps
unless they involve elements that do only occur in P. And finally, (5) explicitly stipulates
the relation between strongly convergent reduction sequences in both systems.

These condition are quite strong. However, as it will be shown in Section 5.2, the PRS
semantics of an ITRS is always an extension of the MRSs semantics of the same ITRSs.
The following proposition summarises the ramifications of the axiomatisation we have just
introduced:

Proposition 3.3.11 (PRSs extending MRSs are conservative extensions)
Let P be a PRS extending an MRSM. Then the following holds for all reduction sequences
S in P:

(i) S∶ a↪P . . . is total iff S∶ a↪M

(ii) S∶ a↪P b is total iff S∶ a↪M b.

(iii) S∶ a↠P . . . is total iff S∶ a↠M

(iv) S∶ a↠P b is total iff S∶ a↠M b.

If P only weakly extendsM, then clauses (i) and (ii) hold.

Proof. LetM= (A,Φ, src, tgt,d,hgt) and P = (B,Φ′, src′, tgt′,≤, cxt) and S = (aι → aι+1)ι<α.
In the following, we frequently use (1) – (5) to refer to the respective items of Defini-
tion 3.3.10(ii):

(i) For the “only if” direction, assume that S∶ a ↪P . . . is total. By the maximality
condition for (A,d) and (B,≤), the fact that S is total, and items (3) and (4), it follows
that S is a reduction sequence inM as well. By Proposition 3.2.12, S∣[0,λ) weakly converges
to aλ in P for each limit ordinal λ, i.e. lim infι→λ aι = aλ. By the limits condition for
(A,d) and (B,≤), this implies limι→λ aι = aλ for each limit ordinal λ < α. According to
Lemma 2.2.13, this means that S is weakly continuous inM

For the converse direction, assume that S∶ a ↪M By Lemma 2.2.13, we then have
limι→λ aι = aλ, and, by the limits condition for (A,d) and (B,≤), we have lim infι→λ aι = aλ
for each limit ordinal λ < α. Hence, S∶ a↪P

(ii) This immediately follows from the previous clause (i) if α is not a limit ordinal. If
α is a limit ordinal, this follows from (i) and the maximality and limits condition for (A,d)
and (B,≤).

3.4 Alternative Models of Transfinite Reductions 47

(iii) We can reason as follows:

S∶ a0 ↠P . . . is total
(a)
⇐⇒ all aι are maximal and S∶ a0 ↠P . . .
(b)
⇐⇒ all aι are maximal and S∣[0,λ)∶ a0 ↠P aλ for all limit ordinals λ < α

(c)
⇐⇒ all aι are maximal and S∣[0,λ)∶ a0 ↠M aλ for all limit ordinals λ < α
(d)
⇐⇒ S∶ a0 ↠M . . .

Equivalence (a) follows from the definition of total reduction sequences, equivalence (b)
follows from Proposition 3.2.12, equivalence (c) follows from (5), and equivalence (d) follows
from Proposition 3.1.17 and items (3) and (4).

(iv) This immediately follows from (iii) if α is not a limit ordinal. If α is a limit ordinal,
then this follows immediately from (5).

The proof of clauses (i) and (ii) is independent of condition (5). Hence, they are also
valid for weak extensions.

3.4 Alternative Models of Transfinite Reductions

We have limited our discussion of transfinite reductions chiefly to metric spaces and partially
ordered sets. As indicated in the introduction to this chapter, there are also other models
that are worthwhile considering.

The most important model is of course that of general topological spaces. Such a “bare”
topological model was employed by Rodenburg [Rod98]. The main reason for this choice
is, however, that a signature with arbitrary ordinal arities is studied. In this setting, the
metric on terms that we use here is not suitable as the following example illustrates:

Example 3.4.1
Let f be a symbol of arity ω, and a and b be nullary. Consider the rewrite rule a → b. and
the following reduction sequence:

f(a, a, a, a, a . . .) → f(b, a, a, a, a . . .) → f(b, b, a, a, a, . . .) → f(b, b, b, a, a, . . .)

Intuitively, this sequence should weakly and strongly converge to the term f(b, b, b, . . .), as
the reduction steps occur more and more far to the right. But, for the metric, the depth of
the changes and the depth of the reduction steps is significant. Yet, both the depth of the
changes in the terms and the depth of the reduction steps remain constant.

Therefore, [Rod98] uses a topology on terms in which the reduction illustrated in the
above example indeed converges to f(b, b, b, . . .). One can easily see, though, that the same
result can be obtained with the PRS model: We did not consider signatures with transfinite
arities. The partial order, however, can be extended to partial terms with transfinite arities
in the obvious way. It is clear that the abovementioned reduction sequence weakly and
strongly converges to f(b, b, b, . . .) within the PRS semantics as well.

Another variant of transfinite reductions that one might consider is the one introduced
by Corradini [Cor93]. There, also the partial order on terms is employed. But instead
of defining transfinite reduction sequences, a theory of parallel reductions is established.
Corradini shows that the parallel contraction of a set of mutually independent redexes of
left-linear rules is well defined. Because an infinite term might have infinitely many redexes,
such a set of mutually independent redexes can be infinite and, hence, a parallel contraction
of these redexes corresponds to some sort of transfinite reduction sequence. However, for
this result, the applicability and the application of a rewrite rule is defined quite differently
by allowing a partial matching of left-hand sides. As we will see in Section 5.5.1, also the

48 Chapter 3 Transfinite Reductions

PRS semantics of ITRSs allows the definition of a meaningful notion of parallel reductions
– at least for orthogonal systems.

This thesis does not consider higher-order term rewriting or λ-calculus. As argued in
[KKSdV97], when dealing with higher-order systems, it is desirable to consider alternative
metrics which amounts to employ a context-sensitive definition of the notion of depth in a
higher-order term. This is of course not prohibited by the definition of MRSs. Nevertheless,
it is not entirely trivial how a corresponding PRS semantics should look like. Or to put it in
terms of Section 3.3.2: How does a partial order have to be defined in order to extend such an
alternative metric on terms? In his analysis of strongly convergent reductions of λ-calculus
Blom [Blo04] solved this problem by using different definitions of the context function cxt
depending on the metric under consideration. Yet, this approach, specifically designed
for the needs of the λ-calculus, is unsatisfactory as it does not affect weakly converging
reductions accordingly. In order to achieve this, changing the partial order is inevitable.

Chapter 4

Term Graphs

In this chapter we want to introduce term graphs as a generalisation of the concept of
terms. Essentially, terms are ordered trees with labelled nodes. Term graphs generalise this
concept by omitting the requirement of having a tree structure and, thus, allow a general
graph structure instead. This idea is useful for implementing systems dealing with terms,
e.g. functional programming languages or term rewriting systems. The advantage that term
graphs provide is that they allow to represent terms in a compact way.

The benefits of using term graphs for this purpose is twofold: Firstly, it allows to enhance
efficiency by representing several occurrences of the same subterm as a single subgraph.
Secondly, and most importantly for our purposes, a certain class of infinite terms, so-called
rational terms, can be represented by finite term graphs.

The former, also known as sharing of subexpressions, was first employed in the setting
of reduction systems by Wadsworth [Wad71] focusing on λ-calculus and later by Staples
[Sta80a, Sta80b, Sta80c] in the setting of term rewriting. Moreover, this idea was also used
in implementations of functional programming languages, e.g. in [Tur79] and [PJ87], and it
was even used as the basis for the formalisation of the semantics of functional programming
languages (cf. [vESP97]) such as Clean [Pla95].

The latter application of term graphs, viz. cyclic term graphs, was initially used quite
informally again by implementers of functional languages [Tur79, PJ87]. The idea behind
cyclic term graphs is to represent infinitely repeating structures in a term by cycles in a
term graph. The formal justification of these techniques was only given later by Farmer
and Watro [FRW90, FW90]. Subsequently, shortly after the advent of infinitary rewriting,
Kennaway et al. [KKSdV94] studied the connection of cyclic term graph rewriting and
infinitary term rewriting. They were able to show that term graph rewriting can be used to
finitely represent limited forms of infinitary term rewriting. This particular result provides
the motivation for considering term graphs in this thesis. We shall come back to this topic in
Chapter 6 in which we discuss term graph rewriting and its connection to (infinitary) term
rewriting in more detail. Moreover, our aim is it to extend infinitary rewriting techniques
known from term rewriting to the setting of term graphs.

Eventually, the goal is to be able to define transfinite reductions for term graph rewriting
systems which are studied in Chapter 6. In Chapter 3, we have seen two approaches to define
transfinite reductions: One using a metric space and another using a partially ordered set.
We want to explore both alternatives. To this end, we will introduce a partial order and a
metric on term graphs in Section 4.3 and Section 4.5, respectively. Both the metric and the
partial order are designed such that they extend the corresponding concepts on terms. The
main results of this chapter are that, just as in the setting of terms, the partial order forms
a complete semilattice and the metric is a complete ultrametric. Additionally, it is shown
that the partial order extends the metric in the sense of Definition 3.3.10.

Before we can start defining and investigating a partial order and a metric on term
graphs we need to prepare the necessary notions and tools. The fundamental concepts of

49

50 Chapter 4 Term Graphs

f

a g

a b

(a) f(a, g(a, b)).

f

g

a

b

g

(b) A graph.

Figure 4.1: Example for a tree representation of a term; generalisation to graphs.

graphs and term graphs are given in Section 4.1. Subsequently, homomorphisms, by far
the most important concept for our endeavour, are covered in Section 4.2. Homomorphisms
give rise to the important equivalence relation of isomorphism. Technically, the partial order
and the metric can only be meaningfully defined on the quotient of the term graphs by the
isomorphism equivalence. This quotient construction is investigated in Section 4.3.

4.1 Graphs and Term Graphs

This section provides the basic notions for term graphs and more generally for graphs. Terms
over a signature, say Σ, can be thought of as rooted trees whose nodes are labelled with
symbols from Σ. Moreover, in these trees a node labelled with a k-ary symbol is restricted
to have out-degree k and the outgoing edges are ordered. In this way the i-th successor of a
node labelled with a symbol f is interpreted as the root node of the subtree that represents
the i-th argument of f . For example, consider the term f(a, g(a, b)). The corresponding
representation as a tree is shown in Figure 4.1a.

When turning to graphs, we simply remove the restriction of considering only trees but
instead consider directed graphs. An example for a graph is depicted in Figure 4.1b. Note
that this allows nodes to have more than one predecessor. Particularly, graphs also allow
cycles as it can be seen in the example.

Definition 4.1.1 (graph)
Let Σ be a signature. A Σ-graph (or simply graph) is a tuple g = (N, lab, suc) consisting of

• a set N (of nodes),

• a labelling function lab∶ N → Σ, and

• a successor function suc∶ N → N∗.

The functions lab and suc are restricted to comply with the condition that ∣suc(n)∣ =
ar(lab(n)), i.e. a node labelled with a k-ary symbol has precisely k successors. Moreover,
the graph g is called finite if the set N is finite.

Notation 4.1.2. Let g = (N, lab, suc) be a Σ-graph. If suc(n) = n0 ⋅ . . . ⋅ nk−1, then suci(n)
denotes ni, the i-th successor of n, for all 0 ≤ i < k and arg(n) denotes k, the arity of the
label of n. Often we also use suci to define the function suc. More precisely, we then define
a partial function suci∶ N ⇀ N for each i ∈ N such that suci(n) is defined iff i < arg(n). The
induced function suc is then defined as expected as

suc(n) = suc0(n) ⋅ . . . ⋅ suck−1(n) for all n ∈ N and k = arg(n).

In order to reduce notation, we sometimes refer to nodes labelled with a symbol, say σ,
as σ-nodes, and nodes not labelled with σ as non-σ-nodes. Analogous notions are also used
for sets of symbols ∆. That is, a node labelled with a symbol in ∆ is referred to as ∆-node
and a node labelled with a symbol not contained in ∆ is called a non-∆-node.

4.1 Graphs and Term Graphs 51

Example 4.1.3
Let Σ = {f/2, h/2, c/0} be a signature and g = (N, lab, suc), where N = {n1, n2, n3, n4},
lab(n1) = lab(n3) = f , lab(n2) = h, lab(n4) = c and suc(n1) = n2 ⋅ n3, suc(n2) = n1 ⋅ n4,
suc(n3) = n2 ⋅ n4, suc(n4) = ε. As suc respects the arities of the node labels, g is a Σ-graph.
We often choose to depict a graph – well – graphically. For the example graph g, such a
graphical representation would look like

f
n1

h
n2

c
n4

f
n3

or simply

f

h

c

f

Usually, we are not interested in the names of the nodes, in which case we prefer the second
representation which does not mention them. The edges in the graphical representation
always emanate from the lower half of a node. The leftmost outgoing edge of a node n
always points to suc0(n), the edge to the right of it to suc1(n) etc.

Since the outgoing edges of a node are ordered, a path in a graph can be described by
giving the starting nodes and a sequence of numbers each of which defines which outgoing
edge of the “current node” to take. This gives rise to the notion of a path. It is inspired by
the notion of access paths introduced in [AK96].

Definition 4.1.4 (path, cyclicity)
Let g = (N, lab, suc) be a Σ-graph and n,n′ ∈ N .

(i) A path in g from n to n′ is a finite sequence (pi)i<l in N such that either

• n = n′ and (pi)i<l is empty, i.e. l = 0, or
• 0 ≤ p0 < arg(n) and the suffix (pi)1≤i<l is a path in g from sucp0(n) to n′.

(ii) If there exists a path from n to n′ in g, we say that n′ is reachable from n in g.

(iii) A path π in g from n to n′ is called cyclic if there are two prefixes π1, π2 of π with
π1 < π2 such that both π1 and π2 are paths from n to some common node n′′. A path
that is not cyclic is called acyclic.

(iv) g is called cyclic if it contains a cyclic path. Otherwise it is called acyclic.

Example 4.1.5
Consider the graph g from Example 4.1.3. The sequence 0 ⋅ 1 ⋅ 1 is a path in g from n2 to
n4. It is acyclic. The sequence 1 ⋅ 0 ⋅ 0 ⋅ 1 ⋅ 1 is a path from n1 to n4. It is cyclic since it has
the prefixes π1 = 1 and π2 = 1 ⋅ 0 ⋅ 0 ⋅ 1 with π1 < π2 which are both paths from n1 to n3.

Now we can turn to term graphs which are simply graphs having a distinguished root
node. Additionally, we require that every node in a term graph has to be reachable from
the root node.

Definition 4.1.6 (term graph)
Let Σ be a signature. A term graph over Σ is a tuple g = (N, lab, suc, r), where h =
(N, lab, suc) is a Σ-graph, r ∈ N , and all nodes in N are reachable from r in the under-
lying graph h. r is called the root node of g. The term graph g is called finite if the
underlying graph h is. The set of all term graphs over Σ is denoted as G∞(Σ), the set of all
finite term graphs over Σ is denoted as G(Σ).

52 Chapter 4 Term Graphs

Notation 4.1.7. Let g = (N, lab, suc) be a graph and r ∈ N . For the sake of brevity, we will
use (g, r) to denote the term graph h = (N, lab, suc, r). Moreover, we use the notation Nh,
labh, such and rh to refer to the respective components N ,lab, suc and r of h.

Just as for graphs, we sometimes want to use a graphical notation for specifying term
graphs. For term graphs, we use the same conventions that we have introduced for graphs.
However, we additionally need a means to distinguish the root node of the term graph. To
this end, we stipulate that the topmost node is considered to be the root node of the term
graph. So the graphical representation given in Example 4.1.3 depicts the term graph (g, r),
where r, the root node of the term graph, is the node n1.

Definition 4.1.8 (occurrence, depth, tree)
Let g = (N, lab, suc, r) ∈ G∞(Σ) and n,n′ ∈ N .

(i) A path in g from n to n′ is a path in (N, lab, suc) from n to n′. An occurrence of n is
a path in g from r to n. The set of all occurrences in g is denoted by P(g); the set of
all occurrences of a node n in g is denoted Pg(n).

(ii) For each node n ∈ N , the depth of n, denoted depthg(n), is the minimum of the lengths
of the occurrences of n in g. The depth of g, denoted depth(g), is the maximum of the
depths of the nodes in g if it exists and otherwise ∞. In sum,

depthg(n) = min {∣π∣ ∣π ∈ Pg(n)} , depth(g) = max {depthg(n) ∣n ∈ N } ∪ {∞}

(iii) Let ∆ ⊆ Σ. The depth of ∆ in g, denoted ∆-depth(g), is the minimal depth of a ∆-
node, i.e., a node labelled with a symbol in ∆, or ∞ if no such node exists in g. More
precisely,

∆-depth(g) = min {depthg(n) ∣n ∈ N,g(n) ∈ ∆} ∪ {∞}

If ∆ is a singleton set {σ}, we also write σ-depth(g) instead of {σ}-depth(g).

(iv) g is called cyclic if it contains a cyclic occurrence. Otherwise it is called acyclic.

(v) g is called a term tree if each node in g has exactly one occurrence.

Remark 4.1.9. Note that we use the same notation P(⋅) for the set of node occurrences
in a term graph as for positions in a term. The reason for doing so is that these two
concepts are tightly related. In fact, they coincide on term trees. One can easily see that
term trees essentially correspond to terms. The positions of a term are exactly the unique
node occurrences in a corresponding term tree. Despite the fact that occurrences are a
generalisation of the concept of positions we prefer the name "occurrence" as it conveys the
idea that there might be multiple ones for a single node whereas positions in terms are
unique. We should note here that there is one technical difference between terms and term
tress: In term trees, nodes have names and, hence, can be distinguished from one another.
That is, there are term trees which are “structurally equivalent” and, therefore, correspond
to the same term, but which are, nonetheless, different from each other due to their nodes.
This technical difference is overcome, however, when we consider isomorphism classes of
term graphs.

Notation 4.1.10. Let g = (N, lab, suc) be a Σ-graph and n ∈ N . The subgraph of g restricted
to n, denoted g∣n, is the Σ-graph (N ′, lab′, suc′), where N ′ is the set of nodes in g that are
reachable from n in g, lab′ = lab∣N ′ , and suc′ = suc∣N ′ . For a term graph h = (g, r), we also
use this construction. That is, we write h∣n for the sub-term graph (g∣n,n). Additionally,
for each π ∈ P(h), we use the notation nodeh(π) to denote the unique node n that has an
occurrence π in g and the notation h(π) for labh(nodeh(π)), i.e. the labelling of the node
at π. Furthermore, by abuse of notation, we write arh(π) instead of arh(nodeh(π)), and h∣π
instead of h∣nodeh(π).

4.2 Homomorphisms 53

f
n1

f
n2

c
n4

c
n5

g
n3

(a) Term graph g.

f
n6

c
n7

(b) Term graph h.

f
n1

f
n6

c
n7

g
n3

c
n5

(c) Term graph g[h]n2 .

Figure 4.2: Example for a replacement of a node by a term graph.

Definition 4.1.11 (replacement)
Let g, h ∈ G∞(Σ) and n ∈ Ng. Let M be the set of nodes only reachable through n in g
(including n itself). That is,

M = {m ∈ Ng ∣ ∀π ∈ Pg(m)∃π′ ∈ Pg(n). π′ ≤ π } .

The replacement of n in g by h, denoted g[h]n, is the term graph (N, lab, suc, r) with

N = (Ng ∖M) ⊎Nh r =
⎧⎪⎪⎨⎪⎪⎩

rg if n ≠ rg

rh if n = rg

lab(m) =
⎧⎪⎪⎨⎪⎪⎩

labg(m) if m ∈ Ng

labh(m) if m ∈ Nh

suci(m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sucgi (m) if m ∈ Ng, sucgi (m) ≠ n
rh if m ∈ Ng, sucgi (m) = n
suchi (m) if m ∈ Nh

Example 4.1.12
Consider the term graphs g and h illustrated in Figure 4.2a and Figure 4.2b, respectively.
For constructing the replacement of n2 in g by h, we have to identify the nodes in M , i.e.
those nodes in g that are only reachable through n2. Clearly, n2 itself is inM . Additionally,
also n4 is inM since its only occurrence 0⋅0 is an extension of the n2 occurrence 0. Therefore,
these two nodes and all edges emanating from them are removed, and are replaced by the
two nodes of h and their edges. The single edge that is pointing to n2 in g is redirected
to n6, the root node of h. Since only those nodes are removed that are solely reachable
through n2, there are no other edges going from the remaining nodes to the now removed
nodes. The resulting term graph g[h]n is depicted in Figure 4.2c.

For most properties of term graphs (just as for terms), the restriction to signatures with
symbols of finite arity is not essential. Yet, for the following lemma that we will need later
on, it is:

Lemma 4.1.13 (finitely many occurrences of bounded length)
Let g ∈ G∞(Σ) and d ∈ N. Then there are only finitely many occurrences in g of depth at
most d, i.e. the set {π ∈ P(g) ∣ ∣π∣ ≤ d} is finite.

Proof. Straightforward induction on d.

4.2 Homomorphisms

This section is concerned with homomorphisms between graphs and most importantly be-
tween term graphs. Homomorphisms constitute the most important notion on term graphs.

54 Chapter 4 Term Graphs

They provide the foundation for the partial order and the metric on term graphs whose
definitions are given in subsequent sections of this chapter. Furthermore, the definition
of rewriting on term graphs that is investigated in Chapter 6 heavily depends on homo-
morphisms, too. This section also provides the fundamental properties of homomorphism
which will become indispensable when studying the partial order, the metric and the rewrite
relation on term graphs.

For term graph rewriting, there is a plethora of different approaches studied in the
literature. In principle, we will follow the approach of Barendregt et al. [BvEG+87]. This
approach uses graphs that might contain “empty” nodes, i.e. nodes without a label and
without successors. These empty nodes represent variables of term graph rewrite rules. This
is formalised by the definition of homomorphisms, which are not required to be homomorphic
in empty nodes. Instead of considering graphs with empty nodes, we single out a set ∆ of
nullary symbols and regard nodes labelled with one of these symbols as “empty”. As we have
mentioned, homomorphisms in the approach of [BvEG+87] only have to be homomorphic in
“non-empty” nodes. This motivates the notion of ∆-homomorphisms, where ∆ is a set of
nullary symbols. ∆-homomorphisms only have to be homomorphic in non-∆-nodes. This
provides much more flexibility which will be necessary as we will see. ∆-homomorphisms
will be used to define the matching of term graph rewrite rules as well as a partial order on
term graphs.

Definition 4.2.1 (∆-homomorphism, ∆-isomorphism)
Let Σ be a signature, ∆ ⊆ Σ(0), and g, h Σ-graphs.

(i) Let n ∈ Ng and ϕ∶ Ng → Nh a function. ϕ is called homomorphic in n if it satisfies the
following two conditions:

labg(n) = labh(ϕ(n)) (labelling)
ϕ(sucgi (n)) = suchi (ϕ(n)) for all 0 ≤ i < arg(n) (successor)

For a subset N ′ ⊆ N , we also say that ϕ is homomorphic in N ′ if ϕ is homomorphic in
n for all n ∈ N ′.

(ii) A ∆-homomorphism ϕ from g to h, denoted ϕ∶ g →∆ h, is a function ϕ∶ Ng → Nh such
that ϕ is homomorphic in n for all n ∈ Ng with labg(n) ∉ ∆.

(iii) A ∆-homomorphism ϕ from a term graph (g, rg) to a term graph (h, rh), denoted
ϕ∶ (g, rg) →∆ (h, rh), is a ∆-homomorphism ϕ∶ g →∆ h with

ϕ(rg) = rh (root)

(iv) A ∆-homomorphism ϕ∶ a →∆ b (between two graphs or two term graphs) is called a
∆-isomorphism, written ϕ∶ a →̃∆ b, if there is a ∆-homomorphism ϕ−1∶ b →∆ a that is
the inverse of ϕ, i.e. ϕ ○ ϕ−1 and ϕ−1 ○ ϕ are identity functions. In this case, we also
write a ≅∆ b and say that a and b are ∆-isomorphic.

Notation 4.2.2. For a ∆-homomorphism ϕ between two objects a, b (both graphs or term
graphs), we use the notation ϕ∶ a →σ b and ϕ∶ a → b if ∆ = {σ} or ∆ = ∅, respectively.
Accordingly, we use the notions σ-homomorphism and homomorphism. The same convention
applies to ∆-isomorphisms and ∆-isomorphic (term) graphs.

The first observation that can be made about ∆-homomorphisms is that they have a
categorical structure:

Proposition 4.2.3 (categories of (term) graphs)
G∞(Σ) together with the ∆-homomorphisms on G∞(Σ) forms a category. Similarly, the set
of Σ-graph and their ∆-homomorphisms form a category, too.

4.2 Homomorphisms 55

Proof. The identity ∆-homomorphism for a term graph (resp. graph) is the identity mapping
on the nodes. Identity ∆-homomorphisms are easily seen to be the unit element w.r.t.
function composition. Moreover, an easy equational reasoning reveals that the composition
of two ∆-homomorphisms is again a ∆-homomorphism. Associativity of this composition is
obvious as ∆-homomorphisms are functions.

One can quite easily see that homomorphisms between term graphs are always surjective.

Lemma 4.2.4 (homomorphisms are surjective)
Let g, h ∈ G∞(Σ) and ϕ∶ g → h. Then ϕ is surjective.

Proof. Follows from an easy induction on the depth of the nodes in h.

Clearly, for the above lemma to hold, homomorphicness in each argument and the root
condition are indispensable. Therefore, surjectivity is not necessary for homomorphisms
between graphs or for general ∆-homomorphisms.

However, it turns out that, for each pair of term graphs g, h, there is at most one ∆-
homomorphism ϕ∶ g →∆ h.

Lemma 4.2.5 (at most one ∆-homomorphism)
Let g, h ∈ G∞(Σ). Then there is at most one ∆-homomorphism from g to h.

Proof. Suppose, there are two ∆-homomorphisms ϕ1, ϕ2∶ g →∆ h. We prove that ϕ1 = ϕ2
by showing that ϕ1(n) = ϕ2(n) for all n ∈ Ng by induction on the depth of n.

Let depthg(n) = 0, i.e. n = rg. By the root condition, we have that ϕ1(rg) = rh = ϕ2(rg).
Let depthg(n) = d > 0. Then n has an occurrence π ⋅ i in g such that depthg(n′) < d
for n′ = nodeg(π). Hence, we can employ the induction hypothesis for n′ to obtain the
following:

ϕ1(n) = suchi (ϕ1(n′)) (successor condition for ϕ1)
= suchi (ϕ2(n′)) (ind. hyp.)
= ϕ2(n) (successor condition for ϕ2)

For the definition of the partial order and the metric on term graphs, we only need
∆-homomorphisms and ∆-isomorphisms where ∆ is the empty set or a singleton set. For
these two cases, the respective notions of ∆-isomorphism coincide.

Lemma 4.2.6 (isomorphism equals σ-isomorphism)
Let Σ be a signature, σ ∈ Σ(0), and g, h two Σ-graphs (or two term graphs over Σ). Then

g ≅ h iff g ≅σ h.

Proof. The proof is the same for term graphs and for graphs: The “only if” direction is
trivial. For the converse direction, assume that there is a σ-isomorphism ϕ∶ g →̃σ h. By
definition, its inverse ϕ−1∶ h →̃σ g is also a σ-isomorphism. We have to show that ϕ and ϕ−1

are also homomorphic in σ-nodes. Since σ is nullary, the successor condition is vacuously
satisfied for σ-nodes. Let n ∈ Ng with labg(n) = σ and suppose that the labelling condition
is not satisfied, viz. labh(ϕ(n)) ≠ σ. Hence, ϕ−1 is homomorphic in ϕ(n) and we can derive
a contradiction by the following equations:

labg(n) = labg(ϕ−1(ϕ(n))) = labh(ϕ(n)) ≠ σ

By symmetry, we obtain that ϕ−1 is a homomorphism, too. Therefore, ϕ∶ g →̃ h.

56 Chapter 4 Term Graphs

Note that a bĳective ∆-homomorphism is not necessarily a ∆-isomorphism. To realise
this, consider two term graphs g, h, each with one node only. Let the node in g be labelled
with a and the node in h with b then the only possible a-homomorphism from g to h is
clearly a bĳection but not an a-isomorphism. On the other hand, bĳective homomorphisms
are isomorphisms.

Lemma 4.2.7 (bĳective homomorphisms are isomorphisms)
Let g, h ∈ G∞(Σ) and ϕ∶ g → h. Then the following are equivalent

(a) ϕ is an isomorphism.

(b) ϕ is bĳective.

(c) ϕ is injective.

Proof. The implication (a) ⇒ (b) is trivial. The equivalence (b) ⇔ (c) follows from
Lemma 4.2.4. For the implication (b) ⇒ (a), consider the inverse ϕ−1 of ϕ. We need
to show that ϕ−1 is a homomorphism from h to g. The root condition follows immediately
from the root condition for ϕ. Similarly, an easy equational reasoning reveals that the fact
that ϕ is homomorphic in Ng implies that ϕ−1 is homomorphic in Nh

From the proof we can see that the equivalence (a) ⇔ (b) also holds true for graphs.
The following lemma provides another characterisation of ∆-isomorphism:

Lemma 4.2.8 (two ∆-homomorphisms = ∆-isomorphism)
Let g, h ∈ G∞(Σ). If there is a ∆-homomorphism from g to h and one from h to g, respec-
tively, then g ≅∆ h.

Proof. Let ϕ∶ g →∆ h and ψ∶ h →∆ g. According to Lemma 4.2.3, the composition of ϕ
and ψ is a ∆-homomorphism ψ ○ ϕ∶ g →∆ g. Since, by Lemma 4.2.5, this is the only ∆-
homomorphism from g to g, it has to be the identity ∆-homomorphism for g. For the same
reason, also ϕ ○ψ∶ h→∆ h is the identity ∆-homomorphism for h. Hence, ψ is the inverse of
ϕ which is, therefore, a ∆-isomorphism.

Next we present three lemmas that state in which way ∆-homomorphisms preserve the
depth of the nodes in the involved term graphs. These lemmas are of rather technical nature
and are needed in Section 4.5 for analysing the connection between the partial order and
the metric on term graphs.

Lemma 4.2.9 (weak depth preservation of ∆-homomorphisms)
Let g, h ∈ G∞(Σ) and ϕ∶ g →∆ h. Then depthg(n) ≥ depthh(ϕ(n)) for all n ∈ Ng.

Proof. We prove by induction on d that depthh(ϕ(n)) ≤ d for all n ∈ Ng with depthg(n) = d.
If d = 0, then n = rg. By the root condition, we have ϕ(rg) = rh. Hence, depthh(ϕ(rg)) = 0.
If d > 0, then there is a node m ∈ Ng with depthg(m) = d − 1 and sucgi (m) = n for some
i. Applying the induction hypothesis yields depthh(ϕ(m)) ≤ d − 1. From the successor
condition, we can obtain ϕ(n) = suchi (ϕ(m)). Hence, depthh(ϕ(n)) ≤ depthh(ϕ(m)) + 1 ≤
d.

Lemma 4.2.10 (reverse weak depth preservation of ∆-homomorphisms)
Let g, h ∈ G∞(Σ), ϕ∶ g →∆ h, d ∈ N and ∆-depth(g) ≥ d. Then, for all n ∈ Nh with
depthh(n) ≤ d, there is a node m ∈ ϕ−1(n) with depthg(m) ≤ depthh(n).

Proof. We prove the equivalent statement

∀e ≤ d ∀n ∈ Nh. (depthh(n) = e Ô⇒ ∃m ∈ Ng.(depthg(m) ≤ e ∧ ϕ(m) = n))

by induction on e. If e = 0, then n = rh. Take m = rg. Then we have depthg(m) = 0 and,
therefore, ϕ(m) = n according to the root condition. If e > 0, then there is some n′ ∈ Nh with

4.3 Canonical Term Graphs 57

g h

g′ h′

∆

∆

̃
̃

Figure 4.3: Isomorphism between ∆-homomorphisms.

suchi (n′) = n and depthh(n′) = e−1. Hence, we can employ the induction hypothesis to obtain
somem′ ∈ Ng with depthg(m′) ≤ e−1 and ϕ(m′) = n′. Since ∆-depth(g) ≥ d ≥ e > depthg(m′),
we have labg(m′) ∉ ∆. Hence, ϕ is homomorphic in m′. Let m = sucgi (m′). We can reason
as follows:

ϕ(m) = ϕ(sucgi (m
′)) = suchi (ϕ(m′)) = suchi (n′) = n, and

depthg(m) ≤ depthg(m′) + 1 ≤ e

Lemma 4.2.11 (∆-depth preservation)
Let g, h ∈ G∞(Σ) and ϕ∶ g →∆ h, then ∆-depth(g) ≤ ∆-depth(h).

Proof. Let d = ∆-depth(g). If d = ∞, then g ∈ G∞(Σ ∖∆). Hence, ϕ is a homomorphism
which is, according to Lemma 4.2.4, surjective. Consequently, due to the labelling condition,
h ∈ G∞(Σ ∖∆), too, which implies that ∆-depth(h) = ∞. If d = 0, then d ≤ ∆-depth(h) is
trivially true. If 0 < d < ∞, then, by Lemma 4.2.10, for each node n at depth < d in h,
there is a node m at depth < d in g with ϕ(m) = n. Since then labg(m) ∉ ∆, we also have
labh(n) ∉ ∆ by the labelling condition. Hence, d ≤ ∆-depth(h).

4.3 Canonical Term Graphs

We are not interested in distinguishing isomorphic term graphs. The fact that there are
distinct term graphs that are isomorphic is rather an unintentional artifact of the definition
of term graphs. Therefore, we want to consider the quotient G∞(Σ)/ ≅ by the isomorphism
relation ≅. Accordingly, we also consider the quotient of the set of all ∆-homomorphisms on
G∞(Σ) by ≅ where, for two ∆-homomorphisms ϕ∶ g →∆ h, ϕ′∶ g′ →∆ h′, we have ϕ ≅ ϕ′ iff
there are isomorphisms ψ1∶ g →̃ g′ and ψ2∶ h′ →̃ h such that ϕ = ψ2 ○ϕ′ ○ψ1; in other words,
the diagram in Figure 4.3 commutes. We refer to the equivalence classes of this equivalence
relation as ∆-homomorphisms (on G∞(Σ)/ ≅). Moreover, for a property P , we say that
an equivalence class (of term graphs or homomorphisms) enjoys P iff all elements of the
equivalence class enjoy P .

In order to work with this quotient construction properly, it is convenient to choose a
canonical representation. That is, we need an appropriate subset C of G∞(Σ) such that each
element [g]≅ ∈ G∞(Σ)/ ≅ is represented by exactly one element c ∈ C. The idea to obtain
such a set is to provide a mechanism to give nodes a unique name. This can be achieved by
requiring that each node is the set of its occurrences (cf. [Plu99]):

Definition 4.3.1 (canonical term graph)
Let Σ be a signature. A term graph g = (N, lab, suc, r) over Σ is called canonical if n = Pg(n)
holds for each n ∈ N . That is, each node is the set of its occurrences in the term graph. The
set of all canonical term graphs is denoted by G∞C (Σ); the set of all finite canonical term
graphs is denoted by GC(Σ).

58 Chapter 4 Term Graphs

Before we formally prove that canonical term graphs indeed canonically represent iso-
morphism classes of term graphs we want to introduce some alternative characterisations of
∆-homomorphisms which will simplify the reasoning over them.

Lemma 4.3.2 (characterisation of ∆-homomorphisms)
Let g, h ∈ G∞C (Σ) and ϕ∶ Ng → Nh. Then ϕ∶ g →∆ h iff, for all n ∈ Ng, the following holds:

(a) n ⊆ ϕ(n), and

(b) labg(n) = labh(ϕ(n)) whenever labg(n) ∉ ∆.

Proof. For the “only if” direction, let ϕ∶ g →∆ h. (b) is the labelling condition which has to
be satisfied by ϕ. To establish (a), we show the equivalent statement

∀π ∈ P(g). ∀n ∈ Ng. π ∈ n Ô⇒ π ∈ ϕ(n)

We do so by induction on the length of π: If π = ε, then π ∈ n implies n = rg. By the root
condition, we have ϕ(rg) = rh and, therefore, π = ε ∈ rh. If π = π′ ⋅ i, then let n′ = nodeg(π′).
Consequently, π′ ∈ n′ and, by induction hypothesis, π′ ∈ ϕ(n′). Since π = π′ ⋅ i, we have
sucgi (n′) = n. By the successor condition we can conclude ϕ(n) = suchi (ϕ(n′)). This and
π′ ∈ ϕ(n′) yields that π′ ⋅ i ∈ ϕ(n).

For the “if” direction, we assume (a) and (b). The labelling condition follows immediately
from (b). For the root condition, observe that since ε ∈ rg, we also have ε ∈ ϕ(rg). Hence,
ϕ(rg) = rh. In order to show the successor condition, let n,n′ ∈ Ng and 0 ≤ i < arg(n) such
that sucgi (n) = n′. Then there is an occurrence π ∈ n with π ⋅ i ∈ n′. By (a), we can conclude
that π ∈ ϕ(n) and π ⋅ i ∈ ϕ(n′) which implies that suchi (ϕ(n)) = ϕ(n′).

Example 4.3.3
In the above lemma, (a) states that the term graph h “has more sharing” than g. The
simplest example is the following homomorphism ϕ from g to h:

f{ε}

a
{0}

a
{1}

f {ε}

a
{0,1}

ϕ

gϕ∶ h

In this example, the nodes {0} and {1} are strictly less shared than their common image
{0,1}.

Remark 4.3.4. Note that the lemma above also applies to non-canonical term graphs. It
simply has to be rephrased such that instead referring to a node n its set of occurrences
Pg(n) has to be referred to whenever the “inner structure” of n is used. We also use this
the other way around: To avoid clutter in lengthy proofs, we often write n instead of Pg(n),
i.e., we identify a node with its set of occurrences. We indicate this by writing that w.l.o.g.
we assume the term graphs we deal with to be canonical.

From Lemma 4.2.5, we know that there is at most one ∆-homomorphism between two
term graphs. The lemma above allows us to give this ∆-homomorphism right away if we
know it exists. If there is a ∆-homomorphism from g to h, it is defined by ϕ(n) = n′, where
n′ is the unique node n′ ∈ Nh with n ⊆ n′.

Apart from that, it is clear that the set of nodes in a canonical partial term graph forms
a partition of the set of occurrences. Hence, it defines an equivalence relation on the set of
occurrences. For a canonical partial term graph g, we write ∼g for this equivalence relation.
That is, π1 ∼g π2 iff there is some n ∈ Ng such that π1, π2 ∈ n. Using the convention
mentioned in Remark 4.3.4 we can extend this to arbitrary term graphs. With this we are
able to reformulate characterisation of ∆-homomorphisms:

4.3 Canonical Term Graphs 59

Lemma 4.3.5 (characterisation of ∆-homomorphisms)
Let g, h ∈ G∞(Σ). Then there is a ∆-homomorphism from g to h iff, for all π,π′ ∈ P(g), we
have

(a) π ∼g π′ Ô⇒ π ∼h π′

(b) g(π) = h(π) whenever g(π) ∉ ∆

Proof. W.l.o.g. we assume g and h to be canonical. For the “only if” direction, assume
that ϕ is a ∆-homomorphism from g to h. Then we can use the properties (a) and (b) of
Lemma 4.3.2, which we will refer to as (a’) and (b’) to avoid confusion. In order to show
(a), assume π ∼g π′. Then there is some node n ∈ Ng with π,π′ ∈ n. (a’) yields π,π′ ∈ ϕ(n)
and, therefore, π ∼g π′. To show (b), we assume some π ∈ P(g) with g(π) ∉ ∆. Then we can
reason as follows:

g(π) = labg(nodeg(π))
(b’)= labh(ϕ(nodeg(π)))

(a’)= labh(nodeh(π)) = h(π)

For the converse direction, assume that both (a) and (b) hold. Define the function
ϕ∶ Ng → Nh by ϕ(n) = n′ iff n ⊆ n′ for all n ∈ Ng and n′ ∈ Nh. To see that this is well-
defined, we show at first that, for each n ∈ Ng, there is at most one n′ ∈ Nh with n ⊆ n′.
Suppose there is another node n′′ ∈ Nh with n ⊆ n′′. Since n ≠ ∅, this implies n′ ∩ n′′ ≠ ∅.
Hence, n′ = n′′. Secondly, we show that there is at least one such node n′. Choose some
π∗ ∈ n. Since then π∗ ∼g π∗ and, by (a), also π∗ ∼h π∗ holds, there is some n′ ∈ Nh with
π∗ ∈ n′. For each π ∈ n, we have π∗ ∼g π and, therefore, π∗ ∼h π by (a). Hence, π ∈ n′. So
we know that ϕ is well-defined. By construction, ϕ satisfies (a’). Moreover, because of (b),
it is also easily seen to satisfy (b’). Hence, ϕ is a homomorphism from g to h.

We can apply Lemma 4.2.8 to both of the above characterisations of ∆-homomorphisms
to get another characterisation of ∆-isomorphisms:

Corollary 4.3.6 (characterisation of ∆-isomorphisms)
Let g, h ∈ G∞(Σ). Then the following holds:

(i) ϕ∶ Ng → Nh is a ∆-isomorphism iff

(a) Pg(ϕ(n)) = Pg(n), and

(b) labg(n) = labh(ϕ(n)) or labg(n), labh(ϕ(n)) ∈ ∆.

(ii) g ≅ h iff

(a) ∼g = ∼h, and
(b) g(π) = h(π) or g(π), h(π) ∈ ∆.

Proof. Immediate consequence of Lemma 4.3.2 resp. Lemma 4.3.5 using Lemma 4.2.8.

Now we can revisit the notion of canonical term graphs using the above characterisation
of ∆-isomorphisms. We will define a function C(⋅)∶ G∞(Σ) → G∞C (Σ) that maps a term graph
to its canonical representation. To this end, let g = (N, lab, suc, r) be a term graph. Then
define C(g) = (N ′, lab′, suc′, r′) as follows.

N ′ = {Pg(n) ∣n ∈ N } r′ = Pg(r)
lab′(Pg(n)) = lab(n) suc′i(Pg(n)) = Pg(suci(n)) for all n ∈ N,0 ≤ i < arg(n)

C(g) is easily seen to be a well-defined canonical term graph. With this definition we
indeed capture the idea of a canonical representation of isomorphism classes as the following
proposition confirms:

60 Chapter 4 Term Graphs

Proposition 4.3.7 (canonical partial term graphs are a canonical representation)
Let g ∈ G∞(Σ). C(g) canonically represents the equivalence class [g]≅. More precisely, it
holds that

(i) [g]≅ = [C(g)]≅, and

(ii) [g]≅ = [h]≅ iff C(g) = C(h).

In particular, we have, for all canonical term graphs g, h, that g = h iff g ≅ h.

Proof. Straightforward consequence of Corollary 4.3.6.

This means there is a one-to-one correspondence between canonical term graphs and their
∆-homomorphisms on the one hand, and equivalence classes of term graphs and their ∆-
homomorphisms on the other hand. More precisely, the respective categories are isomorphic:

Proposition 4.3.8 (categories of term graphs)

(i) G∞(Σ)/ ≅ together with the ∆-homomorphisms on G∞(Σ)/ ≅ forms a category.

(ii) G∞C (Σ) together with the ∆-homomorphisms on G∞C (Σ) forms a category.

(iii) The categories described above are isomorphic.

Proof. (i) In order to obtain a category, we need to define compositions of ∆-homomorphisms.
∆-homomorphisms on isomorphism classes are sets of ∆-homomorphisms on term graphs.
The composition is defined by forming the set of all compositions of ∆-homomorphisms in the
corresponding sets. That is, for two ∆-homomorphisms Φ∶ [g1]≅ →∆ [g2]≅ and Ψ∶ [g2]≅ →∆
[g3]≅, their composition Φ ○ Ψ∶ [g1]≅ →∆ [g3]≅ is defined as Φ ○ Ψ = {ϕ ○ ψ ∣ϕ ∈ Φ, ψ ∈ Ψ}.
One can easily check that this is indeed well-defined and gives rise to a category.

(ii) is obvious.
For (iii), we need a bĳective functor F ∶ G∞C (Σ) → G∞(Σ)/ ≅ between the categories. F

maps each canonical term graph g to its isomorphism class [g]≅ and each ∆-homomorphism
ϕ∶ g →∆ h on canonical term graphs to its isomorphism class [ϕ]≅∶ [g]≅ →∆ [h]≅. Functori-
ality of F is immediate and bĳectivity follows from Proposition 4.3.7.

Remark 4.3.9. In the following, we will make use of this fact. Instead of dealing with
G∞(Σ)/ ≅ we prefer using the canonical representation G∞C (Σ). In particular, we make use
of this when defining term graph valued functions. We usually define such functions in
terms of G∞(Σ). Such a function f ∶ A → G∞(Σ) can be uniquely modified to a function
f ′∶ A→ G∞C (Σ) by defining f ′(g) = C(f(g)). Usually, we also use the same notation, i.e., we
identify f and f ′. We use the same convention when defining operations on term graphs,
i.e. functions f ∶ G∞(Σ) → G∞(Σ). Such an operation can then be modified in the same way
to an operation f ′∶ G∞C (Σ) → G∞C (Σ).

An example for this approach is the following unravelling operation:

Definition 4.3.10 (unravelling)
Let g = (N, lab, suc, r) ∈ G∞(Σ). The unravelling of g, denoted U(g), is the term graph
(P(g), lab′, suc′, ε), where

lab′(π) = lab(nodeg(π))
suc′i(π) = π ⋅ i for all 0 ≤ i < arg(π)

From the definition, it is clear that the unravelling of a term graph is a term tree as each
node has precisely one occurrence (which is, by construction, the node itself).

4.3 Canonical Term Graphs 61

Remark 4.3.11. By identifying isomorphic term graphs, we can make the correspondence
between term trees and terms explicit: Let T be the set of term trees over Σ. Then there is
a one-to-one correspondence between T / ≅ and T ∞(Σ): For each term t ∈ T ∞(Σ), we can
define a unique term tree g = (P(t), lab, suc, ε), with

lab(π) = t(π)
suci(π) = π ⋅ i for all 0 ≤ i < arg(π)

Similarly, following Remark 2.3.17, each canonical representative of an equivalence class
in T / ≅ uniquely determines a term. Therefore, justified by this correspondence, we will
identify the sets T ∞(Σ) and T / ≅ (and the set of canonical term trees).

Having this, we can consider the unraveling operation on canonical term graphs as a
function U∶ G∞C (Σ) → T ∞(Σ). By means of this operation, term graphs can be used as a
compact representation of terms. This is the central motivation for considering term graphs.
That is particularly the case for this thesis as term graphs allow to finitely represent infinite
terms.

It can be easily seen that the internal structure of the nodes of a canonical term graph
suffices to determine the external graph structure up to the labelling. This observation is
detailed in the following lemma:

Lemma 4.3.12 (internal structure of nodes defines external structure)
Let g = (N, lab, suc, r) be a canonical term graph. Then the following holds:

n = r iff ε ∈ n
suci(n) = n′ iff ∃π ∈ n. π ⋅ i ∈ n′

for all n,n′ ∈ N, 0 ≤ i < arg(n).

Proof. Immediate consequence of the definition of reachability in term graphs.

But note that not any arbitrary partition and not any arbitrary set of occurrences define
a canonical term graph structure as outlined in the lemma above. The next lemma presents
some of the properties of the set of occurrences and of the equivalence relation on it, which
are in fact characteristic.

Lemma 4.3.13 (internal node structure of canonical term graphs)
Let g ∈ G∞C (Σ). Then, for all π,π′ ∈ P(g) and i ∈ N, the following holds:

π ⋅ i ∈ P(g) Ô⇒ π ∈ P(g) and i < arg(π) (reachablity)

π ∼g π′ Ô⇒
⎧⎪⎪⎨⎪⎪⎩

g(π) = g(π′) and
π ⋅ j ∼g π′ ⋅ j for all j < arg(π)

(congruence)

Proof. Straightforward.

This observation motivates the following definition of an alternative representation of
canonical term graphs.

Definition 4.3.14 (occurrence representation)
Let Σ be a signature.

(i) An occurrence representation over Σ is a tuple (P, l,∼) consisting of

• a non-empty set P ⊆ N∗,
• a function l∶ P → Σ, and
• an equivalence relation ∼ on P

62 Chapter 4 Term Graphs

satisfying the following conditions for all π,π′ ∈ P and i ∈ N:

π ⋅ i ∈ P Ô⇒ π ∈ P and i < ar(l(π)) (reachablity)

π ∼ π′ Ô⇒
⎧⎪⎪⎨⎪⎪⎩

l(π) = l(π′) and
π ⋅ j ∼ π′ ⋅ j for all j < ar(l(π))

(congruence)

(ii) Let o = (P, l,∼) be an occurrence representation. A canonical term graph g ∈ G∞C (Σ)
matches o if

P(g) = P,
g(π) = l(π) for all π ∈ P, and
P /∼ = Ng

There is a one-to-one correspondence between occurrence representations and canonical
term graphs. The following lemma describes this in more detail.

Lemma 4.3.15 (occurrence representations are unique)

(i) Each term graph g ∈ G∞C (Σ) matches exactly one occurrence representation over Σ.

(ii) For each occurrence representation o over Σ, there is exactly one canonical term graph
g ∈ G∞C (Σ) that matches o.

Proof. (i) Let g = (N, suc, lab, r). Define the function l∶ P(g) → Σ by l(π) = g(π). By
Lemma 4.3.13, we have that o = (P(g), l,∼g) is an occurrence representation. By construc-
tion, g matches o. It is immediate from the definition that any two occurrence representation
matched by a common term graph have to coincide,

(ii) Let o = (P, l,∼). Define a term graph g = (N, lab, suc, r) by

N = P / ∼
lab(n) = f iff ∃π ∈ n. l(π) = f

suci(n) = n′ iff ∃π ∈ n. π ⋅ i ∈ n′

r = n iff ε ∈ n

lab and suc are well-defined because of the congruence condition satisfied by o. Since P is
non-empty and closed under prefixes, it contains ε. Hence, r is well-defined. Moreover, by
the reachability condition, each node in N is reachable from the root node. Thus, g is a
well-defined canonical term graph. By construction. g matches o. Whenever there are two
canonical term graphs matching o, they are isomorphic due to Corollary 4.3.6 and, therefore,
have to be identical.

This alternative representation of canonical term graphs will turn out to be quite useful
for constructing term graphs in order to show that the yet to be defined partial order on
canonical term graphs is a complete semilattice.

4.4 A Partial Order on Term Graphs

In this section we want to define and study a partial order on term graphs. The goal is
to obtain a generalisation of the partial order defined on terms (cf. Section 2.3.2) to the
setting of term graphs. As already pointed out in the previous section, we do not want to
distinguish isomorphic term graphs. In fact, this is crucial for the partial order. Therefore,
the order will be defined on canonical term graphs. An additional important requirement
for the partial order, at least for our purposes, is that it admits the limit inferior for any
sequence of canonical term graphs. In order to achieve this, it is sufficient, according to

4.4 A Partial Order on Term Graphs 63

g

f

�

g

g

� �

g

f

f

a

g

g

ϕ

ϕ∶ g h
�

Figure 4.4: Example of a �-homomorphism injective in non-�-nodes.

Proposition 2.1.33, to have a complete semilattice. And indeed, the partial order ≤� on
terms is a complete semilattice as mentioned in Proposition 2.3.20. Thus, our goal is to
obtain a complete semilattice on canonical term graphs.

Just as in the case for terms, we use an additional nullary symbol � which is supposed
to denoted “undefinedness”. That is, we consider term graphs over the extended signature
Σ� = Σ ⊎ {�/0}. Term graphs over Σ� are also referred to as partial term graphs. If it is
necessary to make it explicit, we refer to the term graphs in T ∞(Σ,V) as total term graphs.
Now we do need the flexibility that the notion of ∆-homomorphisms gives us. We are going to
define the partial order ≤� on term graphs using �-homomorphisms, i.e. ∆-homomorphisms
with ∆ = {�}.

Before getting to the technical details of the definition of ≤� on term graphs let us discuss
the intention of this partial order. It ought to capture two concepts: Firstly, g ≤� h should
state that g and h are consistent, i.e. the information contained in g and h do not contradict
each other. Secondly, g ≤� h is supposed to say that h contains more information than g
does.

A first attempt to formalise this intuition is to use injective �-homomorphisms: g ≤� h iff
there is an injective �-homomorphism ϕ∶ g →� h. Alternatively, one could also weaken this
slightly by only requiring ϕ to be injective for non-�-nodes. Both approaches do capture
the intended intuition of ≤�. Let us focus on the less restrictive latter alternative. The
following considerations also apply to the former: The requirement of ϕ being injective
and homomorphic in non-�-nodes yields that the non-�-part of g is isomorphic to an initial
fragment of h. Hence, g and h do not contradict each other. Secondly, since ϕ does not
have to be homomorphic for �-nodes, the images of these nodes w.r.t. ϕ can be non-�-nodes.
That is, in those places where g is undefined, indicated by the label �, h might have more
information. An example for this approach is illustrated in Figure 4.4. It shows two term
graphs g and h and a �-homomorphism ϕ which is injective in non-�-nodes, i.e. no two nodes
not labelled with � are mapped to a common image.

In fact, both approaches, injective �-homomorphisms and its weakened variant, define
a complete partial order. Yet, both fail to admit glbs of arbitrary non-empty sets and,
therefore, are not complete semilattices. Glbs might not even exists for finite non-empty
Sets. An example for this is shown in Figure 4.5. Four term graphs are depicted: g1, g2, g3, g4.
Neither of the proposed orders admits a glb for the set {g1, g2}. To appreciate why this is
the case, take a look at the term graphs g3 and g4. For the weakened variant of the partial
order, these are two maximal lower bounds of {g1, g2} as one can easily verify. For the

64 Chapter 4 Term Graphs

f

g g

g n1

c

f

g g

g

g n2

c

f

g

gn3

c

g

�

f

g

�

g

g n4

�
n′4

(g1) (g2) (g3) (g4)

Figure 4.5: Counterexample for candiate partial orders.

injective �-homomorphism definition of the partial order, one can also derive two maximal
lower bounds: Modify g3 by replacing the right successor of the f -node with a single �-
node and modify g4 by replacing the left successor of the f -node with a single � node, too.
Hence, for both orders, there is no greatest lower bound of {g1, g2} – only two maximal ones,
respectively.

The example illustrates the underlying problem quite nicely. In both g1 and g2 the f -
node spawns two “branches” which are ultimately joined into a single branch in the node
n1 resp. n2. Yet, the right branch in g2 is longer than in g1. Hence, the junction of the
two branches cannot be part of a common lower bound. The two different maximal lower
bounds of g1 and g2 represent two different choices of which of the two branches to “prefer”.
g3 prefers the left branch whereas g4 prefers the right branch.

A solution to this problem, the one that we adopt here, is to strengthen the order ≤�
such that g3 and g4 are no longer lower bounds of g1 and g2. Note that the nodes n1 and
n2 are shared, i.e. they have two predecessors. Yet, the corresponding nodes in g3 and g4,
viz. n3 and n4 resp. n′4 are not shared. Hence, we add another restriction that says that
corresponding nodes have to have the same “sharing behaviour”. What this means will
become clear as soon as we will come to the formal definition. Furthermore, note that the
sharing that we have in the example is an acyclic one (also called horizontal sharing). And as
it will turn out, only acyclic sharing causes the problem illustrated by this example. Cyclic
sharing (also called vertical sharing), on the other hand, is harmless. The formal approach
to this intuition is to take into account the occurrences of the nodes. The different lengths
of the right branches in the two term graphs g1 and g2 causes the nodes n1 and n2 to have
different occurrences: n1 has the occurrences 0 ⋅ 0 and 1 ⋅ 0 whereas n2 has the occurrences
0 ⋅ 0 and 1 ⋅ 0 ⋅ 0. Moreover, as already mentioned, only acyclic sharing is of relevance in this
setting. Thus, we restrict our attention to acyclic occurrences:

Notation 4.4.1. Recall that an occurrence π in a term graph g is called cyclic iff there are
occurrences π1, π2 with π1 < π2 ≤ π such that nodeg(π1) = nodeg(π2). Otherwise it is called
acyclic. We will use the notation Pa(g) for the set of all acyclic occurrences in g and Pag (n)
for the set of all acyclic occurrences of a node n in g. For an acyclic term graph g, a fortiori
a term tree, Pg(n) and Pag (n) coincide, of course.

Definition 4.4.2 (preservation of sharing, strong ∆-homomorphism)
Let g, h ∈ G∞(Σ) and ϕ∶ g →∆ h.

(i) Let n ∈ Ng. ϕ is said to preserve the sharing of n if it satisfies the equation

Pag (n) = Pah(ϕ(n)) (preservation of sharing)

4.4 A Partial Order on Term Graphs 65

(ii) ϕ is called strong if it preserves the sharing of all n ∈ Ng with g(n) ∉ ∆.

Note that since in a term tree each node has a unique occurrence, each ∆-homomorphism
between term trees is trivially strong.

We now have strengthened ∆-homomorphism in the way we need it to be able to define
the partial order. In fact, the notion of strong ∆-homomorphisms subsumes injectivity for
non-∆-nodes:

Lemma 4.4.3 (strong ∆-homomorphisms are injective for non-∆-nodes)
Let g, h ∈ G∞(Σ) and ϕ∶ g →∆ h strong. Then ϕ is injective for all non-∆-nodes in g. That
is, for two nodes n,m ∈ Ng with labg(n), labg(m) ∉ ∆ we have that ϕ(n) = ϕ(m) implies
n =m.

Proof. Let n,m ∈ Ng with labg(n), labg(m) ∉ ∆ and ϕ(n) = ϕ(m). Since ϕ is strong, it
preserves the sharing of n and m. That is, in particular we have Pah(ϕ(n)) ⊆ Pg(n) and
Pah(ϕ(m)) ⊆ Pg(m). Moreover, because Pah(ϕ(n)) = Pah(ϕ(m)) ≠ ∅, we can conclude that
Pg(n) ∩ Pg(m) ≠ ∅ and, therefore, m = n.

Before we turn to the definition of the partial order ≤� on term graphs and its properties,
we want to study strong ∆-homomorphisms.

One can quite easily see that the depth of a node can be defined in terms of its acyclic
occurrences.

Lemma 4.4.4 (depth in terms of acyclic occurrences)
Let g ∈ G∞(Σ) and n ∈ Ng. Then depthg(n) = min {∣π∣ ∣π ∈ Pag (n)}.

Proof. Recall that depthg(n) = min {∣π∣ ∣π ∈ Pg(n)}. Hence, we immediately have the in-
equation depthg(n) ≤ min {∣π∣ ∣π ∈ Pag (n)}. Suppose, that depthg(n) < min {∣π∣ ∣π ∈ Pag (n)}.
Then there is some π ∈ Pg(n)∖Pag (n) with ∣π∣ ≤ ∣π′∣ for all π′ ∈ Pg(n). Since π is cyclic, there
are paths π1, π2, π3 with π2 ≠ ε, π = π1 ⋅π2 ⋅π3 and nodeg(π1) = nodeg(π1 ⋅π2). Consequently,
π1 ⋅ π3 ∈ Pg(n) and ∣π1 ⋅ π3∣ < ∣π1 ⋅ π2 ⋅ π3∣ = ∣π∣. This is contradicts that ∣π∣ ≤ ∣π′∣ for all
π′ ∈ Pg(n).

This observation then immediately gives us the result that the preservation of sharing
of a node also yields a preservation of its depth:

Corollary 4.4.5 (depth preservation of strong ∆-homomorphisms)
Let g, h ∈ G∞(Σ) and ϕ∶ g →∆ h a strong ∆-homomorphism. Then depthg(n) = depthh(ϕ(n))
for all n ∈ Ng with labg(n) ∉ ∆.

Proof. This follows immediately from Lemma 4.4.4 since labg(n) ∉ ∆ implies Pag (n) =
Pah(ϕ(n)) for the strong ∆-homomorphisms ϕ.

The following lemma provides an equivalent characterisation of strong ∆-homomorphisms
that reduces the proof obligations necessary to show that a ∆-homomorphism is strong.

Lemma 4.4.6 (preservation of sharing)
Let g, h ∈ G∞(Σ), ϕ∶ g →∆ h. Then ϕ is strong iff Pah(ϕ(n)) ⊆ Pg(n) for all n ∈ Ng with
labg(n) ∉ ∆.

Proof. The “only if” direction is trivial. For the “if” direction, suppose that ϕ satisfies
Pah(ϕ(n)) ⊆ Pg(n) for all n ∈ Ng with labg(n) ∉ ∆. In order to prove that ϕ is strong, we
will show that Pah(ϕ(n)) = Pag (n) holds for each n ∈ Ng with labg(n) ∉ ∆.

We first show the inclusion Pah(ϕ(n)) ⊆ Pag (n). For this purpose, let π ∈ Pah(ϕ(n)). Due
to the hypothesis, this implies that π ∈ Pg(n). Now suppose that π is cyclic in g, i.e. there
are two occurrences π1, π2 of a node m ∈ Ng with π1 < π2 ≤ π. By Lemma 4.3.2, we can
conclude that π1, π2 ∈ Ph(ϕ(m)). This is a contradiction to the assumption that π is acyclic
in h. Hence, π ∈ Pag (n).

66 Chapter 4 Term Graphs

For the other inclusion, assume some π ∈ Pag (n). Using Lemma 4.3.2 we obtain that
π ∈ Ph(ϕ(n)). It remains to be shown that π is acyclic in h. Suppose that this is not true,
i.e. there are two occurrences π1, π2 of a node m ∈ Nh with π1 < π2 ≤ π. Note that since
π ∈ P(g), also π1, π2 ∈ P(g). Let mi = nodeg(πi), i = 1,2. According to Lemma 4.3.2, we
have that ϕ(m1) = m = ϕ(m2). Moreover, observe that g(π1), g(π2) ∉ ∆: g(π1) cannot
be a nullary symbol because π1 < π ∈ P(g). The same argument applies for the case that
π2 < π. If this is not the case, then π2 = π and g(π) ∉ ∆ follows from the assumption that
labg(n) ∉ ∆. Thus, we can apply Lemma 4.4.3 to conclude that m1 = m2. Consequently, π
is cyclic in g, which contradicts the assumption. Hence, π ∈ Pah(ϕ(n)).

From this we obtain that ∆-isomorphisms are, in fact, also strong ∆-homomorphisms.

Corollary 4.4.7 (∆-isomorphisms are strong)
Let g, h ∈ G∞(Σ). If ϕ∶ g →̃∆ h, then ϕ is a strong ∆-homomorphism.

Proof. This follows from Corollary 4.3.6 and Lemma 4.4.6.

Again with the strengthened notion of homomorphism we get a categorical structure.

Proposition 4.4.8 (category of strong ∆-homomorphisms)
G∞(Σ) together with the strong ∆-homomorphisms on G∞(Σ) forms a category.

Proof. It is clear that the identity homomorphism is strong. Therefore, by Proposition 4.2.3,
it remains to be shown that, for two strong ∆-homomorphisms ϕ∶ g1 →∆ g2 and ψ∶ g2 →∆ g3,
also the composition ψ ○ ϕ is strong. To this end, let n ∈ Ng1 with labg1(n) ∉ ∆. From the
labelling condition for ϕ, we obtain that labg2(ϕ(n)) ∉ ∆. Hence, ϕ preserves the sharing of
n and ψ preserves the sharing of ϕ(n). We can combine this to get the equation

Pag3
(ψ(ϕ(n))) = Pag2

(ϕ(n)) = Pag1
(n).

That is, ψ ○ ϕ preserves the sharing of n.

Having established the most important properties of strong ∆-homomorphisms, we can
now define the partial order ≤� on term graphs.

Definition 4.4.9 (partial order on term graphs)
Let g, h ∈ G∞(Σ�). Then we define

g ≤� h iff there is a strong �-homomorphism ϕ∶ g →� h

By abuse of notation, we also use � to denote the canonical term graph whose only node is
labelled with �. Moreover, ≤� can be lifted to G∞(Σ�)/ ≅ by defining

[g]≅ ≤� [h]≅ iff g ≤� h

Remark 4.4.10. The extension of ≤� to equivalence classes is easily seen to be well-defined:
Suppose that g ≤� h and g′ ≅ g and h′ ≅ h. Since, by Corollary 4.4.7, isomorphisms are
also strong (�-)homomorphisms, we have two strong �-homomorphisms ϕ1∶ g′ →� g and
ϕ2∶ h →� h

′. Since g ≤� h, there is also a strong ϕ∶ g →� h. Hence, by Proposition 4.4.8,
ϕ2 ○ ϕ ○ ϕ1 is a strong �-homomorphism from g′ to h′, i.e. g′ ≤� h′.

Furthermore, we immediately get that the ordered set (G∞(Σ�)/ ≅,≤�) is isomorphic to
the ordered set (G∞C (Σ�),≤�). We will employ this fact by switching between these structures
to be able to use the respective structure that is more convenient for the given setting.

Using the properties of strong ∆-homomorphisms we easily obtain that ≤� is a partial
order on G∞C (Σ�):

Corollary 4.4.11 (≤� is a partial order on G∞C (Σ�))
≤� is a partial order on G∞C (Σ�).

4.4 A Partial Order on Term Graphs 67

Proof. Reflexivity and transitivity of ≤� follow immediately from Proposition 4.4.8. For the
antisymmetry, assume g ≤� h and h ≤� g. By Lemma 4.2.8, this implies g ≅� h. Lemma 4.2.6
then yields that g ≅ h. Hence, according to Proposition 4.3.7, g = h.

This result also shows that on the set G∞(Σ�) of all partial term graphs ≤� is a quasi-
order.

In order to work with ≤� in a convenient way, we need some more insight into the prop-
erties of strong ∆-homomorphisms on canonical term graphs. Again we want to establish a
characterisation in terms of occurrences and the equivalence relations ∼g induced by term
graphs g:

Lemma 4.4.12 (characterisation of strong ∆-homomorphisms)
Let g, h ∈ G∞(Σ) and ϕ∶ g →∆ h. Then ϕ is strong iff

π ∼h π′ Ô⇒ π ∼g π′ for all π ∈ P(g) with g(π) ∉ ∆ and π′ ∈ Pa(h).

Proof. For the “only if” direction, assume that ϕ is strong. Moreover, let π ∈ P(g) with
g(π) ∉ ∆ and π′ ∈ Pa(h) such that π ∼h π′, and let n = nodeg(π). According to Lemma 4.3.2,
we get that π ∈ Ph(ϕ(n)). Because of π ∼h π′, also π′ ∈ Ph(ϕ(n)). Since, by assumption, π′
is acyclic in h, we know in particular that π′ ∈ Pah(ϕ(n)). Since ϕ is strong and labg(n) ∉ ∆,
we know that ϕ preserves the sharing of n which yields that π′ ∈ Pg(n). Hence, π ∼g π′.

For the converse direction, let n ∈ Ng with labg(n) ∉ ∆. We need to show that ϕ
preserves the sharing of n. Due to Lemma 4.4.6, it suffices to show that Pah(ϕ(n)) ⊆ Pg(n).
Since Pg(n) ≠ ∅, we can choose some π∗ ∈ Pg(n). Then, according to Lemma 4.3.2, also
π∗ ∈ Ph(ϕ(n)). Let π ∈ Pah(ϕ(n)). Then π∗ ∼h π holds. Since π is acyclic in h and g(π∗) ∉ ∆,
we can use the hypothesis to obtain that π∗ ∼g π holds which shows that π ∈ Pg(n).

By combining this lemma with the corresponding findings on ∆-homomorphisms we are
able to obtain an alternative characterisation for ≤� by means of occurrences:

Corollary 4.4.13 (characterisation of ≤�)
Let g, h ∈ G∞C (Σ�). Then g ≤� h iff all of the following conditions are met:

(a) π ∼g π′ Ô⇒ π ∼h π′ for all π,π′ ∈ P(g)

(b) π ∼h π′ Ô⇒ π ∼g π′ for all π ∈ P(g) with g(π) ≠ � and π′ ∈ Pa(h)

(c) g(π) = h(π) for all π ∈ P(g) with g(π) ≠ �.

Proof. This follows immediately from the definition of ≤�, Lemma 4.3.5 and Lemma 4.4.12.

As terms form a special case of canonical term graphs, we are able to derive a charac-
terisation of ≤� on terms from the corollary above. Due to the simpler structure of terms,
this characterisation is considerably more succinct:

Corollary 4.4.14 (characterisation of ≤� on T ∞(Σ�,V))
Let s, t ∈ T ∞(Σ�,V). Then s ≤� t iff s(π) = t(π) holds for all π ∈ P(s) with s(π) ≠ �.

Proof. The “only if” direction follows immediately from Corollary 4.4.13. Also for the “if”
direction, we can apply Corollary 4.4.13 as (b) is trivially true for all pairs of terms, and the
requirement that s(π) = t(π) for all π ∈ P(s) with s(π) ≠ � implies both (a) and (c).

Recall that we observed that there is a one-to-one correspondence between terms and
canonical term trees. From the above corollary, it is easy to see that the order ≤� defined on
terms coincides with the order ≤� defined on the corresponding canonical term trees. Hence,
identifying terms and canonical term trees will cause no confusion w.r.t. ≤�.

Now we have prepared all the necessary tools in order to prove that ≤� is a complete
partial order.

68 Chapter 4 Term Graphs

Proposition 4.4.15 (≤� is a cpo)
≤� is a complete partial order on G∞C (Σ�).

Proof. The least element of ≤� is obviously �. Hence, it remains to be shown that each
each directed subset of G∞C (Σ�) has a least upper bound. To this end, suppose that G is
a directed subset of G∞C (Σ�). We define a canonical term graph g by giving an occurrence
representation (P, l,∼) where

P = ⋃
g∈G
P(g)

∼ = ⋃
g∈G

∼g

l(π) =
⎧⎪⎪⎨⎪⎪⎩

f if f ≠ � and ∃g ∈ G. g(π) = f
� otherwise

We will make extensive use of Corollary 4.4.13 in order to show that g is the lub of G.
Therefore, we use (a), (b), (c) to refer to the conditions mentioned there.

At first we need to show that l is indeed well-defined. For this purpose, let g1, g2 ∈ G
and π ∈ P(g1) ∩ P(g2) with g1(π), g2(π) ≠ �. Since G is directed, there is some g ∈ G such
that g1, g2 ≤� g. By (c), we can conclude g1(π) = g(π) = g2(π).

Next we show that (P, l,∼) is indeed an occurrence representation. Recall that ∼ needs
to be an equivalence relation. For the reflexivity, assume that π ∈ P . Then there is some
g ∈ G with π ∈ P(g). Since ∼g is an equivalence relation, π ∼g π must hold and, therefore,
π ∼ π. For the symmetry, assume that π1 ∼ π2. Then there is some g ∈ G such that π1 ∼g π2.
Hence, we get π2 ∼g π1 and, consequently, π2 ∼ π1. In order to show transitivity, assume
that π1 ∼ π2, π2 ∼ π3. That is, there are g1, g2 ∈ G with π1 ∼g1 π2 and π2 ∼g2 π3. Since G is
directed, we find some g ∈ G such that g1, g2 ≤� g. By (a), this implies that also π1 ∼g π2
and π2 ∼g π3. Hence, π1 ∼g π3 and, therefore, π1 ∼ π3.

For the reachability condition, let π ⋅ i ∈ P . That is, there is a g ∈ G with π ⋅ i ∈ P(g).
Lemma 4.3.13 yields π ∈ P(g) which in turn implies π ∈ P . Moreover, π ⋅ i ∈ P(g) implies
that i < ar(g(π)). Since g(π) cannot be a nullary symbol and in particular not �, we obtain
that l(π) = g(π). Hence, i < ar(l(π)).

For the congruence condition, assume that π1 ∼ π2 and that l(π1) = f . If f ≠ �, then
there are g1, g2 ∈ G with π1 ∼g1 π2 and g2(π1) = f . Since G is directed, there is some
g ∈ G such that g1, g2 ≤� g. Hence, by (a) resp. (c), we have π1 ∼g π2 and g(π1) = f .
Using Lemma 4.3.13 we can conclude that g(π2) = g(π1) = f and that π1 ⋅ i ∼g π2 ⋅ i for all
< ar(g(π1)). Because g ∈ G, it holds that l(π2) = f and that π1 ⋅ i ∼ π ⋅ i for all i < ar(l(π1)).
If f = �, then also l(π2) = �, for if l(π2) = f ′ for some f ′ ≠ �, then, by the symmetry of
∼ and the above argument (for the case f ≠ �), we would obtain f = f ′ and, therefore,
a contradiction. Since � is a nullary symbol, the remainder of the condition is vacuously
satisfied.

This shows that (P, l,∼) is an occurrence representation which, by Lemma 4.3.15, uniquely
defines a canonical term graph. Next we show that the thus obtained term graph g is an
upper bound for G. To this end, let g ∈ G. We will show that g ≤� g by establishing (a),(b)
and (c). (a) and (c) are an immediate consequence of the construction. For (b), assume that
π1 ∈ P(g), g(π1) ≠ �, π2 ∈ Pa(g) and π1 ∼ π2. We will show that then also π1 ∼g π2 holds.
Since π1 ∼ π2, there is some g′ ∈ G with π1 ∼g′ π2. Because G is directed, there is some
g∗ ∈ G with g, g′ ≤� g∗. Using (a), we then get that π1 ∼g∗ π2. Note that since π2 is acyclic
in g, it is also acyclic in g∗: Suppose that this is not the case, i.e. there are occurrences
π3, π4 with π3 < π4 ≤ π2 and π3 ∼g∗ π4. But then we also have π3 ∼ π4 which contradicts
the assumption that π2 is acyclic in g. With this knowledge we are able to apply (b) to
π1 ∼g∗ π2 in order to obtain π1 ∼g π2.

In the final part of this proof, we will show that g is the least upper bound of G. For
this purpose, let ĝ be an upper bound of G, i.e. g ≤� ĝ for all g ∈ G. We will show that

4.4 A Partial Order on Term Graphs 69

f
r1

�
n1

(g)

f
r2

�
n2

(h)

f
r

(g ⊔� h)

Figure 4.6: Least upper bound g ⊔� h of compatible term graphs g and h.

g ≤� ĝ by establishing (a), (b) and (c). For (a), assume that π1 ∼ π2. Hence, there is some
g ∈ G with π1 ∼g π2. Since, by assumption, g ≤� ĝ, we can conclude π1 ∼ĝ π2 using (a). For
(b), assume π1 ∈ P , l(π1) ≠ �, π2 ∈ Pa(ĝ) and π1 ∼ĝ π2. That is, there is some g ∈ G with
g(π1) ≠ �. Together with g ≤� ĝ this implies π1 ∼g π2 by (b). π1 ∼ π2 follows immediately.
For (c), assume π ∈ P and l(π) = f ≠ �. Then there is some g ∈ G with g(π) = f . Applying
(c) then yields ĝ(π) = f since g ≤� ĝ.

From the construction in the previous proof, we immediately get the following corollary:

Corollary 4.4.16 (lub of directed sets)
Let G be a directed subset of G∞C (Σ�) and g = ⊔ �G. Then the following holds:

(i) P(g) = ⋃
g∈G
P(g), and

(ii) g(π) = f ≠ � iff ∃g ∈ G. g(π) = f .

Next we will prove that also compatible term graphs have a lub. Recall that compatible
elements in a partially ordered set are elements that have an upper bound. The issue that
makes the construction of the lub of compatible elements a bit more complicated than in the
case of directed sets is illustrated in Figure 4.6. Note that the lub g ⊔� h of the term graphs
g and h has an additional cycle. The fact that in g ⊔� h the second successor of r has to be
r itself is enforced by g saying that the first successor of r1 is r1 itself and by h saying that
the first and the second successor of r2 must be identical. Because of the additional cycle in
g ⊔� h, we have that the set of occurrences in g ⊔� h is a proper superset of the union of the
sets of occurrences in g and h. This makes the construction of g ⊔� h using an occurrence
representation inappropriate.

A possible strategy to construct the lub is to take all the nodes of the two term graphs
in question and identify those nodes that have a common occurrence. In our example, we
have four nodes r1, n1, r2 and n2. At first r1 and r2 have to be identified as both have the
occurrence ε. Next, r1 and n2 are identified as they share the occurrence 0. And eventually,
also n2 and n1 are identified since they share the occurrence 1. Hence, all four nodes have
to be identified. The result is, therefore, a term graph with a single node r. The following
lemma and its proof show that, for any two compatible term graphs, this construction always
leads to their lub.

Lemma 4.4.17 (compatible elements have lub)
Let g1, g2 ∈ G∞C (Σ�) be compatible (w.r.t. ≤�). Then {g1, g2} has a least upper bound.

Proof. Instead of the order ≤� on G∞C (Σ�) we consider the order ≤� on G∞(Σ�)/ ≅. As
already mentioned, this is justified by Proposition 4.3.7 and Proposition 4.3.8. We will
construct a term graph g such that [g]≅ is the least upper bound of {[g1]≅, [g2]≅}. Let
gj = (N j , sucj , labj , rj), j = 1,2. Since we are dealing with isomorphism classes, we can
assume w.l.o.g. that the nodes in gj are of the form nj for j = 1,2. This is only a technical
trick for the purpose of reducing the necessary notation and to ensure that N1 and N2 are

70 Chapter 4 Term Graphs

disjoint. As g1, g2 are compatible, there is an upper bound ĝ = (N̂, l̂ab, ŝuc, r̂) for these term
graphs. That is, there are two strong �-homomorphisms ϕj ∶ gj →� ĝ, j = 1,2.

Let M = N1 ⊎N2. Define the relation ∼ on M as follows:

nj ∼mk iff Pgj(nj) ∩ Pgk(m
k) ≠ ∅

∼ is clearly reflexive and symmetric. Hence, its transitive closure ∼+ is an equivalence relation
on M . Now define the term graph g = (N, lab, suc, r) as follows:

N =M/ ∼+

lab(N) =
⎧⎪⎪⎨⎪⎪⎩

f if f ≠ �,∃nj ∈ N. labj(nj) = f
� otherwise

suci(N) = N ′ iff ∃nj ∈ N. sucji (n
j) ∈ N ′

r = [r1]∼+

Note that since ε ∈ Pg1(r1) ∩ Pg2(r2), we also have r = [r2]∼+ .
Before we argue about the well-definedness of g we need to establish some auxiliary

claims:

nj ∼+ mk Ô⇒ ϕj(nj) = ϕk(mk) for all nj ,mk ∈M (1)

ϕj(nj) = ϕk(mk) Ô⇒ nj ∼mk
for all nj ,mk ∈M
with labj(nj), labk(mk) ≠ �

(1’)

We show (1) by proving that nj ∼p mk implies ϕj(nj) = ϕk(mk) by induction on p > 0.
If p = 1, then nj ∼ mk. Hence, Pgj(nj) ∩ Pgk(mk) ≠ ∅. Additionally, from Lemma 4.3.2
we obtain both Pgj(nj) ⊆ Pĝ(ϕj(nj)) and Pgk(mk) ⊆ Pĝ(ϕk(mk)). Consequently, we also
have that Pĝ(ϕj(nj)) ∩ Pĝ(ϕk(mk)) ≠ ∅, i.e. ϕj(nj) = ϕk(mk). If p = q + 1 > 1, then there
is some ol ∈M with nj ∼ ol and ol ∼q mk. Applying the induction hypothesis immediately
yields ϕj(nj) = ϕl(ol) = ϕk(mk).

For (1’), let nj ,mk ∈M with labj(nj), labk(mk) ≠ � and ϕj(nj) = ϕk(mk). Since ϕj and
ϕk are strong �-homomorphisms, we have the following equations:

Pagj(n
j) = Paĝ (ϕj(nj)) = Paĝ (ϕk(mk)) = Pagk(m

k).

Hence, Pgj(nj) ∩ Pgk(mk) ≠ ∅ and, therefore, nj ∼mk.
Next we show that lab is well-defined. To this end, let N ∈ N and nj ,mk ∈ N such that

labj(nj) = f1 ≠ � and labk(mk) = f2 ≠ �. We need to show that f1 = f2. By (1), we have
that ϕj(nj) = ϕk(mk). Since f1, f2 ≠ �, we can employ the labelling condition for ϕj and
ϕk in order to obtain that

f1 = l̂ab(ϕj(nj)) = l̂ab(ϕk(mk)) = f2.

To argue that suc is well-defined, we first have to show for all N ∈ N that suci(N) is
defined iff i < ar(lab(N)). Suppose that suci(N) is defined. Then there is some nj ∈ N
such that sucji (nj) is defined. Hence, i < ar(labj(nj)). Since then also labj(nj) ≠ �, we
have lab(N) = labj(nj). Therefore, i < ar(lab(N)). If, conversely, there is some i ∈ N with
i < ar(lab(N)), then we know that lab(N) = f ≠ �. Hence, there is some nj ∈ N with
labj(nj) = f . Hence, i < ar(labj(nj)) and, therefore, sucji (nj) is defined. Hence, suci(N) is
defined.

To finish the argument showing that suc is well-defined, we have to show that, for all
N,N1,N2 ∈ N and nj ,mk ∈ N such that sucji (nj) ∈ N1 and sucki (mk) ∈ N2, we indeed have
N1 = N2. As nj ,mk ∈ N , we have nj ∼+ mk and, therefore, ϕj(nj) = ϕk(nk) according

4.4 A Partial Order on Term Graphs 71

to (1). Since both sucji (nj) and sucki (mk) are defined, we have labj(nj), labk(mk) ≠ �.
By (1’) we then have nj ∼ mk, i.e. there is some π ∈ Pgj(nj) ∩ Pgk(mk). Consequently,
π ⋅ i ∈ Pgj(sucji (nj)) ∩ Pgk(sucki (mk)). Hence, sucji (nj) ∼ sucki (mk) and, therefore, N1 = N2.

Before we begin the main argument we need establish the following auxiliary claims:

Pgj(nj) ⊆ Pg([nj]∼+) for all nj ∈M (2)
∀π ∈ Pag (N) ∃nj ∈ N. labj(nj) ≠ �, π ∈ Pagj(n

j) for all N ∈ N with lab(N) ≠ � (3)

nj ∼+ mk Ô⇒ Pagj(n
j) = Pagk(m

k)
for all nj ,mj ∈M
with labj(nj), labk(mk) ≠ �

(4)

For (2), we will show that π ∈ Pgj(nj) implies π ∈ Pg([nj]∼+) by induction on the length
of π. If π = ε, then ε ∈ Pgj(nj), i.e. nj = rj . Recall that [rj]∼+ = r. Hence, ε ∈ Pg([nj]∼+). If
π = π′ ⋅i, then π′ ⋅i ∈ Pgj(nj), i.e., formj = nodegj(π′), we have sucji (mj) = nj . Employing the
induction hypothesis, we obtain π′ ∈ Pg([mj]∼+). Additionally, according to the construction
of g, we have suci([mj]∼+) = [nj]∼+ . Consequently, π′ ⋅ i ∈ Pg([nj]∼+) holds.

Similarly, we also show (3) by induction on the length of π. If π = ε, then we have
ε ∈ Pag (N), i.e. N = r. Since, by assumption, lab(r) ≠ � holds, there is some j ∈ {1,2}
such that labj(rj) ≠ �. Moreover, we clearly have ε ∈ Pagj(r

j). If π = π′ ⋅ i, then we have
π′ ⋅ i ∈ Pag (N). Let N ′ = nodeg(π′). Since π′ ⋅ i is acyclic in g, so is π′, i.e. π′ ∈ Pag (N ′).
Moreover, we have that suci(N ′) is defined, i.e. lab(N ′) is not nullary and in particular not
�. Thus, we can apply the induction hypothesis to obtain some nj ∈ N ′ with labj(nj) ≠ �
and π′ ∈ Pagj(n

j). Hence, according to the construction of g, we have labj(nj) = lab(N ′),
i.e. sucji (nj) = mj is defined. Furthermore, we then get mj ∈ N . Note that π′ ⋅ i ∈ Pgj(mj).
Thus, it remains to be shown that π′ ⋅ i is acyclic in gj . Suppose that π′ ⋅ i is cyclic in gj . As
π′ is acyclic in gj , this means that there is some occurrence π∗ < π′ ⋅ i with π∗ ∈ Pgj(mj).
Using (2), we obtain that π∗ ∈ Pg(N). This contradicts the assumption of π′ ⋅ i being acyclic
in g. Hence, π′ ⋅ i ∈ Pagj(m

j) holds.
For (4), suppose that nj ∼+ mk holds with labj(nj), labk(mk) ≠ �. From (1), we obtain

ϕj(nj) = ϕk(nk). Moreover, since both nj and mk are not labelled with �, we know that
ϕj and ϕk preserve the sharing of nj and mk, respectively, which yields the equations

Pagj(n
j) = Paĝ (ϕj(nj)) = Paĝ (ϕk(mk)) = Pagk(m

k).

Next we show that [g1]≅, [g1]≅ ≤� [g]≅ holds by giving two strong �-homomorphisms
ψj ∶ gj →� g, j = 1,2. Define ψj ∶ N j → N by nj ↦ [nj]∼+ . From (2) and the fact that,
according to the construction, labj(nj) ≠ � implies labj(nj) = lab([nj]∼+), we immediately
get that ψj is a �-homomorphism by applying Lemma 4.3.2. In order to argue that ψj is
strong, assume that nj ∈ N j with labj(nj) ≠ �. According to Lemma 4.4.6, it suffices to
show that Pag (ψj(nj)) ⊆ Pgj(nj). Suppose that π ∈ Pag (ψj(nj)). Note that, by construction,
also ψj(nj) is not labelled with �. Hence, we can apply (3) to obtain some mk ∈ ψj(nj)
with labk(mk) ≠ � and π ∈ Pagk(m

k). By definition, mk ∈ ψj(nj) is equivalent to nj ∼+ mk.
Therefore, we can employ (4), which yields Pagk(m

k) = Pagj(n
j). Hence, π ∈ Pagj(n

j).
Note that the construction of g did not depend on ĝ, viz., for any other upper bound

[ĥ]≅ of [g1]≅, [g2]≅, we get the same term graph g. Hence, it is still just an arbitrary upper
bound which means that in order to show that [g]≅ is the least upper bound, it suffices to
show [g]≅ ≤� [ĝ]≅. For this purpose, we will devise a strong �-homomorphism ψ∶ g →� ĝ.
Define ψ∶ N → N̂ by [nj]∼+ ↦ ϕj(nj). (1) shows that ψ is well-defined. The root condition
for ψ follows from the root condition for ϕ1:

ψ(r) = ψ([r1]∼+) = ϕ1(r1) = r̂.

72 Chapter 4 Term Graphs

For the labelling condition, assume that lab(N) = f ≠ � for some N ∈ N . Then there is
some nj ∈ N with labj(nj) = f . Therefore, the labelling condition for ϕj yields

l̂ab(ψ(N)) = l̂ab(ϕj(nj)) = lab(N) = f

For the successor condition, let suci(N) = N ′ for some N,N ′ ∈ N . Then there is some
nj ∈ N with sucji (nj) ∈ N ′. Therefore, the successor condition for ψ follows from the
successor condition for ϕj as follows:

ψ(suci(N)) = ψ(N ′) = ψ([sucji (n
j)]∼+) = ϕj(sucji (n

j))
= ŝuci(ϕj(nj)) = ŝuci(ψ([nj]∼+)) = ŝuci(ψ(N))

Finally, we show that ψ is strong. To this end, let N ∈ N with lab(N) ≠ �. That is, there
is some nj ∈ N with labj(nj) ≠ �. Recall, that we have shown that ψj ∶ gj →� g is strong.
That is, we have

Pagj(n
j) = Pag (ψj(nj)) = Pag ([nj]∼+).

Analogously, we have Paĝ (ϕj(nj)) = Pagj(n
j) as ϕj is strong. Using this we can obtain the

following equations:

Paĝ (ψ(N)) = Paĝ (ψ([nj]∼+)) = Paĝ (ϕj(nj)) = Pagj(n
j) = Pag ([nj]∼+) = Pag (N)

Hence, ψ is a strong �-homomorphism from g to ĝ.

With this lemma we can conclude that ≤� is – as desired – a complete semilattice.

Proposition 4.4.18 (≤� is a complete semilattice)
≤� is a complete semilattice on G∞C (Σ�).

Proof. This can be obtained by applying Proposition 2.1.7 to both Proposition 4.4.15 and
Lemma 4.4.17.

The practical use of term graphs is chiefly the representation of terms as described by
the unravelling operation U presented in Definition 4.3.10. The following proposition shows
that unravelling preserves the ordering of ≤�.

Proposition 4.4.19 (unravelling preserves ordering)
Let g, h ∈ G∞(Σ�). If g ≤� h, then U(g) ≤� U(h).

Proof. Suppose that g ≤� h. Note that U(g) and U(h) are term trees and we can assume
w.l.o.g. that they are canonical. Hence, according to Corollary 4.4.14, it suffices to show
that U(g)(π) = U(h)(π) holds for all π ∈ P(U(g)) with U(g)(π) ≠ �. This, however, follows
immediately from g ≤� h, according to Corollary 4.4.13, as, for each term graph g′, it holds
that U(g′)(π) = g′(π) for all π ∈ P(g′).

Unfortunately, such preservation by the unravelling operation does not hold for lubs and
glbs. That is, in general the equations U(⊔G) = ⊔U(G) and U(⊓G) = ⊓U(G) are not
valid. The following two examples illustrate this.

Example 4.4.20

(i) Let G = {g, h} where g and h are the terms depicted in Figure 4.6. Then we have
U(G) = {f(f(f(. . . ,�),�),�), f(�,�)}, where f(f(f(. . . ,�),�),�) is the term

4.4 A Partial Order on Term Graphs 73

f

f

f

�

�

�

The lub of G is depicted in Figure 4.6. Its unravelling is the term

f

f

f f

f

f f

The lub of U(G) is, however, the term f(f(f(. . . ,�),�),�) itself.

(ii) Let G be the set consisting of the term graphs

f and f

f

Since the unravelling of both term graphs is the term fω, we have that U(G) = {fω}.
The glb of G is the term f(�) whose unravelling is also f(�). On the other hand,
however, the glb of U(G) is, of course, fω.

The underlying problem causing the preservation of lubs and glbs to fail is that the
preservation of the ordering by unravellings only holds for one direction. That is, in general
U(g) ≤� U(h) does not imply g ≤� h. This is, however, not an issue of the particular
partial order ≤�. In fact, no partial order can satisfy this implication as it would violate its
antisymmetry or its reflexivity property. To appreciate this, consider two distinct canonical
term graphs g and h that have the same unravelling, i.e. U(g) = U(h). For example, take the
two term graphs of Example 4.4.20(ii). Due to reflexivity, both U(g) ≤ U(h) and U(h) ≤ U(g)
must hold for any partial order ≤ on canonical term graphs. If ≤ satisfies the implication
mentioned above, then we would obtain g ≤ h and h ≤ g. This, however, would violate the
antisymmetry of ≤ as h and g are distinct.

Intuitively, partial term graphs represent partial results of computations where �-nodes
act as placeholders denoting the uncertainty or ignorance of the actual “value” at that
position. On the other hand, total term graphs do contain all the information of a result
of a computation – they have the maximally possible information content. In other words,
they are the maximal elements w.r.t. ≤�. The following proposition confirms this intuition.

Proposition 4.4.21 (total term graphs are the maximal elements)
Let Σ be a non-empty signature. Then G∞C (Σ) is the set of maximal elements in G∞C (Σ�)
w.r.t. ≤�.

74 Chapter 4 Term Graphs

Proof. At first we need to show that each element in G∞C (Σ) is maximal. For this purpose,
let g ∈ G∞C (Σ) and h ∈ G∞C (Σ�) such that g ≤� h. We have to show that then g = h. Since
g ≤� h, there is a strong �-homomorphism ϕ∶ g →� h. As g does not contain any �-node, ϕ
is even a strong homomorphism. By Lemma 4.4.3, ϕ is injective and, therefore, according
to Lemma 4.2.7, an isomorphism. Hence, we obtain that g ≅ h and, consequently, using
Proposition 4.3.7, that g = h.

Secondly, we need to show that G∞C (Σ�) does not contain any other maximal elements
besides those in G∞C (Σ). Suppose there is a term graph g ∈ G∞C (Σ�) ∖ G∞C (Σ) which is
maximal in G∞C (Σ�). Hence, there is a node n∗ ∈ Ng with labg(n∗) = �. Let n be a fresh
node (i.e. n ∉ Ng) and f some k-ary symbol in Σ. Define the term graph h by

Nh = Ng ⊎ {n} rh = rg

labh(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f if n = n∗

� if n = n
labg(n) otherwise

such(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n ⋅ . . . ⋅ n if n = n∗

ε if n = n
sucg(n) otherwise

That is, h is obtained from g by relabelling n⋆ with f and setting the �-labelled node
n as the target of all outgoing edges of n⋆. We assume that n was chosen such that h
is canonical (i.e. n = Ph(n)). Obviously, g and h are distinct. Define ϕ∶ Ng → Nh by
n ↦ n for all n ∈ Ng. Clearly, ϕ defines a strong �-homomorphism from g to h. Hence,
g ≤� h. This contradicts the assumption of g being maximal. Consequently, no element in
G∞C (Σ�) ∖ G∞C (Σ) is maximal.

Since ≤� forms a complete semilattice on G∞C (Σ�), it admits a limit inferior for every
sequence of partial canonical term graphs. The following lemma explains the intuition
behind the limit inferior on canonical term graphs:

Lemma 4.4.22 (limit inferior)
Let (gι)ι<α be a sequence in G∞C (Σ�), g = lim infι→α gι and π ∈ P(g).

(i) There is some β < α such that π ∈ P(gι) for all β ≤ ι < α.

(ii) If g(π) ≠ �, then there is some β < α such that g(π) = gι(π) for all β ≤ ι < α.

Proof. Let Gγ = {gι ∣γ ≤ ι < α} and hγ = ⊓ �Gγ . Then g = ⊔ �
γ<α hγ . Since {hγ ∣γ < α} is a

directed set, we can employ Corollary 4.4.16 which yields that P(g) = ⋃γ<αP(hγ). That is,
there is some β < α with π ∈ P(hβ). Because hβ ≤� gι for all β ≤ ι < α, this implies π ∈ P(gι)
for all β ≤ ι < α according to Corollary 4.4.13.

Moreover, if g(π) ≠ �, according to Corollary 4.4.16, there is some β < α with g(π) =
hβ(π). Consequently, the fact that hβ ≤� gι for all β ≤ ι < α now implies g(π) = gι(π) for all
β ≤ ι < α according to Corollary 4.4.13.

Note that, according to Proposition 2.1.8, the semilattice structure of ≤� also entails that
each non-empty set has a glb. The following lemma provides an intuition of glbs – at least
for sets of terms:

Lemma 4.4.23 (glb for terms)
Let T be a subset of T ∞(Σ�) and P a set of occurrences closed under prefixes such that all
terms in T coincide in all occurrences in P , i.e. s(π) = t(π) for all π ∈ P and s, t ∈ T . Then
the glb t = ⊓ � T also coincides with all terms in T in all occurrences in P .

Proof. Construct a term t̂ such that it coincides with all terms in T in all occurrences in
P and in all other reachable nodes has the label �. Then t̂ is a lower bound of T . By
construction, t̂ coincides with all terms in T in all occurrences in P . Since t̂ ≤� t, this
property carries over to t according to Corollary 4.4.13.

4.5 A Metric on Term Graphs 75

4.5 A Metric on Term Graphs

In our endeavour to extend infinitary rewriting to the setting of term graph rewriting, we
also need to find an appropriate concept of a complete metric space for (canonical) term
graphs. Just as for the partial order we want to obtain an extension of the metric space on
terms. That is, our aim is to define a metric on canonical term graphs that – when restricted
to canonical term trees – coincides with the metric on terms.

Similar to the metric on terms, the metric on canonical term graphs will be defined by
means of the least depth where the term graphs differ. We will call this measure similarity.
To define the similarity of two term graphs, we will employ the partial order that we have
studied in the previous section. The greatest lower bound g ⊓� h of two term graphs g and
h allows us to formalise the intuitive notion of similarity.

Definition 4.5.1 (similarity, distance)
Let g, h ∈ G∞C (Σ) and � a fresh nullary symbol (i.e. � ∉ Σ). We define the similarity of g and
h as

sim(g, h) = �-depth(g ⊓� h).
Recall that g ⊓� h denotes the greatest lower bound of {g, h} w.r.t. the partial order ≤� on
G∞C (Σ�). Using this we can define the distance function d on G∞C (Σ) as follows:

d(g, h) = 2−sim(g,h),

where we interpret 2−∞ as 0.

Before we will prove that this distance function d on G∞C (Σ) indeed defines an ultra-
metric, we want to establish an alternative characterisation in the style of [AN80]. In order
to achieve this, we define a truncation operation on term graphs. This operation removes
nodes at a certain depth and fills each of the resulting holes with a fresh �-node. Let us at
first look at the formal definition.

Definition 4.5.2 (truncation of term graphs)
Let g ∈ G∞(Σ�) and d ∈ N.

(i) Let n,m ∈ Ng. m is an acyclic predecessor of n in g if there is an acyclic occurrence
π ⋅ i ∈ Pag (n) such that π ∈ Pg(m). The set of all acyclic predecessors of n in g is
denoted as Preag(n).

(ii) The truncation nodes ofNg at d, denotedNg
<d, is the least setM satisfying the following

conditions for all n ∈ Ng:

depthg(n) < d Ô⇒ n ∈M (T1)
n ∈M Ô⇒ Preag(n) ⊆M (T2)

(iii) The fringe nodes of Ng at d, denoted Ng
=d, is defined as {rg} if d = 0 and as

⎧⎪⎪⎨⎪⎪⎩
ni

RRRRRRRRRRR

n ∈ Ng
<d,depthg(n) ≥ d − 1,0 ≤ i < arg(n), such that

n ∉ Preag(sucgi (n)) or sucgi (n) ∉ N
g
<d

⎫⎪⎪⎬⎪⎪⎭
if d > 0. In the case of d > 0, we assume the elements in Ng

=d to be pairwise distinct,
fresh nodes, i.e. Ng

=d ∩N
g = ∅.

(iv) The truncation of g at d, denoted g∣d, is a term graph defined by

Ng∣d = Ng
<d ⊎N

g
=d rg∣d = rg

labg∣d(n) =
⎧⎪⎪⎨⎪⎪⎩

labg(n) if n ∈ Ng
<d

� if n ∈ Ng
=d

sucg∣di (n) =
⎧⎪⎪⎨⎪⎪⎩

sucgi (n) if ni ∉ Ng
=d

ni if ni ∈ Ng
=d

Additionally, we define g∣∞ to be the term graph g itself.

76 Chapter 4 Term Graphs

Before discussing the intuition behind this definition of truncation let us have a look at
the rôle of truncation and fringe nodes: The truncation nodes, i.e. the nodes in the set Ng

<d
are the nodes that are preserved by the truncation. All other nodes in Ng ∖Ng

<d are cut
off. The “holes” that are thus created are filled by the fringe nodes, i.e. the nodes in the set
Ng
=d. This is expressed in the condition

sucgi (n) ∉ N
g
<d

that has to be fulfilled in order to create a fringe node ni. A fresh fringe node is inserted
for each successor of a truncation node that is not a truncation node.

But there is another circumstance that can give rise to a fringe node. This is encoded
in the alternative condition

depthg(n) ≥ d − 1 and n ∉ Preag(sucgi (n))

that also produces a fringe node ni. This condition is satisfied when an outgoing edge from
a truncation node closes a cycle. An example is depicted in Figure 4.8. For the depth d = 2,
the node n in the term graph g is a fringe node whose 0-th successor is the root node r.
This edge closes a cycle. Hence the truncation at depth 2 contains the fringe node n0 which
is now the 0-th successor of n. The reason for including this is of rather technical nature.
We will discuss this later when it is actually needed in Lemma 4.5.11.

The reason for defining the truncation of term graphs in this way is the following: Our
goal for the truncation is to make it “compatible” with the definition of the partial order ≤�
on term graphs. That is, first of all, the truncation of a term graph is supposed to yield a
smaller term graph w.r.t. ≤�, viz. g∣d ≤� g. Hence, whenever a node is kept in the truncation
(as opposed to being cut off), also its acyclic occurrences have to be maintained. To do so,
with each node also its acyclic predecessors have to be kept in the truncation, i.e. in Ng

<d.
That is the reason for having the closure condition (T2) which is enforced solely for this
purpose.

To see this, consider Figure 4.7. It shows a term graph g and the truncation of g at
depth 2 once without the closure condition (T2), shown in the middle, and once including
(T2), shown on the right. The grey area highlights the nodes that are at depth smaller than
2, i.e. the nodes contained in Ng

<2 due to (T1) only. The nodes within the area surrounded
by a dashed line are all the nodes in Ng

<2. One can easily observe that with the alternative
definition without (T2) we do not have g∣2 ≤� g. The reason in this particular example is
the bottommost h-node whose acyclic sharing in g differs from that in the truncation g∣2
as one of its predecessors was removed due to the truncation. This effect is avoided in our
definition of truncation which always includes all acyclic predecessors of a node. This can
be seen in the term graph on the right. It includes both predecessors of the bottommost
h-node.

If the truncation construction is applied to term trees, then the result is also a term tree
and is equal to the truncation of terms as defined in [AN80]. Since in a term tree every node
has at most one predecessor, the truncation nodes of a truncation of a term tree t at d are
exactly the nodes of t at depth smaller than d, and the fringe nodes are the nodes at depth
d. Therefore, the truncation t∣d of t at d is a term tree satisfying

t∣d(π) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t(π) if ∣π∣ < d
� if ∣π∣ = d
undefined if ∣π∣ > d

Remark 4.5.3.
(i) In order to argue that the construction of g∣d yields a well-defined term graph, one has

to show for each n ∈ Ng
<d that sucgi (n) ∈ N

g
<d whenever ni ∉ Ng

=d: If depthg(n) < d − 1,
then depthg(sucgi (n)) < d and, hence, sucgi (n) ∈ N

g
<d by (T1). If depthg(n) ≥ d− 1, then

ni ∉ Ng
=d implies that sucgi (n) ∈ N

g
<d.

4.5 A Metric on Term Graphs 77

f

h

h

h

a

f

h

�

h

�

f

h

h

h

�
(term graph g) (alternative truncation g∣2) (actual truncation g∣2)

Figure 4.7: Example for truncation.

(ii) Note that, for each term graph g, we have g∣0 = �. Hence, for most of the properties
of the truncation operation we are going to prove, the case for d = 0 is trivial.

The following fact follows immediately from the definition of truncation:

Fact 4.5.4 (truncation preserves labelling up to truncation depth)
Let g ∈ G∞(Σ�) and d ∈ N. Then g∣d and g coincide in all occurrences of depth smaller than
d.

The following lemma confirms that we were indeed successful in making the truncation
of term graphs compatible with the partial order ≤�:

Lemma 4.5.5 (truncation yields a smaller term graph)
Let g ∈ G∞(Σ�) and d ∈ N. Then g∣d ≤� g.

Proof. For d = 0, this is obvious. Assume d > 0. Define the function ϕ as follows:

ϕ∶ Ng∣d → Ng

Ng
<d ∋ n↦ n

Ng
=d ∋ n

i ↦ sucgi (n)

We will show that ϕ is a strong �-homomorphism from g∣d to g and, thereby, g∣d ≤� g.
Since rg∣d = rg and rg∣d ∈ Ng

<d, we have ϕ(rg∣d) = rg and, therefore, the root condition.
Note that all nodes in Ng

=d are labelled with � in g∣d. Hence, all non-�-nodes are in Ng
<d.

Thus, the labelling condition is trivially satisfied as for all n ∈ Ng
<d we have

labg∣d(n) = labg(n) = labg(ϕ(n)).

For the successor condition, let n ∈ Ng
<d. If ni ∈ N

g
=d, then sucg∣di (n) = ni. Hence, we have

ϕ(sucg∣di (n)) = ϕ(ni) = sucgi (n) = sucgi (ϕ(n)).

If, on the other hand, ni ∉ Ng
=d, then sucg∣di (n) = sucgi (n) ∈ N

g
<d. Hence, we have

ϕ(sucg∣di (n)) = ϕ(sucgi (n)) = sucgi (n) = sucgi (ϕ(n)).

This shows that ϕ is a �-homomorphism. In order to prove that ϕ is strong, we will
show that Pag (ϕ(n)) ⊆ Pg∣d(n) for all n ∈ Ng

<d, which is sufficient according to Lemma 4.4.6.

78 Chapter 4 Term Graphs

Note that we can replace ϕ(n) by n since n ∈ Ng
<d. Therefore, we can show this statement

by proving
∀e ∈ N∀n ∈ Ng

<d∀π ∈ Pag (n). (∣π∣ = e Ô⇒ π ∈ Pg∣d(n))

by induction on e. If e = 0, then π = ε. Hence, n = rg and, therefore, π ∈ Pg∣d(n). If e > 0,
then there is some occurrence π′ and natural number i with π = π′ ⋅ i. Let m = nodeg(π′).
Then we have m ∈ Preag(n) and, therefore, m ∈ Ng

<d by the closure property (T2). And since
π′ ∈ Pag (m), we can apply the induction hypothesis to obtain that π′ ∈ Pg∣d(m). Moreover,
because sucgi (m) = n, this implies that mi ∉ Ng

=d. Thus, sucg∣di (m) = n and, therefore,
π′ ⋅ i ∈ Pg∣d(n).

The gaps that are caused by a truncation due to the removal of nodes are filled by
fresh �-nodes. The following lemma provides a lower bound for the depth of the introduced
�-nodes.

Lemma 4.5.6 (�-depth in truncated term graphs)
Let Σ be a signature not containing �, g ∈ G∞(Σ) and d ∈ N.

(i) �-depth(g∣d) ≥ d.

(ii) If d > depth(g) + 1, then g∣d = g, i.e. �-depth(g∣d) = ∞.

Proof. (i) From the proof of Lemma 4.5.5, we obtain a strong �-homomorphism ϕ∶ g∣d →�
g. Note that the only �-nodes in g∣d are those in Ng

=d. Each of these nodes has only a
single predecessor, a node n ∈ Ng

<d with depthg(n) ≥ d − 1. By Corollary 4.4.5, we also
have depthg∣d(n) ≥ d − 1 for these nodes since ϕ is strong, n is not labelled with � and
ϕ(n) = n. Hence, we have depthg∣d(m) ≥ d for each node m ∈ Ng

=d. Consequently, it holds
that �-depth(g∣d) ≥ d.

(ii) Note that if d > depth(g) + 1, then Ng
<d = N

g and Ng
=d = ∅. Hence, g∣d = g.

Remark 4.5.7. Note that the condition for the statement of clause (ii) in the lemma above
reads d > depth(g) + 1 rather than d > depth(g) as one might expect. The reason for this is
that a truncation might cut off an edge that emanates from a node at depth d−1 and closes
a cycle. For an example of this phenomenon, take a look at Figure 4.8. It shows a term
graph g of depth 1 and its truncation at depth 2. Even though there is no node at depth 2
the truncation introduces a �-node.

On the other hand, although a term graph has depth more than d the truncation at
depth d might still preserve the whole term graph. An example for this behaviour is the
family of term graphs hn, n > 0, depicted in Figure 4.8. Each of the term graphs hn has
depth n. Yet, the truncation at depth 2 preserves the whole term graph hn for each n > 0.
Even though there might be f -nodes which are at depth ≥ 2 these nodes are directly or
indirectly acyclic predecessors of the a-node and are, thus, included in Nhn

<2 .

Lemma 4.5.8 (isomorphic truncations and similarity)
Let g, h ∈ G∞C (Σ) and d ∈ N. If g∣d ≅ h∣d, then sim(g, h) ≥ d.

Proof. W.l.o.g. we can assume that Σ does not contain �. Assume g∣d ≅ h∣d. Then Propo-
sition 4.3.7 yields C(g∣d) = C(h∣d). By Lemma 4.5.5, we have g∣d ≤� g and h∣d ≤� h. Hence,
C(g∣d) ≤� g and C(h∣d) ≤� h (cf. Remark 4.4.10). That is, C(g∣d) is a lower bound for g and
h. Therefore, C(g∣d) ≤� g⊓�h. Since this means that there is a �-homomorphism from C(g∣d)
to g ⊓� h (and, therefore, also from g∣d to g ⊓� h), we can employ Lemma 4.2.11 to obtain
that �-depth(g∣d) ≤ �-depth(g ⊓� h). According to Lemma 4.5.6, we have d ≤ �-depth(g∣d)
which means that we can conclude that d ≤ �-depth(g ⊓� h) and, thus, d ≤ sim(g, h).

The lemma below will serve as a tool for the two lemmas that are to follow afterwards.

4.5 A Metric on Term Graphs 79

f
r

f
n

f
r

f
n

� n0

g

f

⋮

f

a

n
tim

es

(g) (g∣2) (hn = hn∣2)

Figure 4.8: �-depth in truncated term graphs.

Lemma 4.5.9 (labelling)
Let g ∈ G∞(Σ), ∆ ⊆ Σ(0) and d ∈ N. If ∆-depth(g) ≥ d, then labg(n) ∉ ∆ for all n ∈ Ng

<d.

Proof. We will show that N∇ = {n ∈ Ng ∣ labg(n) ∉ ∆} satisfies the properties (T1) and (T2)
of Definition 4.5.2 for the term graph g and depth d. Since Ng

<d is the least such set, we
then obtain Ng

<d ⊆ N∇ and, thereby, the claimed statement.
For (T1), let n ∈ Ng with depthg(n) < d. Since ∆-depth(g) ≥ d, we have labg(n) ∉ ∆ and,

therefore, n ∈ N∇. For (T2), let n ∈ N∇ and m ∈ Preag(n). Then m cannot be labelled with
a nullary symbol, a fortiori labg(m) ∉ ∆. Hence, we have m ∈ N∇.

The following two lemmas a rather technical. They state that ∆-homomorphisms pre-
serve truncation nodes and in a stricter sense also fringe nodes.

Lemma 4.5.10 (preservation of truncation nodes)
Let g, h ∈ G∞(Σ), d ∈ N, ϕ∶ g →∆ h strong, and ∆-depth(g) ≥ d. Then ϕ(Ng

<d) = N
h
<d.

Proof. Let N∇ = {n ∈ Ng ∣ labg(n) ∉ ∆}. At first we will show that ϕ(Ng
<d) ⊆ N

h
<d. To this

end, we will show that ϕ−1(Nh
<d) ∩N∇ satisfies (T1) and (T2) of Definition 4.5.2 for term

graph g and depth d. Since Ng
<d is the least such set, we then obtain Ng

<d ⊆ ϕ
−1(Nh

<d) ∩N∇
and, a fortiori, Ng

<d ⊆ ϕ
−1(Nh

<d). This is equivalent to ϕ(N
g
<d) ⊆ N

h
<d.

For (T1), let n ∈ Ng with depthg(n) < d. By Lemma 4.2.9, we then have depthh(ϕ(n)) <
d. Hence, ϕ(n) ∈ Nh

<d by (T1). Moreover, since ∆-depth(g) ≥ d, we have labg(n) ∉ ∆. That
is, n ∈ ϕ−1(Nh

<d) ∩N∇.
For (T2), let n ∈ ϕ−1(Nh

<d)∩N∇. That is, we have ϕ(n) ∈ Nh
<d and labg(n) ∉ ∆. Hence, by

(T2), it holds that Preah(ϕ(n)) ⊆ Nh
<d. We have to show now that Preag(n) ⊆ ϕ−1(Nh

<d) ∩N∇.
Let m ∈ Preag(n). That is, there is some π ⋅ i ∈ Pag (n) with π ∈ Pg(m). As labg(n) ∉ ∆ and ϕ
is strong, ϕ preserves the sharing of n. Consequently, π ⋅ i ∈ Pah(ϕ(n)). Moreover, we have
π ∈ Ph(ϕ(m)) by Lemma 4.3.2. Hence, ϕ(m) ∈ Preag(ϕ(n)) and, therefore, ϕ(m) ∈ Nh

<d by
(T2). Additionally, as m has a successor in g it cannot be labelled with a symbol in ∆.
Hence, m ∈ ϕ−1(Nh

<d) ∩N∇.
In order to prove the converse inclusion ϕ(Ng

<d) ⊇ N
h
<d, we will show that ϕ(Ng

<d) satisfies
(T1) and (T2) for term graph h and depth d. This will prove the abovementioned inclusion
since Nh

<d is the least such set.
For (T1), let n ∈ Nh with depthh(n) < d. By Lemma 4.2.10, there is some m ∈ Ng with

depthg(m) < d and ϕ(m) = n. Hence, according to (T1), we have m ∈ Ng
<d and, therefore,

n ∈ ϕ(Ng
<d).

For (T2), let n ∈ ϕ(Ng
<d). That is, there is some m ∈ Ng

<d with ϕ(m) = n. By (T2), we
have Preag(m) ⊆ Ng

<d. We must show that Preah(n) ⊆ ϕ(N
g
<d). Let n′ ∈ Preah(n). That is, there

80 Chapter 4 Term Graphs

is some π ⋅ i ∈ Pah(n) with π ∈ Ph(n′). Since m ∈ Ng
<d, we have labg(m) ∉ ∆ by Lemma 4.5.9.

Consequently, ϕ preserves the sharing of m which yields that π ⋅ i ∈ Pag (m). Note that then
also π ∈ P(g). Let m′ = nodeg(π). Thus, m′ ∈ Preag(m) and, therefore, m′ ∈ Ng

<m according
to (T2). Moreover, because π ∈ Pg(m′) ∩ Ph(n′), we are able to obtain from Lemma 4.3.2
that ϕ(m′) = n′. Hence, n′ ∈ ϕ(Ng

<d).

Lemma 4.5.11 (preservation of fringe nodes)
Let g, h ∈ G∞(Σ), ϕ∶ g →∆ h strong, d ∈ N+, ∆-depth(g) ≥ d, n ∈ Ng, and 0 ≤ i < arg(n).
Then ni ∈ Ng

=d iff ϕ(n)i ∈ Nh
=d.

Proof. Note that, by Lemma 4.5.9, we have that labg(n) ∉ ∆ for all nodes n ∈ Ng
<d. Addition-

ally, by Lemma 4.5.10, we obtain ϕ(Ng
<d) = N

h
<d and, therefore, according to the labelling

condition for ϕ, we get that labh(n) ∉ ∆ for all n ∈ Nh
<d.

At first we will show the “only if” direction. To this end, let ni ∈ Ng
=d. By definition, we

then have depthg(n) ≥ d − 1. Hence, by Corollary 4.4.5, depthh(ϕ(n)) ≥ d − 1. Furthermore,
we have that sucgi (n) ∉ N

g
<d or n ∉ Preag(sucgi (n)). We show now that in either case we can

conclude ϕ(n)i ∈ Nh
=d.

Let sucgi (n) ∉ Ng
<d. If we have suchi (ϕ(n)) ∉ Nh

<d, then ϕ(n)i ∈ Nh
=d. So suppose

suchi (ϕ(n)) ∈ Nh
<d. Then, by the successor condition for ϕ, we have ϕ(sucgi (n)) ∈ Nh

<d =
ϕ(Ng

<d). Hence, there is some m ∈ Ng
<d with ϕ(m) = ϕ(sucgi (n)). In the following, we will

show that this implies ϕ(n) ∉ Preah(suchi (ϕ(n))). Suppose this would not be true, i.e. that
ϕ(n) ∈ Preah(suchi (ϕ(n))). Note that we have the following equations:

Preah(suchi (ϕ(n))) = Preah(ϕ(sucgi (n))) = Preah(ϕ(m)).

Consequently, there is some π ⋅ i ∈ Pah(ϕ(m)) with π ∈ Pah(ϕ(n)). Since n,m ∈ Ng
<d, we have

that ϕ preserves the sharing of m and n. Hence, we have π ⋅ i ∈ Pag (m) and π ∈ Pag (n) which
implies that m = sucgi (n). This, however, violates the assumption that sucgi (n) ∉ N

g
<d. Thus,

we indeed have ϕ(n) ∉ Preah(suchi (ϕ(n))) and, consequently, ϕ(n)i ∈ Nh
=d.

Let n ∉ Preag(sucgi (n)). If ϕ(n) ∉ Preah(suchi (ϕ(n))), then ϕ(n)i ∈ Nh
=d. So suppose that

ϕ(n) ∈ Preah(suchi (ϕ(n))). Hence, ϕ(n) ∈ Preah(ϕ(sucgi (n))). If labg(sucgi (n)) ∉ ∆, then ϕ
preserves the sharing of sucgi (n) and we would also get n ∈ Preag(sucgi (n)) which contradicts
the assumption. Hence, labg(sucgi (n)) ∈ ∆ and, therefore, sucgi (n) ∉ Ng

<d. Thus, we can
employ the argument for this case that we have already given above.

We now turn to the converse direction. For this purpose, let ϕ(n)i ∈ Nh
=d. Then

depthh(ϕ(n)) ≥ d − 1 and, consequently depthg(n) ≥ d − 1 by Corollary 4.4.5. Addition-
ally, we also have suchi (ϕ(n)) ∉ Nh

<d or ϕ(n) ∉ Preah(suchi (ϕ(n))). Again we will show that
in either case we can conclude ni ∈ Ng

=d.
If suchi (ϕ(n)) ∉ Nh

<d, then ϕ(sucgi (n)) ∉ Nh
<d and, therefore, ϕ(sucgi (n)) ∉ ϕ(N

g
<d) accord-

ing to Lemma 4.5.10. Consequently, sucgi (n) ∉ N
g
<d which implies that ni ∈ Ng

=d.
Let ϕ(n) ∉ Preah(suchi (ϕ(n))). If n ∉ Preag(sucgi (n)), then we get ni ∈ Ng

=d immediately. So
assume that n ∈ Preag(sucgi (n)). If labg(sucgi (n)) ∉ ∆, then ϕ would preserve the sharing of
sucgi (n). Thereby, we would get ϕ(n) ∈ Preah(ϕ(sucgi (n))) which contradicts the assumption.
Hence, labg(sucgi (n)) ∈ ∆. Consequently, sucgi (n) ∉ N

g
<d and, therefore, ni ∈ Ng

=d.

As we have mentioned in the discussion about the definition of the truncation operation,
the above lemma depends upon the peculiar definition of fringe nodes – in particular those
fringe nodes that are due to the condition

depthg(n) ≥ d − 1 and n ∉ Preag(sucgi (n)).

Recall that this condition produces a fringe node for each edge from a truncation node
that closes a cycle. Let us have a look at the term graph h depicted in Figure 4.9. If the
abovementioned alternative condition for fringe nodes would not be present, then the set
Nh
=2 would be empty (and, thus, h∣2 = h). Then, however, the strong �-homomorphism ϕ

4.5 A Metric on Term Graphs 81

f
r

f
n

f
n

�o

f
r

f
n

ϕ

gϕ∶ h
�

Figure 4.9: Fringe nodes and strong �-homomorphisms.

illustrated in Figure 4.9 would violate Lemma 4.5.11. Since the node m is cut off from g in
the truncation g∣2, there is a fringe node n0 in g∣2. On the other hand, there would be no
fringe node n0 in h∣2 if not for the alternative condition above.

Intuitively, the following lemma states that a strong �-homomorphism has the properties
of an isomorphism up to the depth of the shallowest �-node:

Lemma 4.5.12 (≤� and truncation)
Let g, h ∈ G∞(Σ�), g ≤� h, d ∈ N and �-depth(g) ≥ d. Then g∣d ≅ h∣d.

Proof. For d = 0, this is trivial. So assume d > 0. Since g ≤� h, there is a strong �-
homomorphism ϕ∶ g →� h. Define the function ψ as follows:

ψ∶ Ng∣d → Nh∣d

Ng
<d ∋ n↦ ϕ(n)

Ng
=d ∋ n

i ↦ ϕ(n)i

At first we have to argue that ψ is well-defined. For this purpose, we first need that
ϕ(Ng

<d) ⊆ Ng∣d. Lemma 4.5.10 confirms this. Secondly, we need that ni ∈ Ng
=d implies

ϕ(n)i ∈ Ng∣d. This is asserted by Lemma 4.5.11.
Next we show that ψ is a homomorphism from g∣d to h∣d. The root condition is inherited

from ϕ as rg∣d ∈ Ng
<d. Note that, according to Lemma 4.5.9, we have labg(n) ≠ � for all

n ∈ Ng
<d. Hence, ϕ is homomorphic in Ng

<d which means that the labelling condition for
nodes in Ng

<d is also inherited from ϕ. For nodes ni ∈ Ng
=d, we have labg∣d(ni) = �. Since, by

definition, ψ(ni) ∈ Nh
=d, we can conclude labh∣d(ψ(ni)) = �.

The successor condition is trivially satisfied by nodes in Ng
=d as they do not have any

successors. Let n ∈ Ng
<d and 0 ≤ i < arg∣d(n). We distinguish two cases: At first assume that

ni ∉ Ng
=d. Hence, sucg∣di (n) = sucgi (n) ∈ N

g
<d. Since, by Lemma 4.5.11, also ϕ(n)i ∉ Nh

=d, we
additionally have such∣di (ϕ(n)) = suchi (ϕ(n)). Hence, using the successor condition for ϕ, we
can reason as follows:

ψ(sucg∣di (n)) = ψ(sucgi (n)) = ϕ(sucgi (n)) = suchi (ϕ(n)) = such∣di (ϕ(n)) = such∣di (ψ(n))

If, on the other hand, ni ∈ Ng
=d, then sucg∣di (n) = ni. Moreover, since also ϕ(n)i ∈ Nh

=d by
Lemma 4.5.11, we have such∣di (ϕ(n)) = ϕ(n)i, too. Hence, we can reason as follows:

ψ(sucg∣di (n)) = ψ(ni) = ϕ(n)i = such∣di (ϕ(n)) = such∣di (ψ(n))

This shows that ψ is a homomorphism. Note that, according to Lemma 4.4.3, ϕ is
injective in Ng

<d. Then also ψ is injective in Ng
<d. For the same reason, ψ is also injective in

82 Chapter 4 Term Graphs

Ng
=d. Moreover, we have ψ(Ng

<d) ⊆ N
h
<d and ψ(N

g
=d) ⊆ N

h
=d, i.e. ψ(N

g
<d)∩ψ(N

g
=d) = ∅. Hence,

ψ is injective which implies, by Lemma 4.2.7, that ψ is an isomorphism from g∣d to h∣d.

We can use the above findings in order to obtain the following properties of truncations
that one would intuitively expect from a truncation operation:

Corollary 4.5.13 (smaller truncations)
Let g, h ∈ G∞(Σ), e, d ∈ N ∪ {∞} with e ≤ d and g∣d ≅ h∣d.

(i) g∣e ≅ (g∣d)∣e

(ii) g∣d ≅ h∣d Ô⇒ g∣e ≅ h∣e

Proof. We assume w.l.o.g. that � ∉ Σ.
(i) For d = ∞, this is trivial. Suppose d ∈ N. From Lemma 4.5.5, we obtain g∣d ≤� g.

Moreover, by Lemma 4.5.6, we have �-depth(g∣d) ≥ d and, a fortiori, �-depth(g∣d) ≥ e. Hence,
we can employ Lemma 4.5.12 to get g∣e ≅ (g∣d)∣e.

(ii) Since g∣d ≅ h∣d, we also have (g∣d)∣e ≅ (h∣d)∣e, as the construction of the truncation
only depends on the structure of the term graphs. Hence, using
we can conclude

g∣e ≅ (g∣d)∣e ≅ (h∣d)∣e ≅ h∣e.

Lemma 4.5.14 (similarity and isomorphic truncation)
Let g, h ∈ G∞C (Σ) and d ∈ N. sim(g, h) ≥ d implies g∣d ≅ h∣d.

Proof. We assume w.l.o.g. that � ∉ Σ. Let g∗ = g ⊓� h. Then �-depth(g∗) = sim(g, h) ≥ d.
Since g∗ ≤� g, h, we can apply Lemma 4.5.12 twice in order to obtain g∣d ≅ g∗∣d ≅ h∣d.

The previous lemmas stated various details about the connection between truncations
and the partial order ≤�. The following proposition summarises this by giving an alternative
characterisation of similarity.

Proposition 4.5.15 (alternative characterisation of similarity)
Let g, h ∈ G∞C (Σ). Then sim(g, h) = max {d ∈ N ∪ {∞} ∣ g∣d ≅ h∣d}.

Proof. We assume w.l.o.g. that � ∉ Σ. Furthermore, we will use sim′(g, h) as a shorthand for
max {d ∈ N ∪ {∞} ∣ g∣d ≅ h∣d}. At first assume that g = h. Hence, g⊓�h = g and, consequently
sim(g, h) = ∞ as g does not contain any �. On the other hand, this implies g∣∞ ≅ h∣∞, and,
therefore, sim′(g, h) = ∞, too. If g ≠ h, then g /≅ h by Proposition 4.3.7. Moreover, according
to Proposition 4.4.21, g ⊓� h has to contain some �. Hence, we have both sim(g, h) ∈ N
and sim′(g, h) ∈ N. We prove that sim(g, h) = sim′(g, h) by showing that both sim(g, h) ≤
sim′(g, h) and sim(g, h) ≥ sim′(g, h) hold. In order to show the former, let d = sim(g, h).
Then, by Lemma 4.5.14, g∣d ≅ h∣d and, therefore, sim′(g, h) ≥ d. To show the latter, let
d = sim′(g, h). Hence, g∣d ≅ h∣d. Furthermore, by Lemma 4.5.5, we have both g∣d ≤� g
and h∣d ≤� h. Note that, for the canonical representation, we then have C(g∣d) = C(h∣d),
C(g∣d) ≤� g and C(h∣d) ≤� h (cf. Proposition 4.3.7 resp. Remark 4.4.10). That is, C(g∣d) is a
lower bound of g and h. Thus, C(g∣d) ≤� g ⊓� h and we can reason as follows:

d ≤ �-depth(g∣d) (Lem. 4.5.6)
= �-depth(C(g∣d)) (Cor. 4.4.5, Cor. 4.4.7)
≤ �-depth(g ⊓� h) (C(g∣d) ≤� g ⊓� h, Lem. 4.2.11)
= sim(g, h)

4.5 A Metric on Term Graphs 83

With this alternative characterisation of similarity proving the distance function on
canonical term graphs to be an ultrametric is straightforward:

Proposition 4.5.16 (ultrametric on term graphs)
(G∞C (Σ),d) is an ultrametric space.

Proof. We assume here w.l.o.g. that � ∉ Σ. It needs to be shown that d satisfies the identity,
symmetry and strong triangle condition. To this end, we use the alternative characterisation
of sim(⋅, ⋅) provided by Proposition 4.5.15. The identity condition is met as the following
equivalences show:

d(g, h) = 0
Prop. 4.5.15
⇐⇒ sim(g, h) = ∞ ⇐⇒ g ≅ h

Prop. 4.3.7
⇐⇒ g = h

The symmetry condition is satisfied by

d(g, h) = �-depth(g ⊓� h) = �-depth(h ⊓� g) = d(h, g).

For the strong triangle condition, we have to show that

d(g1, g3) ≤ max {d(g1, g2),d(g2, g3)}

This is easily seen to be equivalent to

sim(g1, g3) ≥ min {sim(g1, g2), sim(g2, g3)} .

By symmetry, we can assume w.l.o.g. that sim(g1, g2) ≤ sim(g2, g3). Let d = sim(g1, g2). We
have to show that sim(g1, g3) ≥ d. Since sim(g1, g2) = d, we have g1∣d ≅ g2∣d according to
Proposition 4.5.15. Because sim(g2, g3) ≥ d, we have g2∣d ≅ g3∣d according to Lemma 4.5.14.
Hence, g1∣d ≅ g3∣d which yields sim(g1, g3) ≥ d.

Remark 4.5.17. From now on, we are not dealing with the concrete construction of trunca-
tions g∣d of term graphs g. Therefore, we will rather use the canonical representation C(g∣d)
of g∣d. In order to avoid the notational overhead, we also adopt the convention outlined in
Remark 4.3.9 and write g∣d instead of C(g∣d).

The next steps is to show that the obtained ultrametric on canonical term graphs is
indeed complete. The following proposition states even more: The limit of Cauchy sequences
in the metric space equals the corresponding limit inferior in the partially ordered set. This
is also the first step towards proving that the partial order extends the metric in the sense
of Definition 3.3.10.

Proposition 4.5.18 (metric limit equals limit inferior)
Let Σ be a signature not containing � and (gι)ι<α a non-empty Cauchy sequence in the
metric space (G∞C (Σ),d). Then limι→α gι = lim infι→α gι.

Proof. If α is a successor ordinal, this is trivial, as the limit and the limit inferior are
then gα−1. Assume that α is a limit ordinal and let g be the limit inferior of (gι)ι<α. By
Proposition 2.1.33 and Proposition 4.4.18, g is well-defined. Since (gι)ι<α is Cauchy, we
obtain that, for each e ∈ R+, there is a β < α such that, for all ι, ι′ with β < ι, ι′ < α, we have
d(gι, gι′) < e. A fortiori, we get that, for each e ∈ R+, there is a β < α such that, for all ι
with β < ι < α, we have d(gβ , gι) < e. By definition of d, this is equivalent to 2−sim(gβ ,gι) < e.
Consequently, we have, for each d ∈ N, a β < α such that sim(gβ , gι) > d for all β < ι < α.
Due to Lemma 4.5.14, sim(gβ , gι) > d implies gβ ∣d = gι∣d which in turn implies gβ ∣d ≤� gι
according to Lemma 4.5.5. Hence, gβ ∣d is a lower bound for Gβ = {gι ∣β ≤ ι < α}. As ⊓ �Gβ
is the greatest lower bound of Gβ , we get that gβ ∣d ≤� ⊓ �Gβ . Moreover, by the definition
of the limit inferior, it holds that ⊓ �Gβ ≤� g. Consequently, gβ ∣d ≤� g, i.e. we have

∀d ∈ N∃β < α∶ gβ ∣d ≤� g (1)

84 Chapter 4 Term Graphs

Applying Lemma 4.5.6 and Lemma 4.5.12 yields gβ ∣d = g∣d. Hence, sim(g, gβ) ≥ d. That is,
we have shown that

∀d ∈ N∃β < α∶ sim(g, gβ) ≥ d

Since, for each e ∈ R+, we find a d ∈ N with 2−d < e, this implies

∀e ∈ R+∃β < α∶ d(g, gβ) < e

This shows that (gι)i<α converges to g. Now it remains to be shown that g is indeed in
G∞C (Σ), i.e. it does not contain any �. Suppose that g does contain a node labelled with
�. Then �-depth(g) ∈ N. Let d = �-depth(g) + 1. By (1), there is a β with gβ ∣d ≤� g. By
applying Lemma 4.5.6 and Lemma 4.2.11, we then get

�-depth(g) + 1 = d ≤ �-depth(gβ ∣d) ≤ �-depth(g).

This is a contradiction. Hence, g is indeed in G∞C (Σ).

This result has two obvious but important consequences: Firstly, whenever the limit
(w.r.t. the metric) of a sequence of canonical term graphs exists, it is equal to the limes
inferior (w.r.t. the partial order) of this sequence. Secondly, this shows that the metric
space (G∞C (Σ),d) is complete:

Proposition 4.5.19 (completeness of metric on term graph)
The metric space (G∞C (Σ),d) is complete.

Proof. Immediate consequence of Proposition 4.5.18.

From Proposition 4.5.18, we know that the limit inferior in the partially ordered set is
at least as powerful as the limit in the metric space. The following proposition shows that
the limit inferior restricted to total term graphs is not more powerful than the limit.

Proposition 4.5.20 (total limit inferior equals limit)
Let (gι)ι<α be a non-empty sequence in G∞C (Σ) with � ∉ Σ. If lim infι→α gι ∈ G∞C (Σ), then
lim infι→α gι = limι→α gι.

Proof. If α alpha is a successor ordinal, then both the limit and the limit inferior are equal
to gα−1. Let α be a limit ordinal. According to Proposition 4.5.18, in order to show that
limit and limit inferior coincide, it suffices to prove that (gι)ι<α is Cauchy. For this purpose,
assume that (gι)ι<α is not Cauchy. Then there is some e ∈ R+ such that, for all β < α,
there are β < ι, ι′ < α with d(gι, gι′) ≥ e. Take some d ∈ N with e ≥ 2−d. Then we have,
for each β < α, some β < ι, ι′ < α with sim(gι, gι′) ≤ d, i.e. �-depth(gι ⊓� gι′) ≤ d. Define
Gβ = {gι ∣β ≤ ι < α} and hβ = ⊓ �Gβ for each β < α. Note that for two ι, ι′ with β < ι, ι′ < α
we have hβ ≤� gι ⊓� gι′ since gι, gι′ ∈ Gβ . Thus, by employing Lemma 4.2.11, we obtain
�-depth(hβ) ≤ �-depth(gι ⊓� gι′). Since there are, for each β < α, some β < ι, ι′ < α with
�-depth(gι ⊓� gι′) ≤ d, we, therefore, have �-depth(hβ) ≤ d for each β < α. That is,

for each β < α there is some π ∈ P(hβ) with ∣π∣ ≤ d such that hβ(π) = �. (1)

Let g = lim infι→α gι. Note that g = ⊔ �
β<α hβ . Since {hβ ∣β < α} is a directed set, we can

employ Corollary 4.4.16 which yields that P(g) = ⋃β<αP(hβ). Therefore, we can rephrase
(1) in order to obtain that, for all β < α, there is a π ∈ P(g) with ∣π∣ ≤ d such that hβ(π) = �.
According to Lemma 4.1.13, there are only finitely many occurrences in g of length at most
d. Hence, as α is a limit ordinal, there is some occurrence π∗ in g such that

for any β < α, there is some β ≤ γ < α with hγ(π∗) = �. (2)

4.5 A Metric on Term Graphs 85

Note that (hι)ι<α is a ≤�-chain. From Corollary 4.4.13, we know that whenever there
are two term graphs g, h with g ≤� h and h(π) = �, then also g(π) = � provided π ∈ P(g).
We now show that

hβ(π∗) = � for any β < α with π∗ ∈ P(hβ). (3)
Let β < α with π∗ ∈ P(hβ). Due to (2), there is some β ≤ γ < α with hγ(π∗) = �. As (hι)ι<α
is a ≤�-chain, we then have hβ ≤� hγ and, therefore, hβ(π∗) = �. This proves (3). From
(3), we obtain, according to Corollary 4.4.16, that g(π∗) = �. This is a contradiction to the
assumption that g ∈ G∞(Σ). Hence, (gι)ι<α is Cauchy.

Note that Proposition 4.5.20 depends on the finiteness of the arity of the symbols in the
signature, just as Lemma 4.1.13 does – which is used in the proof above. This observation
also holds for terms as the following example shows:

Example 4.5.21
Let Σ = {f/ω, a/0, b/0} and (gi)i<ω a sequence with

g0 = f(a, a, a, a, a . . .),
g1 = f(b, a, a, a, a . . .),
g2 = f(b, b, a, a, a . . .),
g3 = f(b, b, b, a, a . . .),

⋮

(gi)i<ω has the limit inferior f(b, b, b, b, b, . . .). On the other hand, the sequence is not even
Cauchy since, for each i ≠ j, we have sim(gi, gj) = 1 and, therefore, d(gi, gj) = 1

2 .

Note that in conjunction Proposition 4.5.18 and Proposition 4.5.20 state that limits and
limits inferior coincide on total term graphs. Since, according to Proposition 4.4.21, total
term graphs are precisely the maximal term graphs, we obtain that the partial order on
partial term graphs extends the metric space on total term graphs:

Proposition 4.5.22 (partial order extends metric on term graphs)
(G∞C (Σ�),≤�) extends (G∞C (Σ),d).

Proof. This is an immediate consequence of Proposition 4.5.18, Proposition 4.5.20 and
Proposition 4.4.21.

The following proposition shows that the limit inferior is invariant to truncations that
are performed at increasing depths.

Proposition 4.5.23 (limit inferior of truncations)
Let (tι)ι<λ be a sequence in T ∞(Σ�) and (dι)ι<λ a sequence in N such that λ is a limit
ordinal and (dι)ι<λ tends to infinity. Then lim infι→λ tι = lim infι→λ tι∣dι.

Proof. Let t = lim infι→λ tι∣dι and t̂ = lim infι→λ tι. By Lemma 4.5.5, we have that tι∣dι ≤� tι
for each ι < λ. Hence, we also have that t ≤� t̂. Thus, it remains to be shown that also t̂ ≤� t
holds. That is, according to Corollary 4.4.11, we have to show that t̂(π) = t(π) holds for all
π ∈ P∖�(t̂).

Let π ∈ P∖�(t̂). That is, t̂(π) = f ≠ �. Hence, by Corollary 4.4.16, there is some α < λ
with (⊓ �

α≤ι<λ tι)(π) = f . Let P = {π′ ∣π′ ≤ π } be the set of all prefixes of π. Note that it
holds that ⊓ �

α≤ι<λ tι ≤� tι for all ι < λ. Hence, we can apply Corollary 4.4.13 to obtain that
⊓ �

α≤ι<λ tι and tι coincide in all occurrences in P in particular for all α ≤ ι < λ. Because
(dι)ι<λ tends to infinity, there is some α ≤ β < λ such that dι > ∣π∣ for all β ≤ ι < λ.
Consequently, since tι∣dι and tι coincide in all occurrences of length smaller than dι for all
ι < λ, we have that tι∣dι and tι coincide in all occurrences in P for all β ≤ ι < λ. Hence,
tι∣dι and ⊓ �

α≤ι<λ tι coincide in all occurrences in P for all β ≤ ι < λ. Hence, according to
Lemma 4.4.23, ⊓ �

α≤ι<λ tι and ⊓ �
β≤ι<λ tι∣dι coincide in all occurrences in P . Particularly, it

holds that (⊓ �
β≤ι<λ tι∣dι)(π) = f which in turn implies by Corollary 4.4.16 that t(π) = f .

Chapter 5

Infinitary Term Rewriting

This chapter is concerned with the theory of infinitary term rewriting. That is, we present
and investigate properties of transfinite reductions induced by infinitary term rewriting sys-
tems. Compared to the well-established area of finitary term rewriting this means dropping
two major restrictions: Firstly, instead of finite terms we have to consider possibly infinite
terms. Secondly, reduction sequences of length beyond ω have to be taken into account.
The former generalisation, seemingly innocent at first glance, turns out to have considerable
consequences – even to the behaviour of finitary properties. A detailed discussion of these
phenomena (and their absence in some cases) is conducted in Section 5.1. The latter gener-
alisation concerning the reduction sequences under consideration was already investigated –
however, from a chiefly abstract point of view – in Chapter 3. Providing an insight into the
properties of transfinite reductions on terms is the main goal of this chapter.

Chapter 3 has introduced a number of different notions of transfinite reductions. A priori
there is no “natural” choice of transfinite reductions that seems superior to the others. One
can argue that weak convergence is more elegant due to its relative simplicity compared
to strong convergence. Yet, because of its more restrictive character, strong convergence
is considerably more well-behaved as we will see. The same can be said about the choice
between the MRS and the PRS model of transfinite rewriting. As we will learn in Section 5.2,
reductions in the former model are merely a well-defined special case of reductions in the
latter model. Unlike weak convergence, however, the generalisation that the PRS model
allows does lead in some cases to stronger properties as the investigations performed in
Section 5.5 will confirm.

Section 5.3 and Section 5.4 summarise the most important results already known for the
established notions of weakly resp. strongly convergent reductions in the MRS model. The
intention pursued in these two sections is to give an impression of the properties of infinitary
rewriting and to provide a comparison of weak and strong convergence. In particular, some
of the shortcomings of weak convergence compared to strong convergence are revealed.

Finally, in Section 5.5 strongly convergent reductions in the PRS model are investigated.
As this model of transfinite reductions was just introduced in this thesis, there are only
few properties known for it. Blom [Blo04] has considered a model of transfinite reductions
quite similar to the PRS model. However, he has investigated λ-calculi and their – in
our terminology – strongly convergent reductions. We, on the other hand, restrict our
attention to term rewriting systems and try to reproduce results known for the MRS model
as presented in Section 5.4. The analysis is mainly concerned with confluence properties.
Yet, along the way we also find other properties and, most importantly, an equivalence
to certain reduction systems, called Böhm reductions. The latter result provides a deep
insight into the essential difference between the MRS and the PRS model of infinitary term
rewriting.

87

88 Chapter 5 Infinitary Term Rewriting

5.1 Finitary Properties on Infinite Terms

In Section 3.3, we have studied the difference between finitary properties, like SN, and their
infinitary counterparts, like SN∞. But not only the length of the reduction sequences under
consideration is significant. The choice of the underlying set of terms that are allowed
for forming a reduction sequence does also make a difference. For example, we will see in
Section 5.2 that the MRS model and the PRS model of infinitary term rewriting coincide
when we restrict the attention to the subset of total terms. The discussion in this section is
concerned with the ramifications of extending the scope of term rewriting from finite terms
to possibly infinite terms. The theory of (finitary) term rewriting is usually concerned
with rewriting on the set T (Σ,V) of finite terms, whereas in infinitary term rewriting we
consider the set of possibly infinite terms T ∞(Σ,V). We will learn that this extension of the
domain has an impact even to finitary properties. First, we will have a look at termination
properties. Afterwards, we will consider confluence properties.

5.1.1 Termination Properties

One might already anticipate that the shift to possibly infinite terms has severe consequences
for finite termination properties. Indeed, virtually everything we know about termination
properties on finite terms becomes invalid when infinite terms are considered as well. Of
course, if a systems is terminating on T ∞(Σ,V), it is terminating on T (Σ,V), too. The
converse, however, is not true. The following example illustrates this:

Example 5.1.1
Consider the TRS R with the single rule f(x) → x. On finite terms, R is, of course, SN
and, thus, also WN. Yet, if, additionally, infinite terms are considered, R is neither SN nor
WN as the infinite term fω has no normal form. We only have the infinite reduction

fω → fω → fω → . . .

For infinite terms, R does even violate several weaker variants of termination, viz. non-
loopingness and acyclicity: A TRS is non-looping if it does not allow reductions of the form
t →+ C[tσ], and it is called acyclic if it does not allow reductions of the form t →+ t. Both
properties are obviously violated by R on infinite terms.

In a different sense, also some stronger variants of termination are affected such as ω-
termination, polynomial termination, and simple termination (cf. [Ter03]). These properties
do only depend on the set of rules of a TRS and are, thus, independent of the choice of
the underlying set of terms. However, all three properties imply termination for reductions
on finite terms. R can easily be shown to be polynomially terminating and, thus, is also
ω-, and simply terminating. Yet, R is not terminating for reductions on T ∞(Σ,V). Hence,
the implications that we have for reductions on finite terms break when considering infinite
terms. The problem that arises here is that these properties are based on proof techniques
for termination on finite terms, which fail for reductions on infinite terms.

Rewrite strategies are also affected. For example, consider the innermost reduction
strategy: A reduction sequence is said to be innermost if every reduction step in it contracts
an innermost redex. A redex is called innermost if it does not contain a proper subterm
which is a redex. The essential difference between finite and infinite terms is that in finite
terms the existence of a redex also implies the existence of an innermost redex. In other
words: A finite term is a normal form iff it is a normal form w.r.t. innermost reduction. This
is not true for infinite terms. Returning to the TRS R of Example 5.1.1, we can see that
the term fω is not a normal form. However, fω does not have an innermost redex. Each
redex in fω is of the form fω and, thus, has proper subterms which are redexes themselves.
Hence, fω is a normal form w.r.t. innermost reduction although it not a normal form.

5.1 Finitary Properties on Infinite Terms 89

In particular, this has ramifications for termination properties defined w.r.t. innermost
reduction: Innermost termination (SIN) is termination w.r.t. innermost reductions and in-
nermost normalisation (WIN) is normalisation w.r.t. innermost reductions. For reductions
on finite terms, we have the implications

SN Ô⇒ SIN Ô⇒ WIN Ô⇒ WN

For reductions on possibly infinite terms, the fist two implications also hold true, i.e. it holds
that

SN Ô⇒ SIN Ô⇒ WIN

This is simply due to the fact that the set of innermost reductions is a subset of the set of
all reductions. On the other hand, the implications from WIN to WN and from SIN to WN
do not hold in general: The TRS R of Example 5.1.1 is not WN on T ∞(Σ,V). However, it
is certainly SIN as it is SN and, thus, SIN on finite terms, and the only infinite term, viz.
fω, is also SIN since it is in normal form w.r.t. innermost reduction. Again, this suggests
that innermost reductions are not meaningful in the setting of infinite terms.

5.1.2 Confluence Properties

Compared to termination properties the situation is completely different for confluence prop-
erties: Almost every confluence property that one might care about is invariant under the
inclusion of infinite terms. The key argument to prove this was given in [Luc01]. It is based
on an abstraction technique: For every finite reduction sequence S∶ s →⋆ t in an TRS on
T ∞(Σ,V), there is an upper bound d on the depth where rewrite rules are applied, simply
by the fact that S contains only finitely many steps. By the same argument, the depth of
the left-hand sides of the rules applied in S has an upper bound h. Hence, we can replace
subterms in S at depth h+d+1 with fresh variables x1, . . . , xn without affecting the applica-
bility of the rules applied in S. We do this in a consistent way, i.e. subterms that are equal
are replaced by the same variable, and different subterms are replaced by different variables.
Thus, we obtain a reduction sequence S′ on T (Σ,V). Moreover, this defines a substitution
σ such that xiσ is the term that was replaced by variable xi for all 1 ≤ i ≤ n. By applying
σ to each term in S′, we can obtain the original reduction sequence S.

We can use this construction for the CR property as follows: Suppose we have a TRS
R that is CR for reductions on finite terms. In order to show that R is also CR on infinite
terms, suppose we have two reductions S∶ t →⋆ t1 and T ∶ t →⋆ t2 on possibly infinite terms.
By using the above construction, we can devise two reduction sequences S′∶ t′ →⋆ t′1 and
T ′∶ t′ →⋆ t′2 on finite terms and a single substitution σ such that the original reduction
sequences can be obtained from S′ and T ′ by applying σ to each term of the respective
reduction sequence. Since R is CR for finite terms, there are two reduction sequences
U ′∶ t′1 →⋆ t′3 and V ′∶ t′2 →⋆ t′3. One can show that by applying σ to each term of U ′ and
V ′, we obtain two reduction sequences U ∶ t1 →⋆ t3 and V ∶ t2 →⋆ t3. This shows that R
is also CR on possibly infinite terms. The converse direction is, of course, trivial since
T (Σ,V) ⊆ T ∞(Σ,V). Therefore, CR on finite terms is equivalent to CR on infinitary terms.

This argument can also be applied to other confluence properties such as weak and strong
confluence. But also for properties that involve normal forms such as NF, UN, and UN→,
the above argument can still be used. The key observation is, that if a term t is a normal
form, then also all consistent abstractions of t, as they are constructed in the proof sketched
above, are normal forms. Moreover, the argument can also be applied to the properties of
consistency and consistency w.r.t. reduction.

However, we can certainly not use this argument for the property of ground confluence
(GCR), i.e. confluence of reductions on T (Σ). In fact, GCR depends on whether finite or
potentially infinite terms are considered:

90 Chapter 5 Infinitary Term Rewriting

Example 5.1.2
Let R be the TRS over the signature Σ = {f, g, a} consisting of the rules

ρ1∶ f(x) → x

ρ2∶ g(x) → x

ρ3∶ g(x) → a

R is GCR on T (Σ) since every term in T (Σ) is reducible to a. Also all infinite terms except
fω are reducible to a. In particular, we can reduce the term g(fω) to a and to fω in a single
step using rule ρ3 and ρ2, respectively. However, a is a normal form and fω can only be
reduced to itself. Hence, R is not GCR for possibly infinite terms.

5.2 MRS vs. PRS Model of Infinitary Term Rewriting

As seen in Chapter 3 there are several ways of defining transfinite reductions for a term
rewriting system. We have considered two dimensions of choices. At first, one can choose
between the MRS semantics and the PRS semantics for term rewriting systems. And sec-
ondly, one can choose between a weak and a strong variant of transfinite rewriting. In order
to indicate whether weakly convergent or strongly convergent reductions are considered, we
use the arrows ↪ and ↠, respectively. Since, for term rewriting systems, we also have the
choice of either considering its MRS or its PRS model of transfinite reductions, we need a
notation to indicate which one we choose. To this end, we use the superscripts m and p to
indicate that the MRS semantics respectively the PRS semantics is considered. That is, we
write ↪m and ↠m for reductions w.r.t. the MRS semantics (also called MRS reductions)
and ↪p and↠p for reductions w.r.t. the PRS semantics (also called PRS reductions). How-
ever, if it is clear from the context which semantics is meant, the superscript is dropped.
Particularly, in Section 5.3 and Section 5.4 we implicitly assume MRS reductions, whereas
in Section 5.5 PRS reductions are assumed.

The purpose of this section is to establish that the PRS semantics always extends the
MRS semantics of an ITRS in the sense of Definition 3.3.10. As a consequence, we will
obtain that the MRS model of transfinite reductions in ITRSs yields the same reductions
as the PRS model restricted to the set T ∞(Σ,V) of total terms.

Proposition 5.2.1 (partial order extends metric on terms)
(T ∞(Σ�,V),≤�) extends (T ∞(Σ,V),d).

Proof. This is a special case of Proposition 4.5.22 which states that this holds also for term
graphs.

Proposition 5.2.2 (PRS semantics of ITRSs extends MRS semantics)
For each ITRS R, its induced PRS PR extends its induced MRSMR.

Proof. Let MR = (A,Φ, src, tgt,d,hgt) and PR = (B,Φ′, src′, tgt′,≤, cxt). In the following,
we drop the subscript R and simply writeM and P. We have to show the clauses (1) – (5)
of Definition 3.3.10(ii). (1) holds by Proposition 5.2.1. Clauses (2) – (4) follow immediately
from Definition 2.3.24.

For the “only if” direction of (5), assume that S = (ϕι∶ tι →cι tι+1)ι<λ is a total open
reduction sequence strongly converging to tλ in P. We will prove by induction on λ that
then S∶ t0 ↠M tλ.

Since S∶ t0 ↠P tλ is total, it is also a reduction sequence in M due to (3) and (4).
Moreover, by Proposition 3.2.12, we also have that S∣[0,λ′)∶ t0 ↠P tλ′ for each limit ordinal
λ′ < λ. Applying the induction hypothesis then yields that S∣[0,λ′)∶ t0 ↠M tλ′ for each
limit ordinal λ′ < λ. Consequently, by Proposition 3.1.17, it holds that S∶ t0 ↠M It

5.3 Weakly Convergent MRS Reductions 91

remains to be shown that S also strongly converges to tλ inM. Note that tλ = lim infι→λ cι.
By definition, cι ≤� tι for all ι < λ. Hence, also lim infι→λ cι ≤� lim infι→λ tι. Since tλ =
lim infι→λ cι is maximal w.r.t. ≤�, this implies lim infι→λ cι = lim infι→λ tι. By (1), we then
have lim infι→λ tι = limι→λ tι as all tι and also their limit inferior are maximal. Hence, S
weakly converges to tλ inM. In order to show that S also strongly converges inM, suppose
that it does not. According to Proposition 5.4.2, which is proven later, this means that there
is a position π such that, for each α < λ, there is some α ≤ β < λ such that the step ϕβ takes
place at position π. By Lemma 5.5.4, which is also proven later, this contradicts the fact
that tλ is a total term.

For the converse direction of (5), assume that S = (ϕι∶ tι → tι+1)ι<λ is an open reduction
sequence strongly converging to tλ inM. By performing a transfinite induction proof on λ,
we will show that then S∶ t0 ↠P tλ is total.

By (1), (2) and (3), S is a total reduction sequence in P. Moreover, by applying Proposi-
tion 3.2.12, we obtain that S∣[0,λ′)∶ t0 ↠M tλ′ for each limit ordinal λ′ < λ. By applying the
induction hypothesis, we obtain that S∣[0,λ′)∶ t0 ↠P tλ′ for each limit ordinal λ′ < λ. Hence,
S∶ t0 ↠P . . . by Proposition 3.2.12. It remains to be shown that S strongly converges to
tλ in P as well. By definition, it holds that tλ = limι→λ tι. Additionally, by (1), we have
tλ = lim infι→λ tι. We obtain the desired result if we can show that lim infι→λ tι = lim infι→λ cι,
where cι = cxt(ϕι) for all ι < λ. Let dι be the depth of the reduction step ϕι for each ι < λ.
Since S is strongly convergent in MR, the sequence (dι)ι<λ tends to infinity. By Proposi-
tion 4.5.23, this means that

lim inf
ι→λ

tι = lim inf
ι→λ

tι∣dι and lim inf
ι→λ

cι = lim inf
ι→λ

cι∣dι.

By definition, it holds that tι∣dι = cι∣dι and we can conclude that

lim inf
ι→λ

tι = lim inf
ι→λ

tι∣dι = lim inf
ι→λ

cι∣dι = lim inf
ι→λ

cι.

Now we can apply the theory established in Section 3.3.2 in order to identify MRS
reductions with total PRS reductions.

Corollary 5.2.3 (total PRS reductions = MRS reductions)
Let R be an ITRS. Then the following holds for reductions in R:

(i) S∶ s↪p . . . is total iff S∶ s↪m

(ii) S∶ s↪p t is total iff S∶ s↪m t.

(iii) S∶ s↠p . . . is total iff S∶ s↠m

(iv) S∶ s↠p t is total iff S∶ s↠m t.

Proof. Follows immediately from Proposition 5.2.2 and Proposition 3.3.11.

This relation between MRS and PRS reductions will become particularly useful when
comparing PRS reductions and so-called Böhm reductions in Section 5.5.3.

5.3 Weakly Convergent MRS Reductions

The purpose of this section is to provide an overview of the properties of weakly convergent
reductions of ITRSs w.r.t. the traditional MRS semantics. The MRS semantics of infinitary
term rewriting, given in Definition 3.1.3, uses the usual ultrametric on terms in order to
formalise the limit behaviour of transfinite reductions. In Section 3.1, the intuition behind
transfinite rewriting in this setting was already presented and in conjunction with Section 3.1

92 Chapter 5 Infinitary Term Rewriting

and Section 3.3.1 we have seen those of its properties that are already observable in the
abstract case. For weakly convergent reductions, only few interesting properties have been
established. In Section 5.3.1, we present some criteria which ensure that a reduction can be
performed within at most ω steps. In Section 5.3.2, some confluence properties are shown.
And in Section 5.3.3, criteria are given that guarantee the existence of a corresponding
strongly convergent reduction in case a weakly convergent one is available.

5.3.1 Compression and Approximation
In the following, we want to present criteria which allow to simulate transfinite reductions
by reductions with only finitely many steps or at least with ω steps. Moreover, we will show
that it is possible to approximate the final term of a transfinite reduction arbitrarily precise
by a finite reduction.

The following theorem states that transfinite reductions can be “compressed” to a length
of at most ω if the system under consideration is left-linear and top-terminating:

Theorem 5.3.1 (Compression Lemma for top-terminating systems, [DKP91])
Let R be a left-linear top-terminating ITRS. Then s↪ t implies s↪≤ω t.

Proof. The theorem’s phrasing differs slightly from that of Theorem 1 in [DKP91]. Here we
allow the system’s right-hand sides as well as the term s to be infinite. The only part of the
proof in [DKP91], which is affected by this generalisation, is the argument that s ↪ω+1 t
implies s ↪ω t. Due to the top-termination, this argument can be performed in the same
way as in Lemma 5.1 from [KKSdV95a] which allows rules with infinite right-hand sides.

Primarily, this serves as a tool for proofs on transfinite reductions as reductions of length
beyond ω are harder to work with. Note that the restriction to left-linear systems is neces-
sary:

Example 5.3.2 ([DKP91])
Consider the following top-terminating TRS R:

a→ g(a), b→ g(b), f(x,x) → c

R allows the strongly convergent (ω + 1)-reduction sequence

f(a, b) →2 f(g(a), g(b)) →2 f(g2(a), g2(b)) →2 . . . f(gω, gω) → c

Yet, R does not allow a reduction f(a, b) ↪≤ω c of length at most ω.

Also the requirement of top-termination is vital for compression:

Example 5.3.3 ([FW90])
Consider the following left-linear TRS R:

a→ b, f(x, a) → f(g(x), a)

R allows the weakly convergent (ω + 1)-reduction sequence

f(c, a) → f(g(c), a) → f(g2(c), a) → . . . f(gω, a) → f(gω, b)

Yet, R does not allow a reduction f(c, a) ↪≤ω f(gω, b) of length at most ω.

Another variant of the above compression property requires (finitary) confluence instead
of top-termination. But it is restricted to reductions converging to constructor terms:

Theorem 5.3.4 (Compression Lemma for confluent systems, [Luc01])
Let R be a left-linear (finitarily) confluent TRS, s ∈ T ∞(Σ,V), and t ∈ T ∞(C,V). If s ↪ t,
then s↪≤ω t.

5.3 Weakly Convergent MRS Reductions 93

The following example shows that confluence is crucial for the above theorem:

Example 5.3.5
Let R be the TRS:

f(x) → f(g(x)), f(x) → x

R is not confluent since the term f(x) can be rewritten to the two distinct normal forms x
and g(x). Moreover, R allows the weakly convergent (ω + 1)-reduction sequence:

f(x) → f(g(x)) → f(g2(x)) → . . . f(gω) → gω

Yet, there is no reduction f(x) ↪≤ω gω of length at most ω.

It is well-known that weakly orthogonal TRSs are (finitarily) confluent. Hence, we can
obtain the following corollary:

Corollary 5.3.6 (Compression Lemma for weakly orthogonal systems)
Let R be a weakly orthogonal TRS, s ∈ T ∞(Σ,V), and t ∈ T ∞(C,V). If s↪ t, then s↪≤ω t.

Proof. Follows from Theorem 2.3.31 and Theorem 5.3.4.

The next theorem shows that it is possible to approximate the result of a transfinite
reduction by a finite reduction with arbitrary precision:

Theorem 5.3.7 (finite approximation, [Luc01])
Let R be a left-linear TRS and s, t ∈ T ∞(Σ,V). If s↪ t, then for each depth d ∈ N, there is
some t′ ∈ T ∞(Σ,V) such that s→∗ t′ and t and t′ coincide up do depth d, i.e. sim(t, t′) > d.

Of course, for finite terms, this means that they can be computed by a finite reduction:

Corollary 5.3.8 (finite reductions to finite terms, [Luc01])
Let R be a left-linear TRS, s ∈ T ∞(Σ,V), and t ∈ T (Σ,V). If s↪ t, then s→∗ t.

The assumption of left-linearity is crucial for both Theorem 5.3.7 and Corollary 5.3.8.
Example 5.3.2 illustrates this.

5.3.2 Confluence

Obtaining infinitary confluence for weakly convergent reductions is hard. It is, for example,
not possible to establish an adequate theory of complete developments as we will argue
in Section 5.4.2. This was also one of the most important reasons for considering strong
convergence (cf. [KKSdV95a]). There are some criteria which relate weakly convergent
reductions to strongly convergent reductions. We will discuss them in Section 5.3.3. With
these we are able to hĳack some of the confluence results for strongly convergent reductions.

However, there are some results concerning variants of infinitary confluence. This section
summarises the most important ones.

The following Theorem provides criteria of a property called semi-ω-confluence (cf.
[DKP91]). Its structure is depicted in Figure 5.1.

Theorem 5.3.9 (semi-ω-confluence, [DKP91])
Let R be a weakly ω-convergent orthogonal TRS. For any two coinitial reductions t →⋆ t1
and t↪≤ω t2, there are two reductions t1 ↪≤ω t3 and t2 ↪≤ω t3.

It is not known whether full orthogonality and ω-convergence is really necessary for the
theorem. However, left-linearity is indeed needed as the following example shows:

94 Chapter 5 Infinitary Term Rewriting

t

t1 t2

t3

∗
≤
ω

≤
ω ≤ ω

Figure 5.1: Semi-ω-confluence of Theorem 5.3.9.

Example 5.3.10 ([DKP91])
Let R be the TRS given by the following rules:

a→ g(a), b→ g(b), f(x,x) → c

In R we have the reductions

f(f(a, b), f(a, b)) → c and f(f(a, b), f(a, b)) ↪ω f(f(a, gω), f(gω, b)).

c is a normal form and every reduction f(f(a, gω), f(gω, b)) ↪ c has a length of at least
ω + 1.

The following two theorems are concerned with a weaker variant of UN∞
→ . Instead of

normal forms, constructor terms are considered:

Theorem 5.3.11 (unique constructor normal form w.r.t. ω-reductions, [Luc01])
Let R be a (finitarily) confluent TRS, s ∈ T ∞(Σ,V), and t, t′ ∈ T ∞(C,V). If s ↪≤ω t and
s↪≤ω t′, then t = t′.

With the additional restriction to left-linear systems, this can be generalised to arbitrarily
long weakly convergent reduction sequences.

Theorem 5.3.12 (unique constructor normal form w.r.t. transfinite reductions,
[Luc01])
Let R be a left-linear, (finitarily) confluent TRS, s ∈ T ∞(Σ,V), and t, t′ ∈ T ∞(C,V). If
s↪ t and s↪ t′, then t = t′.

It is obvious that both Theorem 5.3.11 and Theorem 5.3.12 fail (even for finite reductions)
if the restriction to confluent systems is omitted. Additionally, the following example shows
that both theorems do not hold if arbitrary normal forms are considered:

Example 5.3.13 ([Luc01])
Consider the following (ground) TRS R:

f(a) → a f(a) → f(f(a))

Since every ground term can be reduced to a, the above system R is ground confluent. The
fact that R is ground implies that it is confluent in general. Yet, we have the two reductions
f(a) ↪ω fω and f(a) → a. Both reducts are in normal form but only a is a constructor
term.

From Theorem 5.3.12, we obtain the following corollary

Corollary 5.3.14 (unique constructor normal form w.r.t. transfinite reductions)
Let R be an weakly orthogonal TRS, s ∈ T ∞(Σ,V), and t, t′ ∈ T ∞(C,V). If s↪ t and s↪ t′,
then t = t′.

Proof. Immediate consequence of Theorem 5.3.12 and Theorem 2.3.31.

5.3 Weakly Convergent MRS Reductions 95

5.3.3 Connection to Strongly Convergent Reductions
As we will see in Section 5.4, there are far more results for strongly convergent than for
weakly convergent reductions. Hence, by having criteria which ensure the strong convergence
of weakly convergent reduction, or which at least assert strongly convergent reductions with
the same start and end term, we are able to transfer some of the results known from strong
convergent reductions to the setting of weakly convergent reductions.

The following proposition is often implied in the literature (e.g. in [Sim06]), but to the
best of our knowledge no proof for this was explicitly given up to now.

Proposition 5.3.15 (strong convergence in top-terminating systems)
Let R be a left-linear and top-terminating ITRS. Then s↪ t implies s↠ t.

Proof. Let S∶ s↪ t be a weakly convergent reduction sequence. By Theorem 5.3.1, there is
a reduction sequence T ∶ s ↪≤ω t. Let T = (ti →πi ti+1)i<α. If T ∶ s ↪<ω t, then T ∶ s ↠ t is
obvious. Suppose that T ∶ s↪ω t is not strongly convergent. Then there is some depth d ∈ N
such that infinitely many reduction steps in T occur at depth d. Let d∗ be the minimal such
depth. That is, there is some n < ω such that all reduction steps in T ∣[n,ω) are at depth
at least d∗, i.e. ∣πi∣ ≥ d∗ holds for all n ≤ i < ω. Of course, also T ∣[n,ω) contains infinitely
many steps at depth d∗. As all reduction steps in T ∣[n,ω) take place at depth d∗ or below,
ti∣d∗ = tj ∣d∗ holds for all n ≤ i, j < ω. That is, all terms in T ∣[n,ω) have the same set of
positions of length d∗. Let P ∗ = {π ∈ P(tn) ∣ ∣π∣ = d∗ } be this set. Since there are infinitely
many steps in T ∣[n,ω) taking place at a position in P ∗, yet, P ∗ is finite, there has to be some
position π∗ ∈ P ∗ at which infinitely many steps in T ∣[n,ω) occur. Let T ′ be the reduction
sequence that can be obtained from T ∣[n,ω) by removing all reduction steps which occur at
a position disjoint from π∗. Let T ′ = (si →π̂i si+1)i<ω. By construction, we have π̂i = π∗ ⋅ π′i
for some π′i for each i < ω. Hence, each si can be written as s0[s′i]π∗ for an appropriate term
s′i. This gives rise to a reduction sequence S′ = (s′i →π′i s

′
i+1)i<ω. Because infinitely many

steps in T ′ are at position π∗, we can conclude that infinitely many steps in S′ are at root
position. This contradicts the assumption that R is top-terminating. Hence, T ∶ s↠ t.

The requirement of top-termination is, of course, essential as Example 5.1.1 illustrates.
Also left-linearity is crucial in order to ensure strong convergence. The following example
illustrates this:

Example 5.3.16
Consider the TRS R containing the following rules:

ρ1∶ a→ g(a)
ρ2∶ b→ g(b)
ρ3∶ f(x,x, y) → f(a, b, g(y))

R is top-terminating. In R we can construct weakly convergent ω-reduction sequences of
the form:

f(gω, gω, gn(a)) → f(a, b, gn+1(a)) →2 f(g(a), g(b), gn+1(a)) →2 f(g2(a), g2(b), gn+1(a))
→2 f(g3(a), g3(b), gn+1(a)) → . . . f(gω, gω, gn+1(a))

By combining these reductions f(gω, gω, gn(a)) ↪ω f(gω, gω, gn+1(a)), we obtain the weakly
convergent ω2-reduction sequence

f(gω, gω, a) ↪ω f(gω, gω, g(a)) ↪ω f(gω, gω, g2(a)) ↪ω . . . f(gω, gω, gω)

This sequence is clearly not strongly convergent as infinitely many times rule ρ3 is applied
at the root. It is also clear that any weakly convergent reduction sequence from f(gω, gω, a)
to f(gω, gω, gω) has to apply rule ρ3 infinitely often at the root. Hence, there is no strongly
convergent reduction f(gω, gω, a) ↠ f(gω, gω, gω).

96 Chapter 5 Infinitary Term Rewriting

The restriction of the above proposition to top-termination is rather strict, also because
of the fact that top-termination is in general undecidable. However, if we restrict ourselves
to normalising reductions, we can achieve a similar behaviour:

Theorem 5.3.17 (normalising reductions, [KKSdV95a])
Let R be an orthogonal ITRS for which there is an upper bound on the depth of the left-hand
sides of its rules. If s↪ t, with t a normal form, then s↠ t.

Both orthogonality and the boundedness of the depth of the rules’ left-hand sides are
vital for the above theorem:

Example 5.3.18

(i) (from [KKSdV95a]) Let R be the TRS consisting of the rules

f(gn(c)) → f(gn+1(c)) for all n ∈ N

Note that R is orthogonal, but the depth of the left-hand sides of its rules are not
bounded. The term f(c) reduces to the normal form f(gω) by a weakly convergent
reduction. However, there is no strongly convergent reduction f(c) ↠ f(gω) in R.

(ii) Let R be the TRS over signature {f, g, a, b} consisting of the rules

g(x,x) → c

g(x, y) → g(f(x), f(y))

R has only finitely many rules but is not orthogonal. From the term g(a, b), we have
the following weakly convergent reduction sequence to the normal form c:

g(a, b) → g(f(a), f(b)) → g(f2(a), f2(b)) → g(f3(a), f3(b)) → . . . g(fω, fω) → c

Yet, there is no strongly convergent reduction sequence g(a, b) ↠ c in R.

When we consider constructor terms instead of general normal forms, the requirement
of orthogonality and boundedness of left-hand sides can be dropped:

Theorem 5.3.19 (reductions to constructor terms, [Luc01])
Let R be an ITRS. If S∶ s↪≤ω t, with t ∈ T ∞(C,V), then S∶ s↠≤ω t, i.e. weakly convergent
ω-reduction sequences ending in a constructor term are strongly convergent.

Here, the restriction to ω-reduction sequences is important as Example 5.3.18 (ii) shows.
Also note that this cannot be generalised to arbitrary normal forms. Example 5.3.18 (i)
illustrates this.

5.4 Strongly Convergent MRS Reductions

The discussion of weakly convergent reductions in Section 5.3 has shown that it is hard to
establish useful properties in that setting. This was one of the motivations for considering
strongly convergent reductions (cf. [KKSdV95a]). The purpose of this section is to present
the most important results for strongly convergent reductions and also to argue why most of
these results cannot be generalised to weakly convergent reductions in a satisfying way. We
have already seen an example of this in the abstract setting of MRSs in Section 3.1: Strongly
continuous reductions can only have countable ordinal length whereas weakly continuous
reductions can be of arbitrary length. After the paradigm of strongly convergent reductions
had been introduced and shown to have more advantageous properties (mostly by Kennaway
et al. [KKSdV91, KKSdV95a]), most investigations of infinitary rewriting were focused on
this paradigm. Therefore, the theory of strongly convergent reductions of ITRSs has become
a comprehensive research topic.

5.4 Strongly Convergent MRS Reductions 97

In Section 5.4.1, we present criteria which allow to reduce the length of reduction se-
quences to at most ω. The sections 5.4.2 to 5.4.5 are concerned with confluence properties.
Finally, in Section 5.4.6 and Section 5.4.7 we briefly discuss strategies and termination
properties, respectively.

But before we begin with the in-depth discussion of strongly convergent reductions and
their properties, let us have a look at the fundamental difference between strongly and
weakly convergent reductions. By definition, strong convergence additionally requires that
during the reduction the rewrite rules are applied at increasingly deeper positions. The
following lemma shows that this is equivalent to the condition that there is an upper bound
on the steps that occur at a particular position:

Lemma 5.4.1 (strong convergence)
Let R be an ITRS, and S = (tι →πι tι+1)ι<α a strongly continuous open reduction sequence
in R. S is strongly convergent iff, for each position π, there is an ordinal β < α such that
πι ≠ π for all β ≤ ι < α.

Proof. The “only if” direction is easy: If S is strongly convergent, then ∣πι∣ has to tend to
infinity as ι approaches α. Hence, the positions πι have to become longer and longer. In
particular, this implies that, for each position π, there is an upper bound for the indices of
the steps that occur at π.

For the converse direction, suppose that, for each position π, there is an upper bound for
the indices of the steps in S that occur at π. By Proposition 3.1.14, we have to show that
∣πι∣ tends to infinity as ι approaches α. Assume that this is not the case. That is, there is
some depth d ∈ N such that there is no upper bound on the indices of reduction steps taking
place at depth d. Let d∗ be the minimal such depth. That is, there is some β < α such that
all reduction steps in S∣[β,α) are at depth at least d∗, i.e. ∣πι∣ ≥ d∗ holds for all β ≤ ι < α.
Of course, also in S∣[β,α) the indices of steps at depth d∗ are not bounded from above. As
all reduction steps in S∣[β,α) take place at depth d∗ or below, tι∣d∗ = tι′ ∣d∗ holds for all
β ≤ ι, ι′ < α. That is, all terms in S∣[β,α) have the same set of positions of length d∗. Let
P ∗ = {π ∈ P(tn) ∣ ∣π∣ = d∗ } be this set. Since there is no upper bound on the idices of steps
in S∣[β,α) taking place at a position in P ∗, yet, P ∗ is finite, there has to be some position
π∗ ∈ P ∗ for which there is also no such upper bound. This contradicts the assumption that
there is always such an upper bound.

From this, we easily obtain the following proposition:

Proposition 5.4.2 (strong continuity and convergence)
Let R be an ITRS, and S = (tι →πι tι+1)ι<α a weakly continuous reduction sequence in R.
Then the following holds:

(i) S is strongly continuous iff, for each limit ordinal λ < α and for each position π, there
is an ordinal β < λ such that πι ≠ π for all β ≤ ι < λ.

(ii) S is strongly convergent iff, for each limit ordinal λ ≤ α and for each position π, there
is an ordinal β < λ such that πι ≠ π for all β ≤ ι < λ.

Proof. This follows immediately from Proposition 3.1.17 and Lemma 5.4.1.

5.4.1 Compression and Approximation
We have seen that under certain circumstances weakly convergent reduction sequences can
be “compressed” to length at most ω, and that the final term of a transfinite reduction can
be approximated arbitrarily well by a finite reduction. These results can be strengthened
for strongly convergent reductions.

Unlike for weakly convergent reductions, the Compression Lemma does not require top-
termination in the setting of strong convergence:

98 Chapter 5 Infinitary Term Rewriting

Theorem 5.4.3 (Compression Lemma, [KKSdV95a])
For a left-linear ITRS, S∶ s↠ t implies T ∶ s↠≤ω t.

With this we can also generalise Theorem 5.3.7 which was restricted to TRSs. It is not
know whether this restriction is essential. However, for strongly convergent reductions, it is
not:

Theorem 5.4.4 (finitary approximation)
Let R be a left-linear ITRS and s↠ t. Then, for each depth d ∈ N, there is a finite reduction
s→⋆ t′ such that t and t′ coincide up to depth d, i.e. sim(t, t′) > d.

Proof. By Theorem 5.4.3, there is a reduction S∶ s↠≤ω t. If S is of finite length, then we are
done. If S∶ s↠ω t, then, by strong convergence, there is some n < ω such that all reductions
steps in S after n take place at a depth greater than d. Consider S∣[0,n)∶ s→⋆ t′. It is clear
that t and t′ coincide up to depth d.

Again, for finite terms, this means that they can be computed by a finite reduction:

Corollary 5.4.5 (finite reductions to finite terms)
Let R be a left-linear ITRS, s ∈ T ∞(Σ,V), and t ∈ T (Σ,V). If s↠ t, then s→∗ t.

The assumption of left linearity is crucial for both Theorem 5.3.7 and Corollary 5.3.8.
The following example illustrates this:

Example 5.4.6
Consider the following TRS [DKP91]:

a→ g(a) b→ g(b) f(x,x) → c

Then we have the transfinite reduction f(a, b) ↠ω f(gω, gω) → c. Yet, we do not have
f(a, b) →∗ c.

5.4.2 Complete Developments
There are several methods to prove (finitary) confluence for orthogonal TRSs. One of them
employs the concept of complete developments. This is a classic notion from the studies
of λ-calculus and combinatory logic first used by Church and Rosser [CR36]. Intuitively
speaking, complete developments are reduction sequences which contract an entire set of
redexes in a term. In order to formalise this idea, one needs a formal means to track redexes
in a reduction. The following definition of descendants serves this purpose:

Definition 5.4.7 (residuals/descendants, [KKSdV95a])
Let S∶ t0 ↠α tα and U a set of occurrences in t0. The descendants of U by S, denoted U//S,
is the set of occurrences in tα inductively defined as follows:

(a) If α = 0, then U//S = U .

(b) If α = 1, let S∶ t0 →π,ρ t1, where ρ∶ l → r. Take any u ∈ U and define the set Ru as
follows: If π ≮ u, then Ru = {u}. If u is in the pattern of the redex of ρ, then Ru = ∅.
Otherwise, i.e. if u = π ⋅ w ⋅ x, with l∣w ∈ V, then Ru = {π ⋅w′ ⋅ x ∣ r∣w′ = l∣w }. Define
U//S = ⋃u∈U Ru.

(c) If α = α′ + 1, then U//S = (U//S∣[0,α′))//S∣[α′,α).

(d) If α is a limit ordinal, then U//S = lim infι→αU//S∣[0,ι).
That is, u ∈ U//S iff ∃β < α∀β < ι < α∶ u ∈ U//S∣[0,ι)

If, in particular, U is a set of redex occurrences in t0, then U//S is also called the set of
residuals of U by S. Moreover, by abuse of notation, we write u//S instead of {u} //S.

5.4 Strongly Convergent MRS Reductions 99

ρ∶

x y y y

(a) A rewrite rule.

ρ

⋅
u1

⋅
u′1

⋅
u2

⋅
u3

⋅
u4

⋅
u′4

⋅
u′′4

(b) Application of a rewrite rule.

Figure 5.2: Descendants by a single step.

The definition of descendants given above is a straightforward generalisation of the cor-
responding concept known from finite reductions. Item (a) needs no explanation. Item (b)
is a simple case distinction of what can happen to occurrences during a single reduction
step. The schematic example in Figure 5.2 illustrates its intuition. Figure 5.2a depicts a
left-linear rewrite rule indicating all variable occurrences of its left- and right-hand side.
Figure 5.2b shows the result of applying the rewrite rule to a term. In the initial term, four
occurrences are singled out. One “outside” the redex, viz. u1, and three “inside” the redex,
viz. u2, u3 and u4. The descendants of these occurrences are indicated in the resulting term
as u′1, u′4 and u′′4 . The occurrence outside the redex corresponds to the case that π /< u1.
The occurrence is preserved unaltered as u′1, i.e. u1 = u′1. The occurrence in the pattern
of the redex, viz. u2, vanishes, i.e. it has no descendants, as demanded by the definition.
Lastly, the positions u3 and u4 are in the variable part of the redex. Their propagation
as descendants depends on how often and where the corresponding variable occurs on the
right-hand side of the rewrite rule. As the variable x does not occur on the right-hand side
of the rule, the occurrence u3 has no descendants. On the other hand, y even occurs twice
on the right-hand side. Hence, u4 has two descendants, viz. u′4 and u′′4 . Item (c) is also
straightforward: It simply states that descendants are transitively propagated by each step.

This is all well-known from finite reductions. The interesting part of the definition is
(d): It asserts for the limit case that an occurrence is a descendant iff it becomes a stable
descendant by all prefixes, i.e. it is a descendant by all prefixes from one point onwards.
This also corresponds to the notion of weak convergence which essentially states that an
open reduction sequence converges to a term whose every symbol at some position becomes
stable at that position in the reductions before.

The concept of descendants is defined for strongly convergent reductions. One can easily
see, however, that it is applicable to weakly convergent reductions, too. Yet, as we will
see later, descendants are only meaningful for strongly convergent reductions. Along the
way we will argue why this notion of descendants is not appropriate for weakly convergent

100 Chapter 5 Infinitary Term Rewriting

reductions. As a matter of fact, the situation seems to be even worse than that: One can
argue, as, for example, Simonsen [Sim04] does, that also any other notion of descendants
either fails to be useful as a tool for proving important properties like the Infinitary Strip
Lemma (cf. Proposition 5.4.23) or has peculiar properties itself which are counterintuitive
to the notion of descendants.

With the concept of residuals it is possible to formalise the intuitive notion of complete
developments. A complete development of a set of redexes is a reduction that contracts only
redex occurrences which are residuals of the original set of redexes and stops in a term in
which no residuals are left.

Definition 5.4.8 ((complete) development, [KKSdV95a])
Let R be an ITRS, s a term in R and U a set of pairwise non-conflicting redex occurrences
in s.

(i) A development of U in s is a strongly convergent reduction S∶ s ↠α
R t in which each

reduction step ϕι∶ tι →πι tι+1 contracts a redex at πι ∈ U//S∣[0,ι) for ι < α.

(ii) A development S∶ s↠ t of U in s is called complete, denoted S∶ s↠U t, if U//S = ∅.

An essential property that is needed to make the above definition meaningful is that
the considered redex occurrences are independent from each other. The restriction to non-
conflicting redex occurrences guarantees this. Moreover, in a left-linear system, the descen-
dants of a set of non-conflicting redex occurrences is again a set of non-conflicting redex
occurrences:

Fact 5.4.9 (non-conflicting residuals)
Let R be a left-linear ITRS, s a term in R, U a set of pairwise non-conflicting redex
occurrences in s, and S∶ s ↠U t a development of U in s. Then also U//S is a set of
pairwise non-conflicting redex occurrences.

Usually, (almost) orthogonal systems are considered in the setting of complete develop-
ments. Recall, that (almost) orthogonal systems do not allow conflicting redex occurrences.
Moreover, for technical reasons, also disjoint redex occurrences play an important rôle:

Proposition 5.4.10 ((disjoint) residuals, [KKSdV95a])
Let R be an almost orthogonal ITRS, S∶ s ↠R t, and U a set of redex occurrences in s.
Then the following holds:

(i) U//S is a set of redex occurrences in t.

(ii) If the occurrences in U are pairwise disjoint, then so are the occurrences in U//S.

The following two propositions reveal more of the intuition of descendants.

Proposition 5.4.11 (pointwise definition of descendants)
Let R be an ITRS, S∶ s↠R t and U ⊆ P(s). Then it holds that U//S = ⋃u∈U u//S.

Proof. Straightforward induction on the length of S.

Proposition 5.4.12 (uniqueness of descendants)
Let R be a left-linear ITRS, S∶ s↠R t and U,V ⊆ P(s). If U ∩V = ∅, then U//S∩V //S = ∅.

Proof. Straightforward induction on the length of S.

Remark 5.4.13. Particularly, the two propositions above imply that in left-linear systems
each descendant u′ ∈ U//S of a set of occurrences is the descendant of a uniquely determined
occurrence u ∈ U , i.e. u′ ∈ u//S for exactly one u ∈ U . This occurrence u is also called the
ancestor of u′ by S.

5.4 Strongly Convergent MRS Reductions 101

However, in general, this does only hold for strongly convergent reductions as the fol-
lowing example illustrates:

Example 5.4.14 ([Sim04])
Consider the TRS R with the single rule f(x, y) → f(y, x) and the term f(a, a). Take the
set U = {0,1} of occurrences in f(a, a) and the weakly convergent reduction:

S∶ f(a, â) → f(â, a) → f(a, â) → . . . f(a, a)

The residuals of 0 and 1 are labelled with and ̂, respectively, in order to make the
occurring phenomenon clearly visible. One can see that U//S = U . On the other hand, we
have both 0//S = ∅ and 1//S = ∅. This violates Proposition 5.4.11. The problem is that,
individually, the two occurrences do not become stable during the reduction. However, if
they are put into the same set, and are thus made indistinguishable, they seem to be stable.
As a consequence, neither of the two occurrences 0 and 1 in the final term f(a, a) has an
ancestor.

The key property for the finitary version of complete developments is the so called Finite
Developments Theorem (cf. [Ter03]) which states that all developments are finite. In the
finitary setting, this means in particular that complete developments do always exists. In
the infinitary setting, complete developments may be of infinite length, of course, but they
are required to be strongly convergent. This is not always the case as the following example
shows:

Example 5.4.15
Let R be an orthogonal TRS with the single rule f(x) → x. Consider the term fω and the
set U = {ε,0,0 ⋅ 0, . . .} of all redex occurrences in fω. There is no complete development
of U in fω as, for all strongly convergent reduction sequences S starting in fω, we have
S∶ fω ↠ fω and, therefore, U//S = U .

This means that, unlike in the finitary setting, complete developments are not guaranteed
to exist for infinite terms. The characteristic issue that occurs in the above example is that
the set of redex occurrences U contains an infinite collapsing tower. Recall that a collapsing
tower is a sequence of nested collapsing redex occurrences where each redex occurrence
(except the topmost) is located at the collapsing position of the overlying collapsing redex.
We say that a set of occurrences U contains an infinite collapsing tower , if there is an
infinite collapsing tower consisting of elements in U only. If such infinite collapsing towers
are excluded, complete developments do exist:

Proposition 5.4.16 (complete development, [KKSdV95a])
In an orthogonal ITRS, every set of redex occurrences not containing an infinite collapsing
tower has a complete development.

This restriction of the existence of complete developments will turn out to have conse-
quences for the infinitary confluence result that can be established for strongly convergent
reductions.

Another important property of complete developments on the road to confluence is that
the result of a complete development is uniquely determined by the set of redex occurrences
under consideration.

Proposition 5.4.17 (descendants of complete developments, [KKSdV95a, Ter03])
Let R be an orthogonal ITRS, t a term in R and U a set of redex occurrences in t not
containing an infinite collapsing tower. Then the following holds:

(i) Each complete development of U in t ends in the same term.

(ii) For each set V ⊆ P(t) and two complete developments S and T of U in t, it holds that
V //S = V //T .

102 Chapter 5 Infinitary Term Rewriting

t

t1 t2

t3

U
V

V //U
U
//V

Figure 5.3: Diamond property of complete developments according to Corollary 5.4.19.

Notation 5.4.18. Let R be an orthogonal ITRS, t a term in R, U a set of occurrences
in t, and V a set of redex occurrences in t not containing an infinite collapsing tower.
We write U//V for the descendants U//S of U by some complete development S of V .
Proposition 5.4.17 shows that U//V is well-defined.

As an immediate corollary, we obtain that complete developments have the diamond
property as depicted in Figure 5.3:

Corollary 5.4.19 (diamond property of complete developments, [KKSdV95a])
Let R be an orthogonal ITRS and t↠U t1 and t↠V t2 be two complete developments of U
respectively V in t. If U and V do not contain an infinite collapsing tower, then t1 and t2
are joinable by complete developments t1 ↠V //U t3 and t2 ↠U//V t3.

Note that pairwise disjointness of redex occurrences is a sufficient condition for the
absence of infinite collapsing tower. Hence, the properties that require the absence of infi-
nite collapsing towers hold in particular for sets of disjoint redex occurrence. Disjointness,
however, has the advantage that it is preserved by strongly convergent reductions (cf. Propo-
sition 5.4.10). This is not true for the absence of infinite collapsing towers as the following
example shows.

Example 5.4.20
Let R be the TRS consisting of the rules

ρ1∶ f(x) → x, ρ2∶ g(x) → x.

Consider the term s = f(g(f(g(. . . and the set U = {ε,02,04, . . .} of all ρ1-redex oc-
currences in s. Note that U does not contain an infinite collapsing tower. Next, let
S∶ s ↠ t be a reduction that contracts all ρ2-redexes, i.e. S is a complete development
of the set U = {0,03,05, . . .} of all ρ2-redex occurrences in s. Hence, we have t = fω and
U//S = {ε,0,02, . . .}. That is, U//S contains the infinite collapsing tower ε,0,02,

5.4.3 Tiling Diagrams and Projections
Having a generalised notion of complete developments and residuals for transfinite reduc-
tions, one can also generalise the notion of projection to this setting. However, in contrast
to the finitary setting projections do not need to exists even for orthogonal systems. The
following definition formalises the concept of projections:

Definition 5.4.21 (tiling diagram, projection, [Ter03])
A tiling diagram for two strongly convergent reduction sequences V ∶ t0,0 ↠α tα,0 and
H ∶ t0,0 ↠β t0,β consists of a rectangular arrangement of strongly convergent reduction se-
quences as shown in Figure 5.4, subject to the following conditions:

5.4 Strongly Convergent MRS Reductions 103

t0,0 t0,1 t0,δ t0,δ+1 t0,β

t1,0 t1,1 t1,δ t1,δ+1 t1,β

tγ,0 tγ,1 tγ,δ tγ,δ+1 tγ,β

tγ+1,0 tγ+1,1 tγ+1,δ tγ+1,δ+1 tγ+1,β

tα,0 tα,1 tα,δ tα,δ+1 tα,β

V

H

V /H

H/V

Hγ,δ

Vγ,δ

Figure 5.4: Tiling diagram.

(1) Each component reduction Hγ,δ ∶ tγ,δ ↠ tγ,δ+1 is a complete development of the set
Hγ,δ of redex occurrences in tγ,δ. Analogously, each Vγ,δ ∶ tγ,δ ↠ tγ+1,δ is a complete
development of the set Vγ,δ of redex occurrences in tγ,δ.

(2) H0,δ is the singleton set containing the redex occurrence contracted in the δ-th step of
H, and Vγ,0 is the singleton set containing the redex occurrence contracted in the γ-th
step of V .

(3) Let Hγ,[δ,δ′) = ∏δ≤ι<δ′Hγ,ι and V[γ,γ′),δ = ∏γ≤ι<γ′ Vι,δ. Hγ,[δ,δ′) and V[γ,γ′),δ have to be
strongly convergent reduction sequences, and it has to hold that Hγ,δ = H0,δ//V[0,γ),δ
and Vγ,δ = Vγ,0//Hγ,[0,δ).

If H and V have a tiling diagram, then the projection of H by V , denoted H/V , and the
projection of V by H, denoted V /H, are defined to be the strongly convergent reduction
sequences along the bottom and right edges of the diagram, respectively.

The reason that a tiling diagram and, thus, the corresponding projections might not
exists is the limit construction. The concatenation of infinitely many reduction steps might
not yield a strongly convergent reduction. On the other hand, a single tile in the diagram
can always be constructed due to Corollary 5.4.19.

The general existence of projections would, of course, imply infinitary confluence. Un-
fortunately, this property is not enjoyed by all orthogonal systems:

Example 5.4.22 ([KKSdV95a])
Let R be the TRS given by the rules

f(x) → x, g(x) → x, c→ f(g(x)).

R admits the strongly convergent reduction sequences

V ∶ c→ f(g(c)) → f(c) → f(f(g(c))) → f(f(c)) → . . . fω

104 Chapter 5 Infinitary Term Rewriting

t0 t1 tβ tβ+1 tα

s0 s1 sβ sβ+1 sα

v0

U0 U1

vβ

Uβ Uβ+1 Uα

v0//U0 vβ//Uβ

Figure 5.5: The Infinitary Strip Lemma.

t

t1 t2

t3

V

∗

H

H/V
V
/H

Figure 5.6: Semi-infinitary confluence according to Corollary 5.4.24.

and
V ∶ c→ f(g(c)) → g(c) → g(f(g(c))) → g(g(c)) → . . . gω

However, both fω and gω are only reducible to themselves and are, thus, not joinable. In
particular, H and V do not have a tiling diagram.

Yet, for some restricted cases, a tiling diagram can be constructed. If at most one of
the two reductions is infinite, then a tiling diagram can be constructed. Even if at least
one reduction is a complete development of a set of disjoint redex occurrences, something
similar to a tiling diagram can be constructed:

Proposition 5.4.23 (Infinitary Strip Lemma, [KKSdV95a])
Let R be an orthogonal ITRS, S∶ t0 ↠α tα a strongly convergent reduction, and t0 ↠U s0
a complete development of a set U of disjoint redex occurrences. Then there is a complete
development tα↠U//S sα and a reduction s0 ↠ sα.

The constellation that Proposition 5.4.23 describes is illustrated in Figure 5.5, in which
Uι denotes the residuals U//T ∣[0,ι). The diagram resembles a tiling diagram. The only
difference is, that the reduction along the left edge is not a single step but a complete
development.

Yet, if U is a singleton set, this is, in fact, a tiling diagram for a single step reduction V .
Of course, by iterating this, we obtain a tiling diagram for each finite reduction V :

Corollary 5.4.24 (semi-infinitary confluence)
Let R be an orthogonal ITRS, H ∶ t↠ t2, and V ∶ t→⋆ t1. Then the projections V /H ∶ t2 ↠ t3
and H/V ∶ t1 ↠ t3 exist.

Proof. This can be shown by an induction on the length of V . If V is empty, then the
statement trivially holds. The induction step follows from Proposition 5.4.23.

5.4 Strongly Convergent MRS Reductions 105

Figure 5.6 summarises the statement of the corollary. It establishes an asymmetric
variant of the infinitary confluence property.

It should be pointed out that both Proposition 5.4.23 and Corollary 5.4.24 do not hold
in general if weakly convergent reductions are considered:

Example 5.4.25 ([Sim04])
Let R be the non-collapsing orthogonal TRS given by the rules:

ρ1∶ a→ b

ρ2∶ f(gk(c), x, y) → f(gk+1(c), y, y) for all even k ∈ N

ρ3∶ f(gk(c), x, y) → f(gk+1(c), a, y) for all odd k ∈ N

We obtain the reduction f(c, a, a) → f(c, a, b) by applying rule ρ1, and the reduction
f(c, a, a) ↪ω f(gω, a, a) by alternately applying rules ρ2 and ρ3 at the root. Yet, f(c, a, b)
and f(gω, a, a) are not joinable by weakly convergent reductions. A common reduct of
the two terms must be of the form f(gω, s, t). As argued in [Sim04], there is no weakly
convergent reduction from f(c, a, b) to such a term. Intuitively, the problem is that such
a reduction has to alternately apply rules ρ2 and ρ3 at the root which would cause the
second argument of the f symbol to “flicker” between a and b. Hence, it cannot be weakly
convergent.

5.4.4 Confluence
We have seen in Example 5.4.22 that not all orthogonal systems enjoy the infinitary conflu-
ence property. The characteristic trait of the counterexample is the availability of collapsing
rules. Example 5.4.22 employs two collapsing rules. It is, however, possible to conceive a
counterexample with only a single collapsing rule:

Example 5.4.26 ([KKSdV95a])
Let R be the orthogonal TRS consisting of the rules

f(x, y) → y, c→ f(a, f(b, c)).

In R the term c is reducible to both f(a, c) and f(b, c) by the reductions

c→ f(a, f(b, c)) → f(a, c) resp. c→ f(a, f(b, c)) → f(b, c)

The underlinings indicate the redex that is contracted in each step. Hence, R admits the
strongly convergent reduction sequences

c→2 f(a, c) →2 f(a, f(a, c)) →2 f(a, f(a, f(a, c))) → . . . f(a, f(a, f(a, . . .)))

and
c→2 f(b, c) →2 f(b, f(b, c)) →2 f(b, f(b, f(b, c))) → . . . f(b, f(b, f(b, . . .)))

Yet, there are no strongly convergent reductions which join the terms f(a, f(a, f(a, . . .)))
and f(b, f(b, f(b, . . .))).

Basically, the rule f(x, y) → y simulates the two collapsing rules f(x) → x and g(x) → x
from Example 5.4.22. Applied to a term of the form f(a, f(b, t)) it allows to either delete the
constant a or the constant b. Similarly, the two collapsing rules of Example 5.4.22 allowed to
either delete the function symbol f or the function symbol g in a term of the form f(g(t)).

As a matter of fact, Example 5.4.22 and Example 5.4.26 are characteristic for infinitarily
non-confluent behaviour of orthogonal systems. If none of these characteristics are present
in an orthogonal system, then infinitary confluence holds. The following notion of almost
non-collapsingness summarises this criterion.

106 Chapter 5 Infinitary Term Rewriting

t

t1 t2

t3 ≡hc t′3

Figure 5.7: Infinitary confluence modulo hypercollapsing terms.

Definition 5.4.27 (almost non-collapsing, [KKSdV95a])
An ITRS R is called almost non-collapsing if it contains at most one collapsing rule, which,
if present, is only allowed to contain a single variable.

One can easily see that the two counterexamples for infinitary confluence are not almost
non-collapsing. The TRS from Example 5.4.22 contains two collapsing rules. The system
from Example 5.4.26 has only a single collapsing rule, but this collapsing rule contains two
variables, viz. x and y.

Theorem 5.4.28 (CR∞ for almost non-collapsing systems, [KKSdV95a])
An orthogonal ITRS is infinitarily confluent iff it is almost non-collapsing.

This theorem cannot be generalised to weakly convergent reductions. Example 5.4.25
provides a counterexample.

Nevertheless, also for orthogonal systems, which are not almost non-collapsing, there
is a weaker variant of infinitary confluence that these systems satisfy. For this variant, a
certain set of terms is identified. As we will see Section 5.4.5, this set can be interpreted as
a (subset of a) set of meaningless terms.

Definition 5.4.29 (hyper-collapsing term, [KKSdV95a])
Let R be an ITRS and t, t′ ∈ T ∞(Σ,V).

(i) t is called hypercollapsing if every reduct of t can be reduced to a collapsing redex.
That is, for each reduction t→⋆ t′, there is a reduction t′ →⋆ s to a collapsing redex s.
The set of all hypercollapsing terms of R is denoted HCR or simply HC if R is clear
from the context.

(ii) t and t′ are called hc-equivalent, denoted t ≡hc t′ if t′ can be obtained from t by
replacing some pairwise disjoint hypercollapsing subterm occurrences in t with other
hypercollapsing terms.

(iii) R is called infinitarily confluent modulo hypercollapsing terms (CR∞
hc) if, for each two

reductions t ↠ t1 and t ↠ t2, there are reductions t1 ↠ t3 and t2 ↠ t′3 such that
t3 ≡hc t′3.

Intuitively speaking the hc-equivalence t ≡hc t′ means that t and t′ are equal provided
all hypercollapsing terms are identified. The structure of the property CR∞

hc is illustrated in
Figure 5.7. This weaker variant is indeed enjoyed by all orthogonal ITRSs:

Theorem 5.4.30 (CR∞
hc for orthogonal systems, [KKSdV95a])

Every orthogonal ITRS is infinitary confluent modulo hypercollapsing terms.

Also this theorem cannot be generalised to weakly convergent reductions. The coun-
terexample presented in Example 5.4.25 does apply to this setting as well. The TRS that

5.4 Strongly Convergent MRS Reductions 107

is given there is non-collapsing. Hence, there are no hypercollapsing terms, i.e. in this case
CR∞

hc is equivalent to CR∞.
Note that CR∞

hc also implies the property UN∞
→ . But, as a matter of fact, orthogonal

systems even satisfy the stronger property NF∞:

Theorem 5.4.31 (NF∞ for orthogonal systems, [KKSdV95a])
Every orthogonal ITRS has the infinitary normal form property NF∞.

Proof. In Theorem 7.15 from [KKSdV95a], this is proven for a different definition of NF∞.
However, as argued in Remark 3.3.4 this variant is equivalent to our definition of NF∞.

Recall that, according to Proposition 3.3.5, also in the infinitary setting, NF∞ implies
both UN∞ and UN∞

→ .
However, the above theorem does not hold for weakly convergent reductions. The TRS

from Example 5.4.25 serves as a counterexample: It admits the finite reduction f(c, a, a) →
f(c, a, b) and the weakly convergent reduction

f(c, a, a) ↪ω f(gω, a, a) →2 f(gω, b, b)

to the normal form f(gω, b, b). Yet, as argued in Example 5.4.25, there is no weakly conver-
gent reduction from f(c, a, b) to f(gω, b, b).

5.4.5 Meaningless Terms and Böhm Trees
In Section 5.4.4, we have seen that, unlike in the finitary setting, orthogonal systems
might fail to be infinitarily confluent. As presented in Theorem 5.4.30, orthogonal systems
can be regarded as infinitary confluent provided that hypercollapsing terms are identified.
This is reasonable as one can argue that hypercollapsing terms can be considered to be
meaningless and, thus, contain the same information. The theory of meaningless terms
[AKK+94, KvOdV99] in rewrite systems generalises this idea by studying axioms that de-
scribe a set of terms that may intuitively be seen as meaningless or undefined. This idea
stems from the λ-calculus in which several notions of undefinedness exist (cf. [Bar92]). Intu-
itively, one can think of meaningless or undefined terms as terms that cannot be distinguished
from one another and which cannot contribute any information to any computation.

Eventually, the notion of meaningless terms can be used to associate to each term a
unique “normal form” which is constructed by performing a (transfinite) reduction and
replacing undefined subterms by the special symbol � along the way. The correspond-
ing reduction systems are called Böhm reductions. Their normal forms, also called Böhm
trees or Böhm-like trees, provide a syntax-based denotational semantics for rewrite sys-
tems parametrised by the choice of the set of terms to be considered as meaningless. This
idea was first pursued in λ-calculus [Lév78, Bar84, Lév76, Lon83] using different notions
of meaninglessness. Initially, Böhm trees were defined using partial functions [Bar84] and
direct approximants [Lév78]. However, these construction can also be carried out using
Böhm reductions [Ber96, KKSdV97]. We do not intend to go into all the details of Böhm
trees. Instead we refer to the PhD thesis of Ketema [Ket06] which provides a comprehensive
overview of the topic.

This section presents the axiomatisation of meaningless terms introduced in [KvOdV99]
and the resulting theory of Böhm reductions and Böhm trees using the infinitary normal
form approach. This will become particularly useful when the PRS model of transfinite
term rewriting is studied in Section 5.5. It will turn out that term rewriting within the PRS
model coincides with a particular Böhm reduction – the least one.

The least set of meaningless terms consists of the root-active terms which generalises the
notion of hypercollapsing terms:

Definition 5.4.32 (root-active)
Let R be an ITRS and t ∈ T ∞(Σ,V). t is called root-active if every reduct of t can be

108 Chapter 5 Infinitary Term Rewriting

reduced to a redex. That is, for each reduction t →⋆ t′, there is a reduction t′ →⋆ s to a
redex s. The set of all root-active terms of R is denoted RAR or simply RA if R is clear
from the context.

In contrast to hypercollapsing terms, we only require root-active terms to have all their
reducts being reducible to a redex instead of a collapsing redex. Hence, HC ⊆ RA.

In order to define the axioms of meaningless terms, we need a means to identify certain
subterm occurrences of two terms:

Definition 5.4.33 (U-equivalence, [KvOdV99])
Let U ⊆ T ∞(Σ,V) and s, t ∈ T ∞(Σ,V). We say that s and t are U-equivalent, denoted
s ≡U t, if t can be obtained from s by replacing some pairwise disjoint subterms of s in U
with terms in U .

Intuitively speaking, the U-equivalence s ≡U t means that the terms s and t are equal
modulo the terms in U . This definition is a generalisation of hc-equivalence: It holds that
s ≡hc t iff s ≡HC t.

Before we present the axiomatisation of meaningless terms we need a particular notion
of overlapping:

Definition 5.4.34 (overlap)
Let t be a redex, i.e. an instance lσ of the left-hand side l of some rewrite rule. The redex
t is said to overlap its subterm at position π if π is a non-empty pattern position, i.e.
π ∈ PΣ(l) ∖ {ε}.

Note that this concept of overlapping differs from the usual concept of overlapping of
two rewrite rules. Here, only a single rule is concerned, whose redex overlaps an arbitrary
proper subterm instead of another redex.

The following definition lists the axioms that we require in order to formally call the
terms in a set of terms meaningless.

Definition 5.4.35 (set of meaningless terms, [KvOdV99])
Let R be an ITRS over Σ. A set U ⊆ T ∞(Σ,V) is said to be a set of meaningless terms of
R if it satisfies the following axioms

(i) U is closed under finite reductions in R. (descendants)

(ii) If an R-redex t overlaps a subterm in U , then t ∈ U . (overlap)

(iii) U contains all root-active terms, i.e. RAR ⊆ U . (root-activeness)

(iv) If s ≡U t, then s ∈ U iff t ∈ U . (indiscernibility)

The root-activeness axiom illustrates what was meant by saying that RA is the least set
of meaningless term. However, for this to make sense, it is, of course, necessary that RA is
itself a set of meaningless terms. The following proposition confirms this:

Proposition 5.4.36 (root-active terms are meaningless, [KvOdV99])
For every orthogonal ITRS, the set of root-active terms is a set of meaningless terms.

The heart of the theory of meaningless terms is that all terms in such a set U of meaning-
less terms are considered to be identical, viz. identically undefined. This is the raison d’être
of the notion of U-equivalence ≡U . Another way of enforcing the equivalence of all terms in
U is to enrich the ITRS under consideration by additional rules which allow a meaningless
term to be immediately contracted to �, a fresh constant symbol that we assume to be
available for this purpose. However, one has to be careful when formalising this idea:

Definition 5.4.37 (Böhm reduction, [KvOdV99])
Let R be an ITRS over Σ, and U ⊆ T ∞(Σ,V).

5.4 Strongly Convergent MRS Reductions 109

(i) A term t ∈ T ∞(Σ,V) is called a �,U-instance of a term s ∈ T ∞(Σ�,V) if t can be
obtained from s by replacing each occurrence of � in s with some term in U . (Different
occurrences of � may be replaced with different terms.)

(ii) U� is the set of terms in T ∞(Σ�,V) that have a �,U-instance in U .

(iii) The Böhm reduction of R w.r.t. U is the ITRS BR,U = (Σ�,R ∪B), where

B = {t→ � ∣ t ∈ U� ∖ {�}}

and we restrict the application of the rules in B to be allowed w.r.t. the identity
substitution only. We write →U,� for a reduction by a rule in B. That is, s →U,� t iff
s = C[l] and t = C[�] for l ∈ U� ∖{�} and some context C[]. If R and U are clear from
the context, we simply write B and →� instead of BR,U and →U,�, respectively.

By abuse of language, we will call a reduction sequence in a Böhm reduction a Böhm
reduction sequence or simply Böhm reduction.

Note that the additional rules in the Böhm reduction are only allowed to be applied
uninstantiated. The reason for this is the intuition of Böhm reductions to identify the terms
in U (rather than instances of terms in U). Additionally, this choice is motivated in the
axiomatic character of the theory: It is simply not necessary to also allow instantiation of
these rules.1 Practically, however, this is not a restriction since all sets U of meaningless
terms which are usually considered (cf. [KvOdV99]) are, in fact, closed under substitutions
and, hence, so are the corresponding sets U�.

It is necessary to use the set U� for the definition of Böhm reductions instead of U as one
has to take into account that a subterm that is in U might have been already contracted to
�. Hence, for each term t ∈ U , the set U� provides a variant of t in which some subterms
(that are in U themselves) have been replaced with �.

Note that, formally, the above definition of Böhm reductions does not require the set U
to be a set of meaningless terms. For some properties, none or only a subset of the axioms
of meaningless terms is necessary. This will become crucial in Section 5.5. Additionally, we
will also need some technical lemmas in order to work with Böhm reductions:

Lemma 5.4.38 (postponement of →�-steps, [KvOdV99])
Let R be a left-linear ITRS over Σ and U ⊆ T ∞(Σ,V). Then s ↠B t implies that there is
some term s′ ∈ T ∞(Σ,V) such that s↠R s′↠� t

2.

Lemma 5.4.39 (�,U-instances, [KvOdV99])
Let U ⊆ T ∞(Σ,V) be a set of terms satisfying the indiscernibility property and t ∈ T ∞(Σ�,V).
If some �,U-instance of t is in U , then every �,U-instance of t is.

Lemma 5.4.40 (compression of →�-steps)
U ⊆ T ∞(Σ,V) be a set of terms satisfying the indiscernibility property, t0 ∈ T ∞(Σ,V),
tα ∈ T ∞(Σ�,V), and S∶ t0 ↠α

� tα. Then there is a reduction sequence T ∶ t0 ↠≤ω
� tα that is a

complete development of a set of disjoint occurrences of terms u ∈ U in t0.

Proof. The argument is essentially the same as in Lemma 7.2.4 from [Ket06]. Let S =
(tι →πι tι+1)ι<α be the mentioned reduction sequence strongly converging to tα, and let π
be a position at which some reduction step in S takes place. That is, there is some β such
that πβ = π. We will prove by induction on β that t0∣π ∈ U .

Consider the term tβ ∣π. Since a �-rule is applied here, we have that tβ ∣π ∈ U�. Let
V = P�(tβ ∣π). Hence, for each v ∈ V , there is some γ < β such that πγ = π ⋅ v. Therefore, we
can apply the induction hypothesis and get that t0∣π⋅v ∈ U for all v ∈ V . It is clear that we can

1unless one considers higher-order reduction systems such as λ-calculus (cf. [KvOdV99])
2Strictly speaking, if s is not a total term, i.e. it contains �, then we have to consider the system that is

obtained from R by extending its signature to Σ�.

110 Chapter 5 Infinitary Term Rewriting

obtain t0∣π from tβ ∣π by replacing each �-occurrence at v ∈ V with the corresponding term
t0∣π⋅v. That is, t0∣π is a �,U-instance of tβ ∣π. Because tβ ∣π ∈ U�, there is some �,U-instance
of tβ ∣π in U . Thus, by Lemma 5.4.39, also t0∣π is in U . This closes the proof of the claim.

Now let V = P�(tα). Clearly, all positions in V are pairwise disjoint. Moreover, for each
v ∈ V , there is a step in S that takes place at v. Hence, by the claim shown above, V is a
set of occurrences in t0 of terms in U . A complete development of V in t0 leads to tα and
can be performed in at most ω.

The following two theorems summarise the most important properties for Böhm reduc-
tions for orthogonal systems:

Theorem 5.4.41 (infinitary normalisation of Böhm reductions, [KvOdV99])
Let R be an orthogonal ITRS and U a set of terms satisfying the root-activeness axiom.
Then the Böhm reduction BR,U is infinitarily normalising.

Theorem 5.4.42 (infinitary confluence of Böhm reductions, [KvOdV99])
Let R be an orthogonal ITRS and U a set of meaningless terms in R. Then the Böhm
reduction BR,U is infinitarily confluent.

That is, the Böhm reduction of an orthogonal ITRS w.r.t. a set of meaningless terms
provides a unique infinitary normal form for each term. This normal form is called the Böhm
tree of the term.

5.4.6 Reduction Strategies
This section is concerned with infinitarily normalising reduction strategies, i.e. strategies
which generate possibly transfinite reductions always leading to a normal form, provided
the starting term has a normal form. In particular, we are interested in reduction strategies
which find a normal form within at most ω steps, as only such strategies are of practical
impact. They can be considered as a realisation of Theorem 5.4.4 and Corollary 5.4.5 which
assert that it is possible to approximate the final term of a possibly transfinite reduction
arbitrarily well by a finite reduction resp. to reach a finite term by a finite reduction. In a
similar way, these strategies realise the Compression Lemma.

For our purposes, the following quite abstract definition of a reduction strategy will
suffice:

Definition 5.4.43 (reduction strategy)
Let R be an ITRS. A reduction strategy for R is a set S of strongly convergent reductions
in R. For a reduction strategy S, we also write S(t) to denote the set {T ∈ S ∣T ∶ t↠ t′ } ∪
{t→0 t} of reduction sequences in S starting in t plus the empty reduction sequence.

The above definition deviates from the notion of a reduction strategy usually found in
the literature. Typically, a reduction strategy consist of a mapping that assigns to each
term, which is not in normal form, a single reduction step or a non-empty finite reduction
sequence that starts in this term. Here, a reduction strategy S is simply a set that lists all
reduction sequences that it “generates”. For investigating strategies in detail, this definition
might not be appropriate. However, we are only interested in presenting some strategies
and their properties. On the other hand, the usual notion of a reduction strategy is, in fact,
not adequate for our purposes since we want to discuss reduction strategies with a fairness
constraint.

Definition 5.4.44 (infinitarily normalising, ω-normalising)
Let R be an ITRS, T be a strongly continuous reduction in R, and S a reduction strategy
for R.

(i) T is called infinitarily normalising if it strongly converges to a normal form.

5.4 Strongly Convergent MRS Reductions 111

(ii) T is called ω-normalising if it is of length at most ω and strongly converges to a normal
form.

(iii) S is called strongly convergent if, whenever arbitrarily long proper prefixes of an open
strongly continuous reduction sequence R are contained in S, then also R itself is in
S.

(iv) S is called infinitarily normalising resp. ω-normalising if S is strongly convergent and,
for each term t having a normal form, all maximal reduction sequences in S(t) are
infinitarily normalising resp. ω-normalising reduction sequences.

Including strong convergence in the notions of ω-normalisation and infinitary normalisa-
tion is necessary in order to guarantee that maximal reduction sequences always exist. Oth-
erwise, every reduction strategy that only permits finite reductions would be ω-normalising.
This is not desired. For example, consider the system with the rules a→ a and a→ b. a has
the normal form b. Without the requirement of strong convergence, the reduction strategy

S = {T ∣T ∶ a→⋆ a}

would be normalising. This is due to the fact that S(a) = {T ∣T ∶ a→⋆ a} has no maximal
element. However, as S has to be strongly convergent, it also has to contain the ω-reduction
sequence T ∶ a → a → . . . because S(a) contains arbitrarily long proper prefixes of T . But
note that in this particular case including T into a reduction strategy is not allowed as T is
not strongly convergent.

Next we present the needed reduction strategy [HL91a, HL91b]. The idea of needed re-
duction is that only those redexes are contracted which cannot be avoided during a reduction
to normal form (and, therefore, are needed).

Definition 5.4.45 (needed redex, needed reduction, [KKSdV95a])
Let R be an ITRS, and t a term in R. A redex occurrence u in t is called needed if, in
every reduction starting in t that strongly converges to a normal form, some residual of
u is contracted. A strongly convergent reduction sequence in R is called needed if all its
reduction steps contract a needed redex occurrence.

This merely defines a property on reduction sequences. However, any property on re-
duction sequences induces a reduction strategy:

Notation 5.4.46. Every property P on reduction sequences gives rise to a reduction strat-
egy SP , called P -reduction, which is the set of strongly convergent reduction sequences
satisfying P . For example, needed reduction is the reduction strategy that only contracts
needed redexes.

For infinitary normalisation, it is necessary that the reduction strategy only “halts” at
normal forms. For needed reductions, this means that needed redexes must always exists in
terms having a normal form, but which are not normal forms themselves.

Theorem 5.4.47 (existence of needed redexes, [KKSdV95a])
For orthogonal ITRSs, every term having a normal form but not being a normal form con-
tains a needed redex occurrence.

With this theorem the only thing that remains, in order to obtain infinitary normalisa-
tion, is that strongly continuous needed reduction sequences are always strongly convergent.
This was confirmed in [KKSdV95a] and thus yields the following theorem:

Theorem 5.4.48 (needed reduction is infinitarily normalising, [KKSdV95a])
For orthogonal ITRSs, needed reduction is infinitary normalising.

112 Chapter 5 Infinitary Term Rewriting

f

f

f f

f

f f

(a) Full binary tree.

f

f

f

a

a

a

(b) Degenerated binary tree.

Figure 5.8: Binary trees.

This is a generalisation of a corresponding result for finitary term rewriting [HL91a,
HL91b].

Unfortunately, needed reduction is not ω-normalising. The problem that might occur is
that needed redex occurrences are infinitely often ignored:

Example 5.4.49
Let R be the TRS consisting of the single rule a → f(a, a). In every term each occurrence
of the redex a is needed, i.e. every reduction sequence is needed. The term a has the unique
normal form depicted in Figure 5.8a. However, the needed ω-reduction sequence

f(a, a) → f(f(a, a), a) → f(f(f(a, a), a), a) → . . .

strongly converges to the non-normal form depicted in Figure 5.8b.

An issue similar to the one illustrated in Example 5.4.49 can also occur if a term contains
infinitely many needed redexes. In order to obtain an ω-normalising reduction strategy, a
notion of fairness has to be introduced:

Definition 5.4.50 ((needed-)fairness, [KKSdV95a])
Let R be an ITRS.

(i) Let R be a function that maps each term t to a set of redex occurrences in t. A
reduction sequence (ti →πi ti+1)i<α of length at most ω strongly converging to tα in R
is called R-fair if, for each i < α and u ∈ R(ti), there is some i ≤ j < α such that πj ≤ u.

(ii) A reduction sequence is called needed-fair if it is R-fair, where R is the function that
maps each term to the set of all its needed redex occurrences.

(iii) A reduction sequence is called fair if it is R-fair, where R is the function that maps
each term to the set of all its redex occurrences.

That is, in order to obtain (R-)fairness, there can only be finitely many steps between the
creation of a redex occurrence (according to R) and the contraction of that redex occurrence
or a redex occurrence above.

Note that each fair reduction sequence is also R-fair for any R, i.e. particularly, each fair
reduction is also needed-fair.

Theorem 5.4.51 ((needed-)fair reduction is ω-normalising, [KKSdV95a])
For orthogonal ITRSs, needed-fair and fair reduction are ω-normalising.

Also the parallel-outermost reduction strategy is well-known from finitary term rewriting.
It can be straightforwardly generalised to the infinitary setting:

5.4 Strongly Convergent MRS Reductions 113

f

f

f

a

a

a

f

f

f

b

b

b

f

f

f

c

c

c
ω ω

Figure 5.9: A parallel-outermost reduction.

Definition 5.4.52 (parallel-outermost reduction)
Let R be an ITRS. A strongly convergent reduction sequence S in R is called parallel-
outermost if there is a sequence (Sι)ι<α of complete developments Sι∶ sι ↠Uι tι, where Uι
is the set of all outermost redex occurrences in sι, such that S = ∏ι<α Sι.

Theorem 5.4.53 (parallel-outermost reduction is inf. normalising, [KKSdV95a])
For orthogonal ITRSs, parallel-outermost reduction is infinitarily normalising.

If we restrict ourselves to TRS, i.e. finite right-hand sides, and finite starting terms, then
parallel-outermost reduction is even ω-normalising.

Theorem 5.4.54 (parallel-outermost reduction is ω-normalising, [Mid97])
For almost orthogonal TRSs, parallel-outermost reduction is ω-normalising for finite terms.

It is rather obvious that parallel-outermost reductions are in general not ω-normalising
for infinite terms. The problem is that an infinite term could contain infinitely many outer-
most redex occurrences. Hence, a parallel step itself might take ω steps:

Example 5.4.55
Let R be the orthogonal TRS given by the rules:

a→ b, b→ c

R admits the parallel-outermost reduction depicted in Figure 5.9. The outermost redex oc-
currences of the terms are indicated by underlinings. Each of the two ω-reduction sequences
is a parallel-outermost step.

Another reduction strategy that is ω-normalising is the so-called depth-increasing reduc-
tion:

Definition 5.4.56 (depth-increasing reduction, [KKSdV95a])
Let R be an orthogonal ITRS. A strongly convergent reduction sequence S in R is called
depth-increasing if there is a sequence (Si)i<ω of complete developments Si∶ si↠Ui ti, where
Ui is the set of all redex occurrences in si at depth ≤ i, such that S = ∏i<ω Si.

Theorem 5.4.57 (depth-increasing reduction is inf. normalising, [KKSdV95a])
For orthogonal ITRSs, depth-increasing reduction is ω-normalising.

As mentioned in [Mid97], the reduction strategy Sω defined in [AM96] is ω-normalising
as well:

Theorem 5.4.58 (Sω is ω-normalising, [Mid97])
For almost orthogonal TRSs, Sω is ω-normalising for finite terms.

114 Chapter 5 Infinitary Term Rewriting

5.4.7 Termination
This section contains some brief remarks about infinitary termination properties. We have
seen that for transfinite reductions, similarly to the finitary case, infinitary termination im-
plies infinitary normalisation. Astonishingly, when considering orthogonal ITRSs, infinitary
normalisation also implies infinitary termination – at least globally:

Theorem 5.4.59 (equivalence of WN∞ and SN∞, [KdV05])
Each orthogonal ITRS is SN∞ iff it is WN∞.

This, however, does not hold for individual terms as the following example reveals:

Example 5.4.60 ([KdV05])
Let R be the orthogonal TRS

ρ1∶ c→ c, ρ2∶ f(x) → f(f(x))

The term f(c) is WN∞ as it has the normal form fω reachable by the strongly convergent
ω-reduction sequence

f(c) →ρ2 f
2(c) →ρ2 f

3(c) →ρ2 . . . fω

Yet, f(c) is not SN∞ as it starts a strongly divergent ω-reduction sequence

f(c) →ρ1 f(c) →ρ1 f(c) →ρ1 . . .

Also other variants of termination properties such as infinitary weak resp. strong head
normalisation (cf. [KdV05]) are equivalent to SN∞ at the global level.

The requirement of orthogonality is essential for Theorem 5.4.59:

Example 5.4.61
Let R be the TRS:

a→ a, a→ b

R is WN∞ as both a and b have the normal form b. Yet, R is not SN∞ because of the
strongly divergent reduction

a→ a→ a→ . . .

5.5 Strongly Convergent PRS Reductions

In this section we want to study the properties of strongly convergent reductions in ITRSs
w.r.t. its PRS semantics that was introduced in this thesis in Section 3.2. According to
Corollary 5.2.3, the PRS model is a conservative extension of the MRS model. Therefore,
some results known from the MRS world can be carried over to the PRS world. This
includes, for example, results involving the infinitary normalisation property WN∞.

We restrict our study of strongly convergent PRS reductions chiefly to confluence prop-
erties. For this purpose, we develop a theory of descendants and complete developments
similar to that of MRS reductions. This is done in Section 5.5.1 and Section 5.5.2, respec-
tively. Subsequently, in Section 5.5.3, the equivalence of transfinite Böhm reductions in the
MRS model and transfinite reductions in the PRS model is established. Afterwards, this
equivalence result is used in order to show confluence, normalisation and compression prop-
erties. As in the previous section, the analysis of PRS reductions in this section is mostly
restricted to orthogonal systems.

An analysis of strongly convergent reductions in a partial order model comparable to
ours was done by Blom [Blo04] for the λ-calculus. In his paper Blom was able to show
the equivalence of partial order reductions and Böhm reductions in the metric model. Due
to the characteristics of infinitary λ-calculi, for which usually several different metrics are
considered, the investigated partial order model is different from ours: It is rather involved,

5.5 Strongly Convergent PRS Reductions 115

specifically devised for the needs of the λ-calculus, and does not allow a notion of weak
convergence.

Also Corradini [Cor93] has considered a partial order model of transfinite rewriting.
However, it is only used in order to formalise parallel reductions of an infinite set of redexes
in left-linear term rewriting systems. To achieve this, he employs a non-standard semantics
of term rewriting allowing the partial matching of rules. With the theory of complete
developments that we will develop in this chapter, we are able to formalise infinite parallel
reductions in a more straightforward way. Nevertheless, the connection to cyclic term graph
rewriting that Corradini has established is intriguing and suggests that future research on
PRS reductions in this direction is worthwhile.

Before we begin with the investigation of the topics promised above, we want to establish
some fundamental properties of infinitary term rewriting in the PRS model. These will not
only serve as useful lemmas for later proofs, but will also give further insight into the
behaviour of transfinite reductions in this model.

The foremost difference between the MRS and the PRS model is that the latter can
spawn � symbols. The following lemmas provide several characterisations for this behaviour
and its absence, respectively.

Lemma 5.5.1 (non-� symbols in open reductions)
Let R be an ITRS and S∶ s ↠λ

R t an open reduction sequence with S = (tι →πι,cι tι+1)ι<λ.
Then the following statements are equivalent for all positions π:

(a) π ∈ P∖�(t),

(b) there is some α < λ such that cι(π) = t(π) ≠ � for all α ≤ ι < λ, and

(c) there is some α < λ such that tα(π) = t(π) ≠ � and πι /≤ π for all α ≤ ι < λ.

(d) there is some α < λ such that π ∈ P∖�(tα) and πι /≤ π for all α ≤ ι < λ.

Proof. At first consider the implication from (a) to (b). To this end, let π ∈ P∖�(t), i.e. we
have that t(π) ≠ �. Define sγ = ⊓ �

γ≤ι<λ cι for each γ < λ. Note that then t = ⊔ �
γ<λ sγ .

Applying Corollary 4.4.16 yields that there is some α < λ such that sα(π) = t(π). Hence,
the fact that sα ≤� sι for all α ≤ ι < λ implies, by Corollary 4.4.14, that sι(π) = t(π) for all
α ≤ ι < λ. Since sι ≤� cι for all ι < λ, we can again employ Corollary 4.4.14 to obtain that
cι(π) = t(π) for all α ≤ ι < λ.

Next consider the implication from (b) to (c). Let α < λ be such that cι(π) = t(π) ≠ �
for all α ≤ ι < λ. Recall that cι = tι[�]πι for all ι < λ. Hence, the fact that π ∈ P∖�(cι) for all
α ≤ ι < λ implies that tα(π) = cα(π) and that πι /≤ π for all α ≤ ι < λ. Since cα(π) = t(π) ≠ �,
we also have tα(π) = t(π) ≠ �.

The implication from (c) to (d) is trivial.
Finally, consider the implication from (d) to (a). For this purpose, let α < λ be such

that (1) π ∈ P∖�(tα) and (2) πι /≤ π for all α ≤ ι < λ. Consider the set P consisting of all
positions in tα that are prefixes of π. P is obviously closed under prefixes and, because
of (2), all terms in the set T = {cι ∣α ≤ ι < λ} coincide in all positions in P . According to
Lemma 4.4.23, also sα = ⊓ � T coincides with all terms in T in all positions in P . Since π ∈ P
and cα ∈ T , we thereby obtain that cα(π) = sα(π). As we also have tα(π) = cα(π), due to
(2), and π ∈ P∖�(tα) we can infer that π ∈ P∖�(sα). Applying Corollary 4.4.14 eventually
yields that π ∈ P∖�(t) because sα ≤� t.

In a nutshell, the above lemma states that the symbol at a certain position π of the
final term of an open reduction is not � iff there is an upper bound α on the indexes of
the reduction steps that take place at π or above. And, additionally, the symbol at that
position of the final term coincides with the symbol at the same position in all terms and
contexts after the α-th step.

Next we consider the phenomenon that causes � symbols to appear. The concept of
so-called volatile positions will turn out to be crucial to this effect:

116 Chapter 5 Infinitary Term Rewriting

f

0 g

0

f

s

0

g

0

f

s

0

g

s

0

f

s

s

0

g

s

0

f

s

s

0

g

s

s

0

. . .

Figure 5.10: Reduction sequence with volatile positions.

Definition 5.5.2 (volatile position)
Let R be an ITRS, S = (tι →πι tι+1)ι<λ a open strongly continuous reduction sequence in
R, and π a position. π is said to be volatile in S if, for each ordinal β < λ, there is some
β ≤ γ < λ such that πγ = π. If π is volatile in S and no proper prefix of π is volatile in S,
then π is called outermost-volatile .

The notion of volatile positions in some sense negates the characterisation of the creation
non-� symbols: A position π is volatile if the indexes of reduction steps performed at π are
not bounded by some ordinal α < λ.

Example 5.5.3
Consider the TRS R consisting of the rules

ρ1∶ f(x, y) → f(s(x), y), ρ2∶ g(x) → g(s(x))

R admits the ω-reduction sequence

S∶ f(0, g(0)) →ρ1 f(s(0), g(0)) →ρ2 f(s(0), g(s(0)))
→ρ1 f(s2(0), g(s(0))) →ρ2 f(s2(0), g(s2(0))) →ρ1 . . .

which weakly converges to f(sω, g(sω)) and strongly converges to �. The reductions se-
quence S is also illustrated in Figure 5.10. The positions at which the reduction steps are
performed are indicated by circles and reduction arrows. One can see from the picture that
both π = ε and π′ = 1 are volatile positions in S. Again and again reductions take place at
π and π′. Since these are the only volatile positions in S and it holds that π ≤ π′, we have
that π is outermost-volatile.

The following lemma shows that � symbols are produced in open reduction sequence at
outermost-volatile positions and that this is the only way in which � symbols can appear.

Lemma 5.5.4 (� symbols in open reductions)
Let R be an ITRS and S = (tι →πι tι+1)ι<α an open reduction sequence in R strongly
converging to tα. Then, for every position π, we have

(i) If π is volatile in S, then π ∉ P∖�(tα).

(ii) tα(π) = � iff

(a) π is outermost-volatile in S, or
(b) there is some β < α such that tβ(π) = � and πι /≤ π for all β ≤ ι < α.

5.5 Strongly Convergent PRS Reductions 117

(iii) Let tι be total for all ι < α. Then tα(π) = � iff π is outermost-volatile in S.

Proof. (i) follows from Lemma 5.5.1, in particular the equivalence of (a) and (c).
(ii) At first consider the “only if” direction. To this end, suppose that tα(π) = �. In

order to show that then (a) or (b) holds, we will prove that (b) must hold true whenever
(a) does not hold. For this purpose, we assume that π is not outermost-volatile in S. Note
that no proper prefix π′ of π can be volatile in S as this would imply, according to clause
(i), that π′ ∉ P∖�(tα) and, therefore, π ∉ P(tα). Hence, π is also not volatile in S. In sum,
no prefix of π is volatile in S. Consequently, there is an upper bound β < α on the indices of
reduction steps taking place at π or above. But then tβ(π) = � since otherwise Lemma 5.5.1
would imply that tα(π) ≠ �. This shows that (b) holds.

For the converse direction, we will show that both (a) and (b) imply that tα(π) = �.
(a) Let π be outermost-volatile in S. By clause (i), this implies π ∉ P∖�(tα). Hence, it

remains to be shown that π ∈ P(tα). If π = ε, then this is trivial. Otherwise, π is of the form
π′ ⋅ i. Since all proper prefixes of π are not volatile, there is some β < α such that πβ = π and
πι /≤ π′ for all β ≤ ι < α. This implies that π ∈ P(tβ). Hence, tβ(π′) = f is a symbol having
an arity of at least i + 1. Consequently, according to Lemma 5.5.1, also tα(π′) = f . Since
f ’s arity is at least i + 1, also π = π′ ⋅ i ∈ P(tα).

(b) Let β < α such that tβ(π) = � and πι /≤ π for all β ≤ ι < α. According to Proposi-
tion 2.1.32, we have that tα = ⊔ �

β≤γ<α⊓ �
γ≤ι<α cι. Define sγ = ⊓ �

γ≤ι<α cι for each γ < α.
Since from β onwards no reduction takes place at π or above, it holds that all cι, for
β ≤ ι < α, coincide in all prefixes of π. By Lemma 4.4.23, this also holds for all sι and cι
with β ≤ ι < α. Since cβ(π) = tβ(π) = �, this means that sι(π) = � for all β ≤ ι < α. Recall
that tα = ⊔ �

β≤γ<α sγ . Hence, according to Corollary 4.4.16, we can conclude that tα(π) = �.
(iii) is a special case of (ii): If each tι, ι < α, is total, then (b) cannot be true.

We can apply this lemma to Example 5.5.3: As we have seen, the position π = ε is
outermost-volatile in the reduction sequence S mentioned in the example. Hence, S strongly
converges to a term that has, according to Lemma 5.5.4, the symbol � at position π. In
other words: S strongly converges to �.

From the lemma above, one can see that the absence of volatile positions in strongly
convergent reductions is equivalent to the totality of strongly convergent reductions.

Lemma 5.5.5 (total reductions)
Let R be an ITRS, s a total term in R, and S∶ s↠ t a strongly convergent reduction sequence
in R. S∶ s↠ t is total iff no prefix of S has a volatile position.

Proof. The “only if” direction follows straightforwardly from Lemma 5.5.4(iii).
We prove the “if” direction by induction on the length of S. If ∣S∣ = 0, then the totality

of S follows by the assumption of s being total. If ∣S∣ is a successor ordinal, then the totality
of S follows from the induction hypothesis since single step reductions preserve totality. If
∣S∣ is a limit ordinal, then the totality of S follows from the induction hypothesis using
Lemma 5.5.4(iii).

5.5.1 Descendants
In this section we introduce the notion of descendants to the setting of strongly convergent
PRS reductions and analyse its properties. Descendants were already covered in the setting
of strongly convergent MRS reductions in Section 5.4.2. The definition of this concept in
the present setting is very similar. For technical reasons, however, it is restricted to non-�-
occurrences:

Definition 5.5.6 (descendants, residuals)
Let R be a ITRS, S∶ t0 ↠α

R tα, and U ⊆ P∖�(t0). The descendants of U by S, denoted U//S,
is the set of occurrences in tα inductively defined as follows:

118 Chapter 5 Infinitary Term Rewriting

(a) If α = 0, then U//S = U .

(b) If α = 1, let S∶ t0 →π,ρ t1 with ρ∶ l → r. Take any u ∈ U and define the set Ru as follows:
If π /≤ u, then Ru = {u}. If u is in the pattern of the redex of ρ, then Ru = ∅. Otherwise,
i.e. if u = π ⋅w ⋅ x, with l∣w ∈ V, then Ru = {π ⋅w′ ⋅ x ∣ r∣w′ = l∣w }. Define U//S = ⋃u∈U Ru.

(c) If α = α′ + 1, then U//S = (U//S∣[0,α′))//S∣[α′,α).

(d) If α is a limit ordinal, then U//S = P∖�(tα) ∩ lim infι→αU//S∣[0,ι)
That is, u ∈ U//S iff u ∈ P∖�(tα) and ∃β < α∀β ≤ ι < α∶ u ∈ U//S∣[0,ι)

If, in particular, U is a set of redex occurrences, then U//S is also called the set of residuals
of U by S. Moreover, by abuse of notation, we write u//S instead of {u} //S.

Note that the above definition can also, just as the corresponding definition for MRS
reductions, be applied to weakly convergent reductions. This, however, would not yield a
desirable formalisation of the concept of descendants as we will see later.

The definition of descendants by reductions in the PRS model is almost verbatimly
the same as the one for the MRS model. The only difference is the explicit restriction of
descendants to non-�-occurrences for the limit ordinal case. As this restriction is satisfied for
MRS reductions anyway, the above definition is equivalent to the MRS version if restricted
to MRS reductions.

Remark 5.5.7. One can easily see that the descendants of a set of non-�-occurrences
is again a set of non-�-occurrences. The restriction to non-�-occurrences has to be made
explicit for the case of open reductions. In fact, without this explicit restriction the definition
would yield descendants which might not even be occurrences in the final term tα of the
reduction. For example, consider the system with the single rule f(x) → x and the term fω

and let S be the strongly convergent reduction sequence

S∶ fω → fω → . . . �

that contracts the redex at the root of fω in each step. Consider U = {ε,0,02,03, . . .}, the
set of all occurrences in tω. Without the abovementioned restriction, the descendants of U
by S would be U itself as the descendants of U by each proper prefix of S is also U . However,
none of the occurrences 0,02,03, . . . ∈ U is even an occurrence in the final term �. The ε ∈ U
is an occurrence in �, but only a �-occurrence. With the restriction to non-�-occurrences
we indeed get the expected result U//S = ∅.

On the other hand, the exclusion of �-occurrences does not affect the definition of resid-
uals. By definition, the root symbol of a redex cannot be �. Additionally, the concept of
descendants defined on PRS reductions is compatible with the corresponding concept on
MRS reductions, i.e. whenever a reduction sequence is strongly convergent in both the MRS
and the PRS model both notions of descendants coincide.

The following proposition confirms a property of descendants that one expects intuitively:
The descendants of descendants are again descendants. That is, the concept of descendants
is composable.

Proposition 5.5.8 (descendants of sequential reductions)
Let R be a ITRS, S∶ t0 ↠α

R t1, T ∶ t1 ↠
β
R t2, and U ⊆ P∖�(t0). Then U//S ⋅ T = (U//S)//T .

Proof. We conduct the proof by induction on β. If β = 0, then the statement is trivially
true. Suppose that β is a successor ordinal β′+1. Let T1 and T2 denote T ∣[0,β′) and T ∣[β′,β),
respectively. Then we have the following equations:

U//S ⋅ T = U//S ⋅ T1 ⋅ T2 = (U//S ⋅ T1)//T2
IH= ((U//S)//T1)//T2 = (U//S)//T1 ⋅ T2 = (U//S)//T

5.5 Strongly Convergent PRS Reductions 119

Suppose β is a limit ordinal. Note that, by Lemma 2.1.19, also α+β, the length of S ⋅T ,
is a limit ordinal. Therefore, we can reason as follows:

u ∈ U//S ⋅ T iff u ∈ P∖�(t2) and ∃γ < α + β∀γ ≤ ι < α + β u ∈ U//(S ⋅ T)∣[0,ι)
iff u ∈ P∖�(t2) and ∃γ < β∀γ ≤ ι < β u ∈ U//S ⋅ (T ∣[0,ι))
iff u ∈ P∖�(t2) and ∃γ < β∀γ ≤ ι < β u ∈ (U//S)//T ∣[0,ι) (ind. hyp.)
iff u ∈ (U//S)//T

Also the next lemma verifies an intuitive property of descendants.

Lemma 5.5.9 (monotonicity of descendants)
Let R be an ITRS, S∶ s↠R t and U,V ⊆ P∖�(s). If U ⊆ V , then U//S ⊆ V //S.

Proof. Straightforward induction on the length of S.

The definition of descendants of open reduction sequences is quite subtle which makes
its use in proofs fairly cumbersome. The lemma below establishes an alternative character-
isation which will turn out to be useful in later proofs.

Lemma 5.5.10 (descendants of open reductions)
Let R be an ITRS, S∶ s↠λ

R t and U ⊆ P∖�(s), with λ a limit ordinal and S = (tι →πι,cι tι+1)ι<λ.
Then it holds that

π ∈ U//S iff there is some β < λ with π ∈ U//S∣[0,β) and ∀β ≤ ι < λ πι /≤ π.

Proof. We first prove the “only if” direction. To this end, assume that π ∈ U//S. Hence, it
holds that

π ∈ P∖�(t) and there is some γ1 < λ such that π ∈ U//S∣[0,ι) for all γ1 ≤ ι < λ (1)

Particularly, we have that t(π) ≠ �. Applying Lemma 5.5.1 then yields that

there is some γ2 < λ such that πι /≤ π for all γ2 ≤ ι < λ (2)

Now take β = max {γ1, γ2}. Then it holds that π ∈ U//S∣[0,β) and that πι /≤ π for all β ≤ ι < λ
due to (1) and (2), respectively.

Next consider the converse direction of the statement: Let β < λ be such that π ∈
U//S∣[0,β) and πι /≤ π for all β ≤ ι < λ. We will show that π ∈ U//S by proving the stronger
statement that π ∈ U//S∣[0,γ) for all β ≤ γ ≤ λ. We do this by induction on γ.

For γ = β, this is trivial. Let γ = γ′ + 1 > β. Note that, by definition, U//S∣[0,γ) =
(U//S∣[0,γ′)) //S∣[γ′,γ). Hence, since for the γ′-th step we have, by assumption, πγ′ /≤ π and
for the preceding reduction we have, by induction hypothesis, that π ∈ U//S∣[0,γ′), we can
conclude that π ∈ U//S∣[0,γ).

Let γ > β be a limit ordinal. By induction hypothesis, we have that π ∈ U//S∣[0,ι) for
each β ≤ ι < γ. Particularly, this implies that π ∈ P∖�(tβ). Together with the assumption
that πι /≤ π for all β ≤ ι < γ, this yields that π ∈ P∖�(tγ) according to Lemma 5.5.1. Hence,
π ∈ U//S∣[0,γ).

Similarly to Proposition 5.5.8, the proposition below confirms a property that we intu-
itively expect from a formalisation of the concept of descendants. It is also a much stronger
variant of Lemma 5.5.9 and is the correspondent to Proposition 5.4.11.

Proposition 5.5.11 (pointwise definition of descendants)
Let R be an ITRS, S∶ s↠R t and U,V ⊆ P∖�(s). Then it holds that U//S = ⋃u∈U u//S.

120 Chapter 5 Infinitary Term Rewriting

Proof. Let S = (tι →πι,cι tι+1)ι<α. For α = 0 and α = 1, the statement is trivially true. If
α = α′ + 1 > 1, then abbreviate S∣[0,α′) and S∣[α′,α) by S1 and S2, respectively, and reason as
follows:

U//S = (U//S1)//S2
IH= (⋃

u∈U

Vu­
u//S1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V

//S2
IH= ⋃

u∈V
u//S2

= ⋃
u∈U

⋃
v∈Vu

v//S2
IH= ⋃

u∈U
Vu//S2 = ⋃

u∈U
(u//S1)//S2 = ⋃

u∈U
u//S

Let α be a limit ordinal. The “⊇” direction of the equation follows from Lemma 5.5.9.
For the converse direction, assume that π ∈ U//S. By Lemma 5.5.10, there is some β < α
such that πι /≤ π for all β ≤ ι < α and π ∈ U//S∣[0,β). Applying the induction hypothesis yields
that π ∈ ⋃u∈U u//S∣[0,β), i.e. there is some u∗ ∈ U such that π ∈ u∗//S∣[0,β). By employing
Lemma 5.5.10 again, we can conclude that π ∈ u∗//S and, therefore, that π ∈ ⋃u∈U u//S.

As we have mentioned, one can reasonably argue that the above proposition confirms a
behaviour that one intuitively expects from descendants. In this light, the present formal-
isation of descendants is not desirable for weakly convergent reductions as it would violate
Proposition 5.5.11. The reason is essentially the same as for MRS reductions (cf. Exam-
ple 5.4.14). Another counterexample is the following one:

Example 5.5.12
Consider the system with the single rule f(x) → x and the weakly convergent reduction
sequence

S∶ fω → fω → . . . fω

which in each step contracts the redex at the root of fω. Consider the set U = {ε,0,02,03, . . .}
of all occurrences in fω. Then the set of descendants of U by S is again U . Proposition 5.5.11
fails as, for each π ∈ U , the set of residuals of the singleton set {π} by S is the empty set.

The following proposition corresponds to Proposition 5.4.12 from the MRS world.

Proposition 5.5.13 (uniqueness of descendants)
Let R be a left-linear ITRS, S∶ s↠R t and U,V ⊆ P∖�(s). If U∩V = ∅, then U//S∩V //S = ∅.

Proof. We will prove the contraposition of the statement. To this end, suppose that there
is some occurrence w ∈ U//S ∩V //S. By Proposition 5.5.11, there are occurrences u ∈ U and
v ∈ V such that w ∈ u//S ∩ v//S. We will show by induction on the length of S that then
u = v and, therefore, U ∩V ≠ ∅. If S is empty, then this is trivial. If S is of successor ordinal
length, then this follows straightforwardly from the induction hypothesis. If S is open, then
u = v follows from the induction hypothesis using Lemma 5.5.10.

As in the MRS model, Proposition 5.5.11 and Proposition 5.5.13 give rise to the notion
of ancestors (cf. Remark 5.4.13).

The next proposition corresponds to Proposition 5.4.10.

Proposition 5.5.14 ((disjoint) residuals)
Let R be an almost orthogonal ITRS, S∶ s↠R t and U a set of redex occurrences in s. Then
the following holds:

(i) U//S is a set of redex occurrences in t.

(ii) If the occurrences in U are pairwise disjoint, then so are the occurrences in U//S.

5.5 Strongly Convergent PRS Reductions 121

Proof. Let S = (tι →πι,cι tι+1)ι<α.
We will prove (i) by an induction on α. For α being 0, the statement is trivial, and, for α

a successor ordinal, the statement follows straightforwardly from the induction hypothesis.
So assume that α is a limit ordinal and that π ∈ U//S. From Lemma 5.5.10 we obtain

that

there is some β < α with π ∈ U//S∣[0,β) and πι /≤ π for all β ≤ ι < α. (1)

By applying the induction hypothesis, we get that π is a redex occurrence in tβ . Hence,
there is some rule l → r ∈ R such that tβ ∣π is an instance of l.

We conclude this proof by proving the following stronger claim that implies (i):

for all β ≤ γ ≤ α tγ ∣π is an instance of l, and (2)
cι∣π is an instance of l for all β ≤ ι < γ (3)

Then (i) is simply (2) for the case γ = α.
We proceed by an induction on γ. For γ = β, part (2) of the claim has already been

shown and (3) is vacuously true. Let γ = γ′ + 1 > β. According to the induction hypothesis,
(2) and (3) hold for γ′. Hence, it remains to be shown that both tγ ∣π and cγ′ ∣π are instances
of l. At first consider cγ′ ∣π. Recall that cγ′ = tγ′[�]πγ′ . Assume that π and π′γ are disjoint.
Then cγ′ ∣π = tγ′ ∣π. Since, by induction hypothesis, tγ′ ∣π is an instance of l, so is cγ′ ∣π. Next
assume that π and πγ′ are not disjoint. Because of (1), we then have that π < πγ′ , i.e. there
is some non-empty π′ with πγ′ = π ⋅π′. Since R is an overlay system, π′ cannot be a position
in the pattern of the redex tγ′ ∣π w.r.t. l. Therefore, also cγ′ ∣π is an instance of l. So in either
case cγ′ ∣π is an instance of l. Since cγ′ ≤� tγ , we can apply Corollary 4.4.14 to obtain that
also tγ ∣π is an instance of l.

Let γ > β be a limit ordinal. Using Lemma 2.1.15, part (3) of the claim follows imme-
diately from the induction hypothesis. Hence, cι∣π is an instance of l for all β ≤ ι < γ. This
and (1) implies that all terms in the set T = {cι ∣β ≤ ι < γ } coincide in all occurrences in the
set

P = {π′ ∣π′ ≤ π } ∪ {π ⋅ π′ ∣π ∈ PΣ(l)}

P is obviously closed under prefixes. Therefore, we can apply Lemma 4.4.23 in order to
obtain that ⊓ � T coincides with all terms in T in all occurrences in P . Since ⊓ � T ≤� tγ ,
this property carries over to tγ . Consequently, also tγ ∣π is an instance of l.

We also prove (ii) by induction on α. For α being 0, the statement is trivial, and,
for α being a successor ordinal, the statement follows straightforwardly from the induction
hypothesis. Let α be limit ordinal and suppose that (ii) does not hold. That is, there are two
positions u, v ∈ U//S which are not disjoint. By definition, there are ordinals β1, β2 < α such
that u ∈ U//S∣[0,ι) for all β1 ≤ ι < α, and v ∈ U//S∣[0,ι) for all β2 ≤ ι < α. Let β = max {β1, β2}.
Then we have that u, v ∈ U//S∣[0,β). This, however, contradicts the induction hypothesis
which, in particular, states that U//S∣[0,β) is a set of pairwise disjoint redex occurrences.

The first part of the proposition just proven is essential for the concept of complete
developments that will be covered in Section 5.5.2. Similarly to the case of MRS reductions,
sets of disjoint redex occurrences are of great importance mainly because they are preserved
by strongly convergent reductions.

Next we want to establish an alternative characterisation of descendants based on la-
bellings. This is a well-known technique that keeps track of descendants by labelling, in the
initial term, the symbols at the positions that are to be tracked. In order to formalise this
idea, we need to extend a given ITRS such that it can also deal with terms that contain
labelled symbols:

Definition 5.5.15 (labelled ITRSs/terms)
Let R = (Σ,R) be a ITRS over Σ.

122 Chapter 5 Infinitary Term Rewriting

(i) The labelled signature Σl is defined as

Σl = Σ ∪ {f l ∣ f ∈ Σ}

The arity of the function symbol f l is the same as that of f . The symbols f l are called
labelled; the symbols f ∈ Σ are called unlabelled. Terms over Σl are called labelled
terms.

(ii) The labelled terms can be projected back to the original unlabelled ones by removing
the labels. We, therefore, define the projection function ∥⋅∥ ∶ T ∞(Σl�,V) → T ∞(Σ�,V)
to this effect by setting

∥x∥ = x for all x ∈ V, and
∥�∥ = �

∥f l(t1, . . . , tk)∥ = ∥f(t1, . . . , tk)∥ = f(∥t1∥ , . . . , ∥tk∥) for all f ∈ Σ(k)

(iii) The labelled ITRS Rl is defined as (Σl,Rl), where

Rl = {l → r ∣ ∥l∥ → r ∈ R}

(iv) For each rule l → r ∈ Rl, we define its unlabelled original ∥l → r∥ ∈ R by setting
∥l → r∥ = ∥l∥ → r.

(v) Let t ∈ T ∞(Σ�,V) and U ⊆ P∖�(t). The term t(U) ∈ T ∞(Σl�,V) is defined by

t(U)(π) =
⎧⎪⎪⎨⎪⎪⎩

t(π) if π ∉ U
t(π)l if π ∈ U

That is, ∥t(U)∥ = t and the labelled symbols in t(U) are exactly those at positions in U .

The key property which is needed in order to make the labelling approach work is that
any reduction in a left-linear ITRS that starts in some term t can be lifted for any labelling
t′ of t to a unique equivalent reduction in the labelled ITRS that starts in t′:

Proposition 5.5.16 (lifting of reduction sequences to labelled ITRS)
Let R = (Σ,R) be a left-linear ITRS, S = (sι →ρι,πι sι+1)ι<α a reduction sequence in R
strongly converging to sα, and t0 ∈ T ∞(Σl�,V) a labelled term with ∥t0∥ = s0. Then there is
a unique strongly continuous reduction sequence T = (tι →ρ′ι,πι tι+1)ι<α in Rl converging to
tα such that

(a) ∥tι∥ = sι, ∥ρ′ι∥ = ρι, for all ι < α, and

(b) ∥tα∥ = sα.

Proof. We prove this by an induction on α. For the case of α being zero, the statement is
trivially true. For the case of α being a successor ordinal, the statement follows straight-
forwardly from the induction hypothesis (the argument is the same as for finite reduction
sequences; e.g. consult [Ter03]).

Let α be a limit ordinal. By induction hypothesis, each proper prefix S∣[0,γ) of S has
a uniquely defined strongly convergent reduction sequence Tγ in Rl satisfying (a) and (b).
Note that, for each two γ ≤ γ′ < α, it holds that S∣[0,γ) ≤ S∣[0,γ′). Consequently, also for the
lifted reduction sequences, it holds that Tγ ≤ Tγ′ . Define T = ⊔ι<α Tι. This is well-defined as
the set {Tι ∣ ι < α} is directed. Therefore, Tγ ≤ T holds for each γ < α, and we can use the
induction hypothesis to obtain part (a) of the proposition.

Next, we show that ∥tα∥ ≤� sα. To this end, let π ∈ P∖�(∥tα∥). According to Corol-
lary 4.4.14, we have to show that ∥tα∥ (π) = sα(π). Let ∥tα∥ (π) = f ∈ Σ ∪ V. That is, either

5.5 Strongly Convergent PRS Reductions 123

tα(π) = f or tα(π) = f l. In either case, we can employ Lemma 5.5.1 to obtain some β < α
such that tβ(π) = f resp. tβ(π) = f l and πι /≤ π for all β ≤ ι < α. Since, by (a), sβ = ∥tβ∥, we
have in both cases that sβ(π) = f . By applying Lemma 5.5.1 again, we get that sα(π) = f ,
too.

Lastly, we show the converse inequality sα ≤� ∥tα∥. For this purpose, let π ∈ P∖�(sα) and
sα(π) = f ∈ Σ ∪ V. By Lemma 5.5.1, there is some β < α such that sβ(π) = f and πι /≤ π for
all β ≤ ι < α. Since, by (a), sβ = ∥tβ∥, we have that tβ(π) ∈ {f, f l}. Applying Lemma 5.5.1
again then yields that tα(π) ∈ {f, f l} and, therefore, ∥tα∥ (π) = f .

By combining both inequalities, we obtain that sα = ∥tα∥ due to the antisymmetry of ≤�.
This proves part (b) of the proposition.

Having this, we can establish an alternative characterisation of descendants using la-
bellings:

Proposition 5.5.17 (alternative characterisation of descendants)
Let R be a left-linear ITRS over Σ, S∶ s0 ↠R sα, and U ⊆ P∖�(s0). Following Proposi-
tion 5.5.16, let T ∶ t0 ↠R tα be the unique lifting of S to Rl starting with the term t0 = s(U)

0 .
Then it holds that tα = s(U//S)

α . That is, for all π ∈ P∖�(sα), it holds that tα(π) is labelled
iff π ∈ U//S.

Proof. Let S = (sι →πι sι+1)ι<α and T = (tι →πι tι+1)ι<α We show the statement by an
induction on the length α of S. If α = 0, then the statement is trivially true. If α is a
successor ordinal, then a straightforward argument shows that the statement follows from
the induction hypothesis. Here the restriction to left-linear systems is vital.

Let α be a limit ordinal and let π ∈ P∖�(sα). We can then reason as follows:

tα(π) is labelled iff ∃β < α∶ tβ(π) is labelled and ∀β ≤ ι < α∶ πι /≤ π (Lem. 5.5.1)
iff π ∈ U//S∣[0,β) and ∀β ≤ ι < α∶ πι /≤ π (ind. hyp.)
iff π ∈ U//S (Lem. 5.5.10)

5.5.2 Complete Developments
We have already come across complete developments in Section 5.4.2 where they were pre-
sented for strongly convergent MRS reductions. The intuition of complete development is
that of a strongly convergent reduction that simulates the contraction of an entire set of
redex occurrences. That was the motivation for considering descendants and, in particular,
residuals in the previous section.

We have seen in Section 5.4.2 that complete developments exists for a wide, yet still
restricted, range of sets of redex occurrences. In the present setting of PRS reductions, or-
thogonal systems do always admit complete developments – for any set of redex occurrences.
Additionally, we can establish the same properties that we already have in the MRS case:
The final terms of complete developments are uniquely determined, descendants by compete
developments are well-defined, and the Infinitary Strip Lemma holds.

The definition of complete developments can be copied verbatimly from the MRS setting
(cf. Definition 5.4.8):

Definition 5.5.18 ((complete) development)
Let R be an ITRS, s a partial term in R, and U a set of pairwise non-conflicting redex
occurrences in s.

(i) A development of U in s is a strongly convergent reduction S∶ s ↠α
R t in which each

reduction step ϕι∶ tι →πι tι+1 contracts a redex at πι ∈ U//S∣[0,ι) for ι < α.

(ii) A development S∶ s↠ t of U in s is called complete, denoted S∶ s↠U t, if U//S = ∅.

124 Chapter 5 Infinitary Term Rewriting

(iii) A (complete) development S∶ s ↠ t is called total if it is a total strongly convergent
reduction.

Again, the restriction to non-conflicting redex occurrences is essential in order guarantee
that the redex occurrences are independent from each other. Moreover, in conjunction with
left-linearity this ensures that the descendants of a set of non-conflicting redex occurrences
is again a set of non-conflicting redex occurrences:

Fact 5.5.19 (non-conflicting residuals)
Let R be a left-linear ITRS, s a partial term in R, U a set of pairwise non-conflicting redex
occurrences in s, and S∶ s↠U t a development of U in s. Then also U//S is a set of pairwise
non-conflicting redex occurrences.

It is relatively easy to show that complete developments do always exists in the PRS
setting – no matter which set of redex occurrences is considered. The reason for this is
that the PRS induced by an ITRS is always complete according to Proposition 3.2.4 which
implies, by Fact 3.2.7, that every strongly continuous reduction is also strongly convergent.
This means that as long as there are (residuals of) redex occurrences left after an incom-
plete development, one can extend this development arbitrarily by contracting some of the
remaining redex occurrences. The only thing that remains to be shown is that one can
devise a reduction strategy which eventually contracts (all residuals of) all redexes. The
proposition below shows that a parallel-outermost reduction strategy will always yield a
complete development in an orthogonal system.

Proposition 5.5.20 (existence of complete developments)
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrences in t.
Then U has a complete development in t.

Proof. Let t0 = t, U0 = U and V0 the set of outermost occurrences in U0, i.e. the minimal
elements w.r.t. the prefix order. Furthermore, let S0∶ t0 ↠V0 t1 be some complete develop-
ment of V0 in t0. S0 can be constructed by contracting the redex occurrences in V0 in a
left-to-right order. This can be continued for each i < ω by taking Ui+1 = Ui//Si, Vi+1 the
outermost redex occurrences in Ui+1 and Si+1∶ ti+1 ↠Vi+1 ti+2 some complete development
of Vi+1 in ti+1.

Note that then, by iterating Proposition 5.5.8, it holds that

U//S0 ⋅ . . . ⋅ Sn−1 = Un for all n < ω (1)

If there is some n < ω for which Un = ∅, then S0 ⋅ . . . ⋅ Sn−1 is a complete development of U
according to (1).

If this is not the case, consider the reduction sequence S = ∏i<ω Si, i.e. the concatenation
of all ’Si’s. We claim that S is a complete development of U . Suppose that this is not the
case, i.e. U//S ≠ ∅. Hence, there is some u ∈ U//S. Since all ’Ui’s are non-empty, so are the
’Vi’s. Consequently, all ’Si’s are non-empty reduction sequences which implies that S is a
reduction sequence of limit ordinal length, say λ. Therefore, we can apply Lemma 5.5.10 to
infer from u ∈ U//S that there is some α < λ such that u ∈ U//S∣[0,α) and all reduction steps
beyond α do not take place at u or above. This is not possible due to the parallel-outermost
reduction strategy that S adheres.

There are several techniques to show that in the MRS model of transfinite reductions
the final terms of complete developments are uniquely determined by the starting term and
the set of redex occurrences. One of these approaches, introduced in [KdV03], uses so-called
paths. Paths are constructed such that they, starting from the root, run through the initial
term t of the complete development, and whenever a redex occurrence of the development is
hit, the path jumps to the root of the right-hand side of the corresponding rule and jumps
back to the term t when it reaches a variable in the right-hand side. Figure 5.11a illustrates

5.5 Strongly Convergent PRS Reductions 125

t

l1

l2

l1

l2

r1

r2

R

x x

y y

(a) Constructing a path in a term.

t r1 t r2 t

(b) The constructed path.

Figure 5.11: A path.

the this idea. It shows a path of a term t that encounters two redex occurrences of the
complete development. As soon as such a redex occurrence is encountered, the path jumps
to the right-hand side of the corresponding rule as indicated by the dashed arrows. Then
the path runs through the right-hand side. When a variable is encountered, the path jumps
back to the position of the term t that matches the variable. This jump is again indicated
by a dashed arrow. The path that is obtained by this construction is shown in Figure 5.11b.
With the collection of the thus obtained paths one can then construct the final term of the
complete development. This technique can also be applied in the present setting.

At first we need to formalise the concept of a path that we have intuitively described
above.

Definition 5.5.21 (path, [Ter03])
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrence in t.
A path of t w.r.t. U and R is a sequence of length at most ω containing so-called nodes and
edges in an alternating manner like this:

n0 ⋅ e0 ⋅ n1 ⋅ e1 ⋅ n2 ⋅ e2 ⋅ ⋯

where the ’ni’s are nodes and the ’ei’s are edges. A node is either a pair of the form (t, π)
with π ∈ P(t) or a triple of the form (r, π, u) with r the right-hand side of a rule in R,
π ∈ P(r), and u ∈ U . Edges are denoted by arrows →. Both edges and nodes might be
labelled by elements in Σ� ∪ V and N, respectively. We write paths as the one sketched
above as

n0 → n1 → n2 → ⋯
or, when explicitly indicating labels, as

n0
l0 l1→ n1

l2 l3→ n2
l4 l5→ ⋯

126 Chapter 5 Infinitary Term Rewriting

where empty labels are explicitly given by the symbol ∅. If a path has a segment of the
form n→ n′, then we say there is an edge from n to n′ or that n has an outgoing edge to n′.

Every path starts with the node (t, ε) and is either infinitely long or ends with a node.
For each node n having an outgoing edge to a node n′, the following must hold:

(1) If n is of the form (t, π), then

(a) n′ = (t, π ⋅ i) and the edge is labelled by i, with 0 ≤ i < art(π), whenever π ∉ U , and
(b) n′ = (r, ε, π) and the edge is unlabelled, with l → r ∈ R the rule for the redex t∣π,

whenever π ∈ U .

(2) If n is of the form (r, π, u), then

(a) n′ = (r, π ⋅ i, u) and the edge is labelled by i, with 0 ≤ i < arr(π), whenever r∣π is not
a variable, and

(b) n′ = (t, u ⋅ π′) and the edge is unlabelled, with l → r ∈ R the rule for the redex t∣u
and π′ the unique occurrence of r∣π in l, whenever r∣π is a variable.

Additionally, the nodes of a path are supposed to be labelled in the following way:

(3) A node of the form (t, π) is unlabelled if π ∈ U and is labelled by t(π) otherwise.

(4) A node of the form (r, π, u) is unlabelled if r∣π is a variable and labelled by r(π) other-
wise.

Remark 5.5.22. The above definition is actually a coinductive one. This is necessary to
also define paths of infinite length. Also in [KdV03] paths are considered to be possibly
infinite, although they are defined inductively and are, therefore, finite.

The purpose of nodes of the form (t, π) and (r, π, u), respectively, is that they encode
that the path is currently at position π in the term t resp. r. The additional component u
provides the information that the path jumped to the right-hand side r from the redex t∣u.
The labellings of the nodes represent the symbols at the current location of the path, unless
it is a redex occurrence in the main term or a variable occurrence in a right-hand side. The
labellings of the edges provide information on how the path moves through the terms: A
labelling i represents a move along the i-th edge in the term tree from the current location
whereas an empty labelling indicates a jump from or to a right-hand side.

Returning to the schematic example illustrated in Figure 5.11, we can observe how the
construction of a path is carried out: The path starts with a segment in the term t. This
segment is entirely regulated by the rule (1a); all its edges and nodes are labelled according
to (1a) and (3). The jump to the right-hand side r1 following that initial segment is justified
by rule (1b). This jump consists of a node (t, u1), unlabelled according to (3), corresponding
to the redex occurrence u1, and an unlabelled edge to the node (r1, ε, u1), corresponding to
the root of the right-hand side r1. The segment of the path that runs through the right-
hand side r1 is subject to rule (2a); again all its nodes and edges are labelled, now, according
to (2a) and (4). As soon as a variable is reached in the right-hand side, in the schematic
example it is the variable x, a jump to the main term t is performed as required by rule (2b).
This jump consists of a node (r1, π, u1), unlabelled according to (4), where π is the current
position in r1, i.e. the variable occurrence, and an unlabelled edge to the node (t, u1 ⋅ π′).
The position π′ is the occurrence of the variable x in the left-hand side. As we only consider
orthogonal systems, this occurrence is unique. Afterwards, the same behaviour is repeated:
A segment in t is followed by a jump to a segment in the right-hand side r2 which is in turn
followed by a jump back to a final segment in t.

Note that paths do not need to be maximal. As indicated in the schematic example, the
path ends somewhere within the main term, i.e. not necessarily at a constant symbol or a
variable. What the example does not show, but which is obvious from the definition, is that

5.5 Strongly Convergent PRS Reductions 127

paths can also terminate within a right-hand side. A jump back to the main term is only
required if variable is encountered.

The purpose of the concept of paths is to simulate the contraction of all redexes of the
complete development in a locally restricted manner, i.e. only along some branch of the term
tree. This locality will keep the proofs more concise and makes them easier to understand
once we have grasped the idea behind paths. The strategy to prove our conjecture of
uniquely determined final terms is to show that paths can be used to define a term and that
a contraction of a redex of the complete development preserves a property of the collection
of all paths which ensures that the induced term remains invariant. Then we only have to
observe that the induced term of paths in a term with no redexes (in U) is the term itself.

The following fact is obvious from the definition of a path.

Fact 5.5.23
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrences in t.

(i) An edge in a path of t w.r.t. U and R is unlabelled iff the preceeding node is unlabelled.

(ii) Any prefix of a path of t w.r.t. U and R that ends in a node is also a path of t w.r.t.
U and R.

The part of the information encoded in paths that is necessary in order to define the final
term of the complete development is contained solely in the labels of their nodes and edges.
The inner structure of nodes is only necessary for the definition of paths. The following
notion of traces defines projections to the labels of paths:

Definition 5.5.24 (trace)
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrences in t.

(i) Let Π be a path of t w.r.t. U and R. The trace of Π, denoted tr(Π), is the projection
of Π to the labelling of its nodes and edges ignoring empty labels and the node label
�.

(ii) P(t,U,R) is used to denote the set of all paths of t w.r.t. U and R that end in a
labelled node, or are infinite but have a finite trace. The set of traces of paths in
P(t,U,R) is denoted by T r(t,U,R).

(iii) U is said to have finite jumps if, for each infinite path Π ∈ P(t,U,R), also tr(Π) is
infinite.

Remark 5.5.25. By Fact 5.5.23, the trace of a path is a sequence alternating between
elements in Σ ∪ V and N, which, if non-empty, starts with an element in Σ ∪ V. Moreover,
by definition, T r(t,U,R) is a set of finite traces of paths of t w.r.t. U and R.

Example 5.5.26
Consider the term t = g(f(g(h(�)))) and the TRS R consisting of the two rules

f(x) → h(x), h(x) → x.

Furthermore, let U be the set of all redex occurrences in t, viz. U = {0,03}. The following
path Π is a path of t w.r.t. U and R:

(t, ε)g 0→ (t,0)∅ ∅→ (r1, ε,0)h
0→ (r1,0,0)∅

∅→ (t,02)g 0→ (t,03)∅ ∅→ (r2, ε,03)∅ ∅→ (t,04)�

As a matter of fact, Π is the greatest path of t. Hence, according to Fact 5.5.23, the set of

128 Chapter 5 Infinitary Term Rewriting

all prefixes of Π ending in a node is the set of all paths of t. Note that since Π itself ends
in a labelled node, it is contained in P(t,U,R). The trace tr(Π) of Π is the sequence

g ⋅ 0 ⋅ h ⋅ 0 ⋅ g ⋅ 0

Now consider the term t′ = g(f(g(hω))) and the set U ′ of all its redexes, viz. U ′ =
{0} ∪ {03,04, . . .}. Then the following path Π′ is a path of t′ w.r.t. U ′ and R:

(t′, ε)g 0→ (t′,0)∅ ∅→ (r, ε,0)h 0→ (r,0,0)∅ ∅→ (t′,02)g 0→ (t′,03)∅ ∅→ (r, ε,03)∅ ∅→ (t′,04)∅

∅→ (r, ε,04)∅ ∅→ (t′,05)∅

∅→ . . .

Π′ is the greatest path of t′. The trace tr(Π′) of Π′ is the sequence

g ⋅ 0 ⋅ h ⋅ 0 ⋅ g ⋅ 0

Since Π′ is infinitely long but has a finite trace, it is contained in P(t′, U,R).

The lemma below shows that there is a one-to-one correspondence between paths in
P(t,U,R) and their traces in T r(t,U,R).

Lemma 5.5.27 (tr(⋅) is a bĳection)
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrences in t.
tr(⋅) is a bĳection from P(t,U,R) to T r(t,U,R).

Proof. By definition, tr(⋅) is surjective. Let Π1,Π2 be two paths having the same trace. We
will show that then Π1 = Π2 by an induction on the length of the common trace.

Let tr(Π1) = ε. Following Fact 5.5.23, there are two different cases: The first case is that
Π1 = Π ⋅ (t, π)�, where the prefix Π corresponds to a finite maximal collapsing tower (ui)i≤α
starting at the root of t or Π is empty if such a collapsing tower does not exists. If the
collapsing tower exists, then

Π = (t, u0)∅
∅→ (r0, ε, u0)∅

∅→ (t, u1)∅
∅→ (r1, ε, u1)∅

∅→ . . .
∅→ (t, uα)∅

∅→

But then also Π2 starts with the prefix Π ⋅ (t, π) due to the uniqueness of the collapsing
tower and the involved rules. Then Π1 = Π2 follows easily. If Π is empty, Π1 = Π2 follows
immediately.

The second case is that Π1 is infinite. Then there is an infinite collapsing tower (ui)i<ω
starting at the root of t. Hence,

Π1 = (t, u0)∅
∅→ (r0, ε, u0)∅

∅→ (t, u1)∅
∅→ (r1, ε, u1)∅

∅→ . . .

Π1 = Π2 follows from the uniqueness of the infinite collapsing tower.
At first glance one might additionally find a third case where Π1 = Π ⋅ (t, π)∅ ∅→ (r, ε, π)�

with Π a prefix corresponding to a collapsing tower as in the first case. However, this is not
possible as it would require the occurrence of a � in a rule.

Let tr(Π1) = f . Then there are two cases: Either Π1 = Π ⋅ (t, π)f or Π1 = Π ⋅ (t, π)∅ ∅→
(r, ε, π)f , where the prefix Π corresponds to a finite maximal collapsing tower (ui)i≤α starting
at the root of t or Π is empty if such a collapsing tower does not exists. The argument is
analogous to the argument employed for the first case of the induction base above.

Finally, we consider the induction step. Hence, there are the two cases: Either tr(Π1) =
T ⋅ f ⋅ i or tr(Π1) = T ⋅ f ⋅ i ⋅ g. For both cases, the induction hypothesis can be invoked
by taking two prefixes Π′

1 and Π′
2 of Π1 and Π2, respectively, which both have the trace

T and, therefore, are equal according to the induction hypothesis. The argument that the
remaining suffixes of Π1 and Π2 are equal is then analogous to the argument for two base
cases.

5.5 Strongly Convergent PRS Reductions 129

As mentioned above, the traces of paths contain all information necessary to define a term
which we will later identify to be the final term of the corresponding complete development.
The following definition explains how such a term, called a matching term, is determined:

Definition 5.5.28 (matching term)
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrences in t.

(i) The position of a trace T ∈ T r(t,U,R), denoted pos(T), is the subsequence of T
containing only the edge labels. The set of all positions of traces in T r(t,U,R) is
denoted PT r(t,U,R).

(ii) The symbol of a trace T ∈ T r(t,U,R), denoted sym(T), is f if T ends in a node label
f , and is � otherwise, i.e. whenever T is infinite, empty, or ends in an edge label.

(iii) A term t′ is said to match T r(t,U,R) if, for all traces T ∈ T r(t,U,R), it holds that
t′(pos(T)) = sym(T).

Returning to the definition of paths, one can see that the label of a node is the symbol
of the “current” position in a term. Similarly, the label of an edge says which edge in the
term tree was taken at that point in the construction of the path. Hence, by projecting to
the edge labels, we obtain the “history” of the path or in other words its position. In the
same way we obtain the symbol of that node by taking the label of the last node of the path,
provided the corresponding path ended in a non-�-labelled node. In the other case that the
trace does not end in a node label, the corresponding path ended in a node labelled � or
was infinite. As we will see, infinite paths with finite traces correspond to infinite collapsing
towers, which in turn yield volatile positions within the complete development. Eventually,
these volatile positions will also give rise to � subterms.

The following lemma shows that there is also a one-to-one correspondence between the
traces in T r(t,U,R) an their positions in PT r(t,U,R):

Lemma 5.5.29 (pos(⋅) is a bĳection)
Let R be an orthogonal ITRS, t a partial term in R and U a set of redex occurrences in t.
pos(⋅) is a bĳection from T r(t,U,R) to PT r(t,U,R).

Proof. An argument similar to the one for Lemma 5.5.27 can be given in order to show that
the composition pos(⋅) ○ tr(⋅) is a bĳection. Together with the bĳectivity of tr(⋅), according
to Lemma 5.5.27, this yields the bĳectivity of pos(⋅).

Having this lemma, the following proposition is an easy consequence of the definition of
matching terms. It shows that matching terms are uniquely determined:

Proposition 5.5.30 (unique matching term)
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrences in t.
Then there is a unique term, denoted F(t,U,R), that matches T r(t,U,R).

Proof. Define the mapping ϕ∶ PT r(t,U,R) → Σ� ∪ V by setting ϕ(pos(T)) = sym(T) for
each trace T ∈ T r(t,U,R). By Lemma 5.5.29, ϕ is well-defined. Moreover, it is easy to see
from the definition of paths, that PT r(t,U,R) is closed under prefixes and that ϕ respects
the arity of the symbols. Following Remark 2.3.17, ϕ uniquely determines a term s. By
construction, s matches T r(t,U,R). Moreover, any other term s′ matching T r(t,U,R)
must satisfy s′(π) = ϕ(π) for all π ∈ PT r(t,U,R), which implies that s′ = s.

It is also obvious that the matching term of a term t w.r.t. an empty set of redex
occurrences is the term t itself.

Lemma 5.5.31 (matching term w.r.t. empty redex set)
For any ITRS R and any partial term t in R, it holds that F(t,∅,R) = t.

130 Chapter 5 Infinitary Term Rewriting

Proof. Straightforward.

Remark 5.5.32. Now it only remains to be shown that the matching term stays invariant
during a development, i.e. that, for each development S∶ t ↠ t′ of U , the matching terms
F(t,U,R) and F(t′, U//S,R) coincide. Since the matching term F(t,U,R) only depends
on the set T r(t,U,R) of traces, it is sufficient to show that T r(t,U,R) and T r(t′, U//S,R)
coincide. The key observation is that in each step s → s′ in a development the paths of s′
differ from the paths of s only in that they might omit some jumps. This can be seen in
Figure 5.11a: In a step s → s′ of a development, (some residual of) some redex occurrence
in U is contracted. In the picture this corresponds to removing the pattern, say l1, of the
redex and replacing it by the corresponding right-hand side of the rule r1. One can see that,
except for the jump to and from the right-hand side r1 the path remains the same.

In order to establish the above observation formally, we need a means to simulate re-
duction steps in a development directly as an operation on paths. The following definition
provides a tool for this.

Definition 5.5.33 (position and prefix of a path)
Let R be an orthogonal ITRS, t a partial term in R, U a set of redex occurrences in t, and
Π ∈ P(t,U,R).

(i) Π is said to contain an occurrence π ∈ P(t) if it contains the node (t, π).

(ii) Let u ∈ U . The prefix of Π by u, denoted Π(u), is defined as Π whenever Π does not
contain u and otherwise as the unique prefix Π1 such that Π = Π1 ⋅ (t, u) ⋅Π2 for some
Π2.

Remark 5.5.34. It is obvious from the definition that each prefix Π(u) of a path Π ∈
P(t,U,R) by an occurrence u is the maximal prefix of Π, that does not contain positions
that are extensions of u (including u itself). Equivalently, Π(u) is the maximal prefix of Π
that only contains proper prefixes of u.

The following lemma is the key step towards proving the invariance of matching terms
in developments. It formalises the observation described in Remark 5.5.32.

Lemma 5.5.35 (preservation of traces)
Let R be an orthogonal ITRS, t a partial term in R, U a set of redex occurrences in t,
and S∶ t ↠ t′ a development of U in t. There is a surjective mapping ϑS ∶ P(t,U,R) →
P(t′, U//S,R) such that tr(Π) = tr(ϑS(Π)) for all Π ∈ P(t,U,R).

Proof. Let S = (tι →πι,cι tι+1)ι<α. We prove the statement by an induction on α.
If α = 0, then the statement is trivially true.
Suppose that α is a successor ordinal β + 1. Let T ∶ t0 ↠β tβ be the prefix of S of

length β and ϕβ ∶ tβ →πβ tα the last step of S, i.e. S = T ⋅ ϕβ . By the induction hypothesis,
there is a surjective mapping ϑT ∶ P(t,U,R) → P(tβ , U ′,R), where U ′ = U//T , satisfying
tr(Π) = tr(ϑT (Π)) for all Π ∈ P(t,U,R). By a careful case analysis (as done in [KS06]),
one can show that there is a surjective mapping ϑ∶ P(tβ , U ′,R) → P(tα, U ′′,R), where
U ′′ = U ′//ϕβ = U//S, satisfying tr(Π) = tr(ϑ(Π)) for all Π ∈ P(tβ , U ′,R). Hence, the
composition ϑS = ϑ ○ ϑT is a surjective mapping from P(t,U,R) to P(t′, U//S,R) and
satisfies tr(Π) = tr(ϑS(Π)) for all Π ∈ P(t,U,R).

Let α be a limit ordinal. By induction hypothesis, there is a surjective mapping ϑT
for each proper prefix T of S that satisfies tr(Π) = tr(ϑT (Π)) for all Π ∈ P(t,U,R). Let
Π ∈ P(t,U,R) and Πι = ϑS∣[0,ι)(Π) for each ι < α. We define ϑS(Π) as follows:

ϑS(Π) = lim inf
ι→α

Π(πι)
ι

5.5 Strongly Convergent PRS Reductions 131

Note that the prefixes Π(πι)
ι are the respective maximal prefixes of Πι that do not contain

any extension of πι. It is easy to see that ϑS is surjective and satisfies tr(Π) = tr(ϑS(Π)) for
all Π ∈ P(t,U,R).

The above lemma effectively establishes the invariance of matching terms during a devel-
opment. Together with Lemma 5.5.31 this implies the uniqueness of final terms of complete
developments of the same redex occurrences. As a corollary from this, we obtain that
descendants are also unique among all complete developments:

Proposition 5.5.36 (final term and descendants of complete developments)
Let R be an orthogonal ITRS, t a partial term in R, and U a set of redex occurrences in t.
Then the following holds:

(i) Each complete development of U in t has the final term F(t,U,R).

(ii) For each set V ⊆ P∖�(t) and two complete developments S and T of U in t, respectively,
it holds that V //S = V //T .

Proof. (i) Let S∶ t ↠U t′ be a complete development of U in t strongly converging to
t′. By Lemma 5.5.35, there is a surjective mapping ϑ∶ P(t,U,R) → P(t′, U ′,R) with
tr(Π) = tr(ϑ(Π)) for all Π ∈ P(t,U,R), where U ′ = U//S. Hence, it holds that T r(t,U,R) =
T r(t′, U ′,R) and, consequently, F(t,U,R) = F(t′, U ′,R). Since S is a complete devel-
opment of U in t, we have that U ′ = ∅ which implies, according to Lemma 5.5.31, that
F(t′, U ′,R) = t′. Therfore, F(t,U,R) = t′.

(ii) Let t′ = t(V). By Proposition 5.5.17, both reduction sequences S and T can be
uniquely lifted to reduction sequences S′ and T ′ in Rl, respectively, such that V //S and
V //T are determined by the final term of S′ and T ′, respectively. It is easy to see that also
Rl is an orthogonal ITRS and that S′ and T ′ are complete developments of U in t′. Hence,
we can invoke clause (i) of this proposition to conclude that the final terms of S′ and T ′

coincide and that, therefore, also V //S and V //T coincide.

The above proposition corresponds to Proposition 5.4.17 which establishes the same
properties for complete developments in the MRS model. Therefore, we can adopt the same
notational abbreviation U//V , mentioned in Notation 5.4.18, which denotes the descendants
of a set U of non-�-occurrences in some term t by a complete development of a set of
redex occurrences V in t. Furthermore, Proposition 5.5.36 yields the following corollary
establishing the diamond property of complete developments as illustrated in Figure 5.3.

Corollary 5.5.37 (diamond property of complete developments)
Let R be an orthogonal ITRS and t↠U t1 and t↠V t2 be two complete developments of U
respectively V in t. Then t1 and t2 are joinable by complete developments t1 ↠V //U t′ and
t2 ↠U//V t

′.

Proof. By Proposition 5.5.11, it holds that

(U ∪ V)//U = U//U ∪ V //U = V //U.

Let S∶ t↠U t1, T ∶ t↠V t2, S′∶ t1 ↠V //U t
′ and T ′∶ t2 ↠U//V t

′′. By the equation above and
Proposition 5.5.8, we have that S ⋅S′∶ t↠U t1 ↠V //U t

′ is a complete development of U ∪V .
Analogously, we obtain that T ⋅ T ′∶ t↠V t2 ↠U//V t′′ is a complete development of U ∪ V ,
too. According to Proposition 5.5.36, this implies that both S ⋅S′ and T ⋅T ′ end in the same
term, i.e. t′ = t′′.

With these properties of complete developments we can establish an Infinitary Strip
Lemma for PRS reductions in the same way as for MRS reductions (cf. Proposition 5.4.23):

132 Chapter 5 Infinitary Term Rewriting

Proposition 5.5.38 (Infinitary Strip Lemma)
Let R be an orthogonal ITRS, S∶ t0 ↠α tα a strongly convergent reduction, and t0 ↠U s0
a complete development of a set U of disjoint redex occurrences in t0. Then tα and s0 are
joinable by a reduction s0 ↠ sα and a complete development tα↠U//S sα.

Proof. We prove this statement by constructing the diagram shown in Figure 5.5. The ’Uι’s
in the diagram are sets of redex occurrences: Uι = U//S∣[0,ι) for all 0 ≤ ι ≤ α. In particular,
U0 = U . All arrows in the diagram represent complete developments of the indicated sets of
redex occurrences. Particularly, in each ι-th step of S the redex at vι is contracted. We will
construct the diagram by an induction on α.

If α = 0, then the diagram is trivial. If α is a successor ordinal β + 1, then we can take
the diagram for the prefix S∣[0,β), which exists by induction hypothesis, and extend it to a
diagram for S. The existence of the additional square that completes the diagram for S is
asserted by Corollary 5.5.37 since Uβ+1 = Uβ//vβ .

Let α be a limit ordinal. Moreover, let s′α be the uniquely determined final term of a
complete development of Uα in tα. By induction hypothesis, the diagram exists for each
proper prefix of S. Let Tι∶ s0 ↠ sι denote the reduction sequence at the bottom of the
diagram for the reduction sequence S∣[0,ι) for each ι < α. The set of all Tι is directed.
Hence, T = ⊔ι<α Tι exists. Since Tι < T for each ι < α, the diagram for S with T ∶ s0 ↠ sα at
the bottom satisfies almost all required properties. Only the equality of sα and s′α remains
to be shown.

Note that, by Proposition 5.5.14, the redex occurrences in Uα are pairwise disjoint. Let
π ∈ Uα. By Lemma 5.5.10 and the definition of descendants, there is some β < α such that
π ∈ Uι and vι /≤ π for all β ≤ ι < α. Hence, for all π′ ∈ vι//Uι with β ≤ ι < α, we also have
π′ /≤ π. That is, in the remaining reductions tβ ↠ tα and tβ ↠Uβ sβ ↠ sα, no reduction
takes place at a proper prefix of π. Hence, by Lemma 5.5.1, tβ coincides with tα and sα in
all proper prefixes of π. Since in the reduction tα↠Uα s

′
α also no reduction takes place at a

proper prefix of π, we obtain that tα and s′α and, thus, also sα and s′α coincide in all proper
prefixes of π.

Let ρ∶ l → r be the rule for the redex tβ ∣π and C⟨, . . . , ⟩,D⟨, . . . , ⟩ ground contexts
such that l = C⟨x1, . . . , xk⟩ and r = D⟨xp(1), . . . , xp(m)⟩ for some pairwise distinct variables
x1, . . . , xk and an appropriate mapping p∶ {1, . . . ,m} → {1, . . . , k}. Moreover, let tι1, . . . , tιk
be terms such that tι = tι[C⟨tι1, . . . , tιk⟩]π and sι = sι[D⟨tιp(1), . . . , t

ι
p(m)⟩]π for all β ≤ ι ≤ α.

The argument in the previous paragraph justifies the assumption of these elements. From
β onward, all horizontal reduction steps in the diagram take place within the contexts
tι[⋅]π and sι[⋅]π, respectively, or inside the terms tιi, and all vertical reductions take place
within the contexts tι[C⟨, . . . , ⟩]π and sι[D⟨, . . . , ⟩]π, respectively. In particular, we have
tα = tα[C⟨tα1 , . . . , tαk ⟩]π and sα = sα[D⟨tαp(1), . . . , t

α
p(m)⟩]π. Let tα →π t′α. This reduction con-

tracts the redex C⟨tα1 , . . . , tαk ⟩ to the subterm D⟨tαp(1), . . . , t
α
p(m)⟩ using rule ρ. Note that a

complete development tα↠Uα s
′
α contracts, besides π, only redex occurrences disjoint with

π. Hence, t′α and s′α coincide in all extensions of π. Since t′α = tα[D⟨tαp(1), . . . , t
α
p(k)⟩]π (and

sα = sα[D⟨tαp(1), . . . , t
α
p(m)⟩]π), we can conclude that sα and s′α coincide in all extensions of

π.
Since the residual π ∈ Uα was chosen arbitrarily, the above holds for all elements in Uα.

That is, sα and s′α coincide in all prefixes and all extensions of elements in Uα. It remains
to be shown, that they also coincide in positions that are disjoint to all positions in Uα. To
this end, we only need to show that tα and sα coincide in these positions since the complete
development tα ↠Uα s

′
α keeps positions disjoint with all positions in Uα unchanged. Let π

be such a position.
Suppose tα(π) = f ≠ �. By Lemma 5.5.1, there is some β < α such that tβ(π) = f and

vι /≤ π for all β ≤ ι < α. Note that no prefix π′ of π is in Uβ since otherwise π′ ∈ Uα, by
Lemma 5.5.10, which contradicts the assumption that π is disjoint to all positions in Uα.
Hence, sβ(π) = f and π′ /≤ π for all π′ ∈ vι//Uι and β ≤ ι < α, which means that no reduction

5.5 Strongly Convergent PRS Reductions 133

step in sβ ↠ sα takes place at some prefix of π. Thus, we can conclude, according to
Lemma 5.5.1, that sα(π) = f . Similarly, one can show that sα(π) = f ≠ � implies tα(π) = f .

Suppose tα(π) = �. Hence, according to Lemma 5.5.4, π is outermost-volatile in S or
there is some β < α such that tβ(π) = � and vι /≤ π for all β ≤ ι < α. For the latter case, we
can argue as in the case for tα(π) ≠ � above. In the former case, π is outermost-volatile in
T as well. Thus, by applying Lemma 5.5.4, we obtain that sα(π) = �. A similar argument
can be employed for the reverse direction.

Note that the concepts of tiling diagrams and projections that we have seen for MRS
reductions in Definition 5.4.21 can be carried over to our present setting of PRS reductions
verbatimly. Then the above proposition states that tiling diagrams always exists for a pair
of reductions consisting of an arbitrary strongly convergent reduction and a single reduction
step. This can be used in analogy to Corollary 5.4.24 in order to obtain a semi-infinitary
confluence property for orthogonal systems as illustrated in Figure 5.6.

Corollary 5.5.39 (semi-infinitary confluence)
Let R be an orthogonal ITRS, H ∶ t↠ t2, and V ∶ t→⋆ t1. Then the projections V /H ∶ t2 ↠ t3
and H/V ∶ t1 ↠ t3 exist.

Proof. This can be shown by an induction on the length of V . If V is empty, the statement
trivially holds. The induction step follows from Proposition 5.5.38.

5.5.3 Relation to Böhm Trees
This section is going to provide an interesting insight into the concepts of Böhm reductions
and Böhm trees which were covered in Section 5.4.5. Recall that Böhm reductions are
based on the intuition of meaningless terms. The Böhm reduction of a ITRS is obtained by
adjoining additional rules to the system which allow to rewrite terms that are considered
meaningless directly to the fresh constant symbol �. The least set of meaningless terms is
RA, the set of root-active terms. Below, the notion of fragile terms is introduced which has
some similarity to root-active terms.

Definition 5.5.40 (destructive reductions, fragile terms)
Let R be an ITRS.

(i) A strongly convergent reduction sequence S∶ t↠ s is called destructive if ε is a volatile
position in S.

(ii) A partial term t in R is called fragile if a destructive reduction sequence starts in t.

It is quite obvious that destructive reductions are open reductions which strongly con-
verge to � – hence the name. Consequently, fragile terms are terms which are reducible to
� by an open reduction.

Fact 5.5.41 (destructive reductions, fragile terms)
Let R be an ITRS.

(i) A strongly convergent reduction sequence S∶ t↠λ s is destructive iff λ is a limit ordinal
and s = �

(ii) A partial term t in R is fragile iff there is an open strongly convergent reduction t↠ �.

Proof. This follows immediately from Lemma 5.5.4.

One has to keep in mind, however, that a closed reduction to � is not destructive. Such
a notion of destructiveness would include the empty reduction sequence from � to �, and
reductions that end with the contraction of a collapsing redex as, for example, in the single
step reduction f(�) → � induced by the rule f(x) → x. Such reductions do not “produce”

134 Chapter 5 Infinitary Term Rewriting

π1

π2

π3

π4

π5

(a) Nested volatile positions.

s t

ε

π1

π2

π3

π4

π5

0 ω 2ω 3ω 4ω

�

�

� �

�

�

(b) Replacing nested destructive reductions with →� steps.

Figure 5.12: Turning a PRS reduction into a Böhm reduction.

the � term. They are merely capable of copying a subterm � by a collapsing rule. In this
sense, fragile terms are, according to Lemma 5.5.5, the only terms which can produce the
� term. This is the key observation for studying the relation between PRS reductions and
Böhm reductions.

Fragile terms are, as already mentioned above, the only terms that can produce the �
term. The Böhm reduction w.r.t. the set of all fragile terms can contract fragile terms to
� immediately. Since the only difference between PRS reductions and MRS reduction is,
by Corollary 5.2.3, the ability of PRS reductions to spawn � symbols, the question arises
whether the concept of Böhm reductions can bridge this gap. The objective of this section
is to confirm this conjecture. More specifically, we will establish the equivalence of PRS
reductions and the MRS reductions in the Böhm reduction w.r.t. the total fragile terms.
This equivalence will then allow us to hĳack some of the results that are already known for
Böhm reductions (cf. Section 5.4.5).

One direction of the equivalence of PRS reductions and Böhm reductions is comparatively
easy: Given a PRS reduction sequence one can construct a Böhm reduction sequence by
removing reduction steps which cause the volatility of a position in some open prefix of the
definition and replacing them by a →�-step. The intuition of this construction is illustrated
in Figure 5.12. It shows a PRS reduction of length 4ω from s to t. In order to maintain
readability, we restrict the attention to a particular branch of the term (tree) as indicated
in Figure 5.12a. The picture shows five positions which are volatile in some open prefix of
the reduction. We assume that they are the only volatile positions at least in the considered
branch. Note that the positions do not need to occur in all of the terms in the reduction
sequence. They might disappear and reappear repeatedly. Each of them, however, appears
in infinitely many terms in the reduction sequence, as, by definition of volatility, infinitely
many steps take place at each of these positions. In Figure 5.12b, the prefixes of the
reduction that contain a volatile position are indicated by a waved rewrite arrow pointing
to a �. The level of an arrow indicates the position which is volatile. A prefix might have
multiple volatile positions. For example, both π2 and π4 are volatile in the prefix of length
ω. But a position might also be volatile for several prefixes. For instance, π3 is volatile in
the prefix of length 2ω and the prefix of length 4ω.

By Lemma 5.5.4, outermost-volatile positions are responsible for the emergence of � sym-
bols. By their nature, at some point there are no reductions taking place above outermost-

5.5 Strongly Convergent PRS Reductions 135

volatile positions. The suffix where this is the case is a nested destructive reduction sequence.
The subterm where this suffix starts is, therefore, a fragile term and we can replace this
suffix with a single →�-step. The segments which are replaced in this way are highlighted
by dashed boxes in Figure 5.12b. As indicated by the dotted lines, this then also includes
reduction steps which occur below the outermost-volatile positions. Therefore, also volatile
positions which are not outermost are removed as well. Eventually, we obtain a reduction
sequence without volatile positions, which is, by Lemma 5.5.5, a Böhm reduction.

The following proposition summarises the above observation and provides a more rigorous
proof.

Proposition 5.5.42 (PRS reductions are Böhm reductions)
Let R be an ITRS, U the set of fragile terms in T ∞(Σ,V), and B the Böhm reduction of R
w.r.t. U . Then, for each PRS reduction s↠p

R t in R, there is a MRS reduction s↠m
B t in

B.

Proof. W.l.o.g. we can assume that s, the starting term of the reduction, is total. If s is
not total, consider the signature Σ′ = Σ ⊎ {�} and take �′ as the “new bottom” symbol, i.e.
T ∞(Σ′

�′ ,V) is the set of partial terms.
Assume that there is a strongly convergent PRS reduction sequence S∶ (tι →πι tι+1)ι<α

in R that converges to tα. We will construct a strongly convergent MRS reduction sequence
T ∶ t0 ↠ tα in B by removing reduction steps in S that take place at or below outermost-
volatile positions of some prefix of S and replace them by →�-steps.

Let π be an outermost-volatile position of some prefix S∣[0,λ). Then there is some ordinal
β < λ such that no reduction step between β and λ in S takes place strictly above π, i.e.
πι /< π for all β ≤ ι < λ. Such an ordinal β must exist since otherwise π would not be
an outermost-volatile position in S∣[0,λ). Hence, we can construct a destructive reduction
sequence S′∶ tβ ∣π ↠p � by taking the subsequence of S∣[β,λ) containing the reduction steps
at π or below. Note that tβ ∣π might still contain the symbol �. Since � is not relevant for the
applicability of rules in R, each of the � symbols in tβ ∣π can be safely replaced by arbitrary
total terms, in particular by terms in U . Let r be a term that is obtained in this way. Then
there is a destructive reduction sequence S′′∶ r↠p � that applies the same rules at the same
positions as S′. Hence, r ∈ U . By construction, r is a �,U-instance of tβ ∣π which means that
tβ ∣π ∈ U�. Additionally, tβ ∣π ≠ � since there is a non-empty reduction S′∶ tβ ∣π ↠p � starting
in tβ ∣π. Consequently, there is a rule tβ ∣π → � in B. Let T ′ be the reduction sequence that is
obtained from S∣[0,λ) by replacing the β-th step, which we can assume w.l.o.g. to take place
at π, by a step with the rule tβ ∣π → � at the same position π and removing all reduction
steps ϕι taking place at π or below for all β < ι < λ. Let t′ be the term that the reduction
sequence T ′ converges to. tλ and t′ can only differ in positions π or below. However, by
construction, we have t′(π) = � and, by Lemma 5.5.4, tλ(π) = �. Consequently, t′ = tλ.

This construction can be done for all outermost-volatile positions and all prefixes of S.
Thereby, we obtain a PRS reduction sequence T ∶ t0 ↠p

B tα for which no prefix has a volatile
position. By Lemma 5.5.5, T is a total reduction sequence. Note that B is a ITRS over the
extended signature Σ′ = Σ ∪ {�}, i.e. terms containing � are considered total (cf. the initial
remark of this proof). Hence, by Corollary 5.2.3, T ∶ t0 ↠m

B tα.

With this half of the equivalence we can already establish a result similar to Theo-
rem 5.4.4 which allows the approximation of an arbitrarily large finite part of a result term
of a PRS reduction using a finite reduction:

Proposition 5.5.43 (finite approximation of non-� occurrences)
Let R be a left-linear ITRS and s↠ t. Then, for each finite set P ⊆ P∖�(t), there is a finite
reduction s→⋆ t′ such that t and t′ coincide in all positions in P .

Proof. Assume that s↠p
R t. Then, by Proposition 5.5.42, there is a reduction s↠m

B t, where
B is the Böhm reduction of R w.r.t. the set of total fragile terms of R. By Lemma 5.4.38,

136 Chapter 5 Infinitary Term Rewriting

there is a reduction s↠m
R s′ ↠m

� t. Then we have that s′ and t coincide in all positions in
P∖�(t). Let d = max {∣π∣ ∣π ∈ P }. d is well defined as P is finite. By Theorem 5.4.4, there is
a reduction s→⋆

R t
′ such that t′ and s′ coincide up to depth d and, thus, in particular they

coincide in all positions in P . Consequently, t and t′ coincide in all positions in P , too.

The next step for our goal is to show that destructive reduction sequences can be com-
pressed to a length of exactly ω. To achieve this, we need that the projection of a destructive
reduction is again destructive:

Lemma 5.5.44 (preservation of destructive reductions by finite projections)
Let R be an orthogonal ITRS, S∶ t0 ↠ tα a destructive reduction, and T ∶ t0 → s0 a single
reduction step. Then the projection S/T ∶ s0 ↠ sα is also destructive.

Proof. We consider the situation depicted in Figure 5.5 on page 104. Since S∶ t0 ↠ tα is
destructive, we have, for each β < α, some β ≤ γ < α such that vγ = ε. If vγ = ε, then also
ε ∈ vγ//Uγ unless ε ∈ Uγ . As by Proposition 5.5.14, Uγ is a set of pairwise disjoint positions,
ε ∈ Uγ implies Uγ = {ε}. This means that if vγ = ε and ε ∈ Uγ , then Uι = ∅ for all γ < ι < α.
Thus, this can only happen at most once. Therefore, we have, for each β < α, some β ≤ γ < α
such that ε ∈ vγ//Uγ . Hence, T is destructive.

As a consequence of this preservation of destructiveness by finite projections, we obtain
that the set of fragile terms is closed under finite reductions:

Lemma 5.5.45 (closure of fragile terms under finite reductions)
In each orthogonal ITRS, the set of fragile terms is closed under finite reductions.

Proof. Let t be a fragile term and T ∶ t →⋆ t′ a finite reduction sequence. We prove by an
induction on the length of T that then also t′ is fragile. If T is the empty reduction sequence,
this is trivial. Let T be of the form t →⋆ s → t′. By induction hypothesis, s is fragile.
Hence, there is a destructive reduction S starting in s. By applying Proposition 5.5.38 and
Lemma 5.5.44 to S and s → t′, we obtain a destructive reduction sequence starting in t′.
Hence, also t′ is fragile.

Now we can show that destructiveness does not need more that ω steps in orthogonal
systems. This property will become important when proving the compression property for
PRS reductions.

Proposition 5.5.46 (compression of destructive reductions)
Let R be an orthogonal ITRS and t a partial term in R. If there is a destructive reduction
sequence starting in t, then there is a destructive reduction sequence of length ω starting in
t.

Proof. Let S∶ t0 ↠λ � be a destructive reduction sequence starting in t0. Hence, there is
some α < λ such that S∣[0,α)∶ t0 ↠ s1, where s1 is a ρ-redex for some ρ ∈ R. Let P be
the set of pattern positions of the ρ-redex s1, i.e. P = PΣ(l) for l the left-hand side of ρ.
By Proposition 5.5.43, there is a finite reduction t0 →⋆ s′1 such that s1 and s′1 coincide in
all positions in P . Hence, because R is left-linear, also s′1 is a ρ-redex. Now consider the
reduction sequence T0∶ t0 →⋆ s′1 →ρ,ε t1. T0 is of finite length and, by applying Lemma 5.5.45,
we get that t1 is fragile.

The above argument can be repeated arbitrarily often which yields for each i < ω a finite
reduction sequence Ti∶ ti →⋆ ti+1 whose last step is a contraction at the root. Then the
concatenation T = ∏i<ω Ti of these reduction sequences is a destructive reduction sequence
of length ω starting in t0.

The above proposition bridges the gap between fragility and root-activeness. Whereas
the former concept is defined in terms of transfinite reductions, the latter is defined in
terms of finite reductions. By Proposition 5.5.46, however, a fragile term is always finitely

5.5 Strongly Convergent PRS Reductions 137

reducible to a redex. This is the key to the observation that fragility is not only quite similar
to root-activeness but is, in fact, essentially the same concept.

Proposition 5.5.47 (root-activeness = fragility)
Let R be an orthogonal ITRS and t a total term in R. Then t is root-active iff t is fragile.

Proof. The “only if” direction is easy: If t is root active, then there is a reduction sequence
S of length ω starting in t with infinitely many steps taking place at the root. Hence,
S∶ t↠ω

R � is a destructive reduction sequence and t a fragile term.
Consider the converse direction: To this end, we assume that t is fragile and show that,

for each reduction t→⋆ s, there is a reduction s→⋆ t′ to a redex t′. By Lemma 5.5.45, also s
is fragile. Hence, there is a destructive reduction sequence S∶ s↠ � starting in s. According
to Proposition 5.5.46, we can assume that S has length ω. Therefore, there is some n < ω
such that S∣[0,n)∶ s→⋆ t′ for a redex t′.

Finally, we have gathered all tools necessary in order to prove the converse direction of
the equivalence of PRS reductions and Böhm reductions. Since root-activeness is a well-
established notion, we prefer to consider the Böhm reduction w.r.t. the set of root-active
terms instead of the equivalent set of total fragile terms.

Theorem 5.5.48 (PRS reductions = Böhm reductions)
Let R be an ITRS and B the Böhm reduction of R w.r.t. RA. Then there is a PRS reduction
s↠p

R t in R iff there is an MRS reduction s↠m
B t in B.

Proof. The “only if” direction follows immediately from Proposition 5.5.47 and Proposi-
tion 5.5.42.

Now consider the converse direction: Let s ↠m
B t be an MRS reduction in B. Due to

Lemma 5.4.38, there is a term s′ ∈ T ∞(Σ,V) such that there are MRS reductions s↠m
R s′

and s′ ↠m
� t. As RA is a set of meaningless terms, we can assume, by Lemma 5.4.40,

that all steps in s′ ↠m
� t occur at pairwise disjoint occurrences of root-active terms. By

Proposition 5.5.47, root-active terms r ∈ RA are fragile, i.e. we have a destructive reduction
r↠p

R � starting in r. Thus, we can construct a PRS reduction s′↠p
R t by replacing each step

C[r] →� C[�] in s′ ↠m
� t with the corresponding reduction C[r] ↠p

R C[�]. By combining
this reduction with the MRS reduction s↠R s′, which, according to Corollary 5.2.3, is also
a PRS reduction, we obtain a PRS reduction s↠p

R t.

With this equivalence, PRS reductions inherit a number of important properties that
are enjoyed by Böhm reductions. Most prominently these properties include infinitary con-
fluence and infinitary normalisation:

Theorem 5.5.49 (infinitary confluence)
Every orthogonal ITRS is infinitarily confluent.

Proof. Let R be an orthogonal ITRS. According to Theorem 5.5.48, it holds that↠p
R=↠

m
B ,

where B is the Böhm reduction of R w.r.t. RA. Since, by Proposition 5.4.36, RA is a set
of meaningless terms, we can employ Theorem 5.4.42 to obtain that the Böhm reduction B
is infinitary confluent w.r.t. MRS reductions. That is, ↠m

B satisfies the diamond property.
Hence, so does ↠p

R which means that R is infinitarily confluent w.r.t. PRS reductions

Theorem 5.5.50 (infinitary normalisation)
Every orthogonal ITRS is infinitarily normalising.

Proof. Similar to the proof of Theorem 5.5.49, however, referring to Theorem 5.4.41 instead
of Theorem 5.4.42.

138 Chapter 5 Infinitary Term Rewriting

Since PRS reductions in orthogonal systems essentially consist of a prefix which is an
MRS reduction and a suffix consisting of nested destructive reductions, we can employ the
Compression Lemma for MRS reductions (cf. Theorem 5.4.3) and the Compression Lemma
for destructive reductions (cf. Proposition 5.5.46) to obtain the Compression Lemma for
PRS reductions:

Theorem 5.5.51 (Compression Lemma)
Let R be an orthogonal ITRS. If s↠ t, then s↠≤ω t.

Proof. Let s↠p
R t. According to Theorem 5.5.48, we have s↠m

B t for the Böhm reduction
B of R w.r.t. RA and, therefore, by Lemma 5.4.38, we have reduction sequences S∶ s↠m

R s′

and T ∶ s′↠m
� t. Due to Theorem 5.4.3, we can assume that S is of length at most ω. If T is

the empty reduction sequence, then we are done. If not, then T is a complete development
of pairwise disjoint occurrences of root-active terms according to Lemma 5.4.40. Hence,
each step is of the form C[r] →� C[�] for some root-active term r. By Proposition 5.5.47,
for each such term r, there is a destructive reduction r ↠p

R � which we can assume, in
accordance with Proposition 5.5.46, to be of length ω. Hence, each step C[r] →� C[�] can
be replaced by the reduction C[r] ↠p

R C[�]. Concatenating these reductions results in a
reduction sequence T ′∶ s′ ↠p

R t of length at most ω ⋅ ω. If S∶ s ↠m
R s′ is of finite length,

we can interleave the reduction steps in T ′ such that we obtain a reduction T ′′∶ s′ ↠p,ω
R t

of length ω. Then we have S ⋅ T ′′∶ s ↠p,ω
R t. If S∶ s ↠m

R s′ has length ω, we construct
a reduction s ↠p

R t as follows: As illustrated above, T ′ consists of destructive reduction
sequences taking place at some pairwise disjoint positions. These steps can be interleaved
into the reduction sequence S resulting into a reduction sequence s↠p

R t of length ω. The
argument for that is similar to that employed in the successor case of the induction proof of
the Compression Lemma in [KKSdV95a].

Chapter 6

Term Graph Rewriting

The purpose of this chapter is to introduce rewriting on term graphs. The more general
topic of graph rewriting, from which term graph rewriting stems, was first studied in the late
1960’s [PR69, Pra71]. Soon, graphs were used to represent terms in order to be able to use
graph rewriting to efficiently implement term rewriting [Wad71]. The ability of term graph
rewriting to simulate term rewriting shall be the focus of this chapter. This employment
of term graph rewriting is particularly attractive for infinitary rewriting as it in some cases
allows to simulate an infinite reduction sequence on terms by a finite reduction sequence on
term graphs. Section 6.2 discusses both these aspects.

Since the first appearance of graph rewriting many different approaches have been sug-
gested and studied. This variety of formalisations breaks down into three major approaches:
The operational approaches [PR69, BvEG+87, Ech08] define the rewriting of graphs by ex-
plicit removal and insertion of subgraphs as specified by the rewrite rules. On the other
hand, the algebraic methods [EPS73, Rao84, CMR+97] use pushout constructions in appro-
priately defined categories in order to formalise the semantics of a rewrite rule. The third
way of defining rewriting in graphs, called equational term graph rewriting [AK96], interprets
a graph as a set of equations of terms, where the nodes of the graph are essentially repre-
sented as variables in these equations. The rewrite rules are then applied to the equations
that make up a term graph.

In this thesis we prefer the operational view of term graph rewriting. In particular, we
favour the approach of Barendregt et al. [BvEG+87]. We define the basic notions of finitary
and infinitary term graph rewriting in Section 6.1.

6.1 Term Graph Rewriting Systems

As mentioned in the introduction, we consider term graph rewriting along the lines of
Barendregt et al. [BvEG+87]. The most important reason for this decision is that there
is already a very good understanding of the relation of this style of term graph rewriting
and infinitary term rewriting – at least for the metric model1. Secondly, it is favourable for
being relatively close to an implementation.

Just as for terms, we assume to have a countably infinite set V of variables which is always
chosen such that it is disjoint from the signature Σ. Variables are used to parametrise the
rules of a term graph rewriting system. Therefore, the extended signature ΣV = Σ ⊎ V is
considered, where the variables are interpreted as nullary symbols. In analogy to terms we
use the notation GC(Σ,V) and G∞C (Σ,V) instead of GC(ΣV) and G∞C (ΣV), respectively.

1One can argue (cf. [CD97]) that the double-pushout approach [EPS73] and the equational approach are
better suited for a partial order model of infinitary term rewriting. We do not, however, make an attempt
to analyse the relation between our partial order approach to infinitary term rewriting and these variants of
term graph rewriting.

139

140 Chapter 6 Term Graph Rewriting

A term graph rewrite rule is represented by a single graph. The left- and right-hand side
of a rule are distinguished by two (not necessarily distinct) root nodes. This allows that
structures can also be shared between the left- and the right-hand side of a rule.

Definition 6.1.1 (term graph rewriting system, [BvEG+87])
Let Σ be a signature.

(i) A term graph rewrite rule ρ over Σ is a tuple (N, lab, suc, l, r), where g = (N, lab, suc)
is a finite ΣV -graph and l, r ∈ N . l and r are called the left and the right root of the
rule, respectively. All nodes in g must be reachable from l or r. ρl and ρr denote the
term graphs (g∣l, l) resp. (g∣r, r), called the left- resp. the right-hand side of ρ.
Additionally, we require that, for each variable v ∈ V, there is at most one node in g
labelled with v, and each node labelled by a variable must be reachable from the left
root l.
If, instead of requiring that the underlying graph g is finite, we only require the left-
hand side ρl to be finite, then ρ is called an infinitary term graph rewrite rule.

(ii) A term graph rewriting system (GRS) over Σ is a pair R = (Σ,R) consisting of a
signature Σ and a set of term graph rewrite rules R over Σ. If, instead, R is a set of
infinitary term graph rewrite rules, then R is called an infinitary term graph rewriting
system (IGRS).

The restriction concerning V-nodes is necessary for the definition of the semantics of
term graph rewrite rules. In principle, there is no need to have a set of variable symbols.
Since no two distinct nodes are allowed to be labelled by the same variable, one could have
used also only a single symbol, say v, that distinguishes variable nodes from all other nodes.2
The use of explicit variable symbols is only for convenience and to define the translation of
IGRSs into ITRSs in a straightforward manner.

When presenting examples, we prefer using a graphical representation of term graph
rewrite rules. To this end, we employ a graphical representation of the underlying graph
and indicate the left and right node by a rewrite arrow going from the left to the right root
of the rule.

Example 6.1.2
Consider the term rewrite rule a(x, s(y)) → s(a(x, y)). This rule can be translated into a
term graph rewrite rule as follows:

a

x s

y

s

a

By translating a term rewrite rule ρ into a term graph rewrite rule, we mean finding a term
graph rewrite rule ρ′ such that ρ∶ U(ρ′l) → U(ρ′r). There might be, of course, multiple such
translations. For the example above, however, there is only one.

Note that the rewrite arrow in the graphical representation of a term graph rewrite rule
always points from the left root to the right root. Keep in mind that this is only a means to
indicate the left and the right root, and should not be considered as part of the underlying
graph. Nevertheless, it is also possible that the right root of the rule is reachable from
the left root in the underlying graph. This is, for example, necessary when representing
collapsing term rewrite rules such as a(x,0) → x:

2This was done in the original definition by Barendregt et al. [BvEG+87]. In their definition variable
nodes are nodes without any label.

6.1 Term Graph Rewriting Systems 141

a
n0

a
n1

s
n2

s
n3

0
n4

g =

a
l0

x
l1

s
l2

y
l3

s
r0

a
r1

ρ∶

Figure 6.1: Example term graph and term graph rewrite rule.

a

x 0

Since a variable is restricted to have only one occurrence in a rule, the only way of
referencing it in the right-hand side is by sharing. The example above illustrates this. As
we will see shortly, there is no explicit mechanism for duplication in the semantics of the
term graph rewriting framework we are considering – hence, this restriction. This can be
seen more explicitly when translating a duplicating term rewrite rule such as d(x) → a(x,x)
to a term graph rewrite rule:

d

x

a

Next, we define how rewriting is performed on term graphs according to term graph
rewrite rules introduced above. The construction that is involved in a rewriting step is quite
technical. To this end, we want to convey the intuition of it beforehand. In principle, it
follows the idea of term rewriting. The application of a term rewrite rule l → r to a term t
consists of the following steps: At first the left-hand side l is matched with a subterm t∣π by
finding a substitution σ with t∣π = lσ. Then the subterm t∣π is removed from t and replaced
by the according instance rσ of the right-hand side r.

The construction for term graphs is somewhat similar. For the sake of illustration, let us
consider the term graph g and the term graph rewrite rule ρ shown in Figure 6.1. Equally
to term rewriting, the first step is the matching of the left-hand side ρl of ρ with a sub-
term graph of g. The equivalent to substitutions for term graphs are V-homomorphisms.
V-homomorphisms instantiate variables as they allow nodes labelled with a variable to be
mapped to an arbitrarily labelled node. In the example, we match the left-hand side with
the sub-term graph rooted at n1:

142 Chapter 6 Term Graph Rewriting

a

a

s

s

0

a

x s

y

s

a

ϕ

The sub-term graph g∣n1 is a redex of the rule ρ.
During the next step, the build step, all nodes in the term graph rewrite rule not reachable

from the left root are added to the term graph g including all edges between them. Moreover,
edges that start in these nodes having an endpoint in the rule’s left-hand side, such as the
two edges starting in r1, are also copied, where the endpoint in g is then the corresponding
image by ϕ.

a

a

s

s

0

s

a

Next, in the redirection step, all edges ending in the root of the redex, viz. the node n1,
are redirected to the right root of ρ (resp. its image by ϕ if existent), viz. r0. That is, the
right-hand side of the rewrite rule is embedded into the graph exactly at that position where
the redex has resided before:

a

a

s

s

0

s

a

Eventually, in the garbage collection step, the root node of the new term graph is set,
viz. the node n0, and all nodes not reachable from the root node are removed.

6.1 Term Graph Rewriting Systems 143

a

s

s

0

s

a =

a
n0

s
r0

a
r1

s
n2

s
n3

0
n4

The graph on the right-hand side depicts the same term graph. It is only restructured for
readability and contains the node names in order to compare it to the original term graph
g and the rule ρ.

Below we will give the formal definition of the construction of the result of a term graph
rewrite rule application.

Definition 6.1.3 (application of a term graph rewrite rule, [BvEG+87])
Let ρ = (Nρ, labρ, sucρ, lρ, rρ) be a term graph rewrite rule over signature Σ, g ∈ G∞(Σ,V)
and n ∈ Ng. ρ is called applicable to g at n if there is a V-homomorphism ϕ∶ ρl →V g∣n. ϕ
is called the matching V-homomorphism of the rule application, and g∣n is called a ρ-redex.
Next, we define the result of the application of the rule ρ to g at n using the V-homomorphism
ϕ. This is done by constructing the intermediate graphs g1 and g2, and the final result g3.

(i) The graph g1 is obtained from g by adding the part of ρ not contained in the left-hand
side:

Ng1 = Ng ⊎ (Nρ ∖Nρl)

labg1(m) =
⎧⎪⎪⎨⎪⎪⎩

labg(m) if m ∈ Ng

labρ(m) if m ∈ Nρ ∖Nρl

sucg1
i (m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sucgi (m) if m ∈ Ng

sucρi (m) if m, sucρi (m) ∈ Nρ ∖Nρl

ϕ(sucρi (m)) if m ∈ Nρ ∖Nρl , sucρi (m) ∈ Nρl

(ii) Let l and r be the nodes in g1 corresponding to lρ and rρ, respectively. That is, l = n,
and r = ϕ(rρ) if rρ ∈ Nρl and r = rρ otherwise. g2 is obtained from g1 by redirecting
edges ending in l to r:

Ng2 = Ng1

labg2 = labg1

sucg2(m) =
⎧⎪⎪⎨⎪⎪⎩

sucg1(m) if sucg1(m) ≠ l
r if sucg1(m) = l

(iii) The term graph g3 is obtained by setting the root node r̂, which is r if l = rg, and
otherwise rg. That is, g3 = (g2∣r̂, r̂). This also means that all nodes not reachable from
r̂ are removed.

Remark 6.1.4. Recall that, according to Lemma 4.2.5, the V-homomorphism is unique if
it exists. Hence, if a rule is applicable to a term graph at a certain node, then the result is
uniquely defined.

144 Chapter 6 Term Graph Rewriting

Subsequently, we will consider rewriting on canonical term graphs only. Therefore, we
also adopt the convention described in Remark 4.3.9, i.e. we consider C(g3) as the result of
the application of a rule instead of g3.

With the definition of the application of term graph rewrite rules to term graphs we can
define the semantics of a term graph rewritings system, viz. the ARS it induces.

Definition 6.1.5 (semantics of IGRSs)
Let R = (Σ,R) be an IGRS.

(i) A prestep of R is a triple (g, n, ρ) consisting of a term graph g ∈ G, a node n ∈ Ng, and
a rule ρ ∈ R.

(ii) A prestep ϕ = (g, n, ρ) is called a step if ρ is applicable to g at n.

(iii) The ARS induced of R, denoted AR, is the ARS given by the tuple (A,Φ, src, tgt),
where A is the set of canonical term graphs G∞C (Σ,V), and Φ is the set of steps of R.
Let ϕ = (g, n, ρ) be a step of R. We define src(ϕ) = g and tgt(ϕ) = g′, where g′ is the
result of the application of ρ to g at n.

Notation 6.1.6. Just as for term rewriting system, also every IGRS R = (Σ,R) can be
associated with its induced ARS AR. That is why we identify R with AR and consider
IGRSs as a special case of ARSs. In particular, we will write s →R t instead of s →AR t.
Since the steps of an IGRS additionally contain information about the rule that was applied
and the node where it was applied, we use the notation g →n,ρ h for a step (g, n, ρ) whenever
this is appropriate.

Compared to rewriting on terms the notion of term graph rewriting that we use here is
slightly different: Instead of removing the redex from the term graph and replacing it with
the corresponding instance of the right-hand side of the rule, only those parts of the redex
are removed which do not correspond to a part of the left-hand side which is shared with
the right-hand side. These parts are then replaced by those parts of the rule which occur
only in the right-hand side, i.e. are not reachable from the left root. In this way, as much
of the original sharing is maintained as possible. Alternatively, one could have defined term
graph rewriting also in accordance with term rewriting: If a rule ρ is applicable to a term
graph g at n with matching V-homomorphism ϕ, then the result of the reduction step is
the term graph g[ρ′r]n, where ρ′r is the instance of ρ’s right-hand side ρr according to ϕ.
The instance ρ′r can be defined by replacing each variable node n in ρr by (a copy of) the
sub-term graph g∣ϕ(n).

In order to illustrate this, let us reconsider the term graph g and the term graph rewrite
rule ρ in Figure 6.1. The result of the application of ρ to g at n1 is shown in Figure 6.2a.
We have already seen how this came about. Figure 6.2c, on the other hand, shows the term
graph g[ρ′r]n1 , where ρ′r is the instance of the right-hand side of ρ according to the matching
V-homomorphism ϕ. The primed nodes n′2, n′3 and n′4 constitute a copy of the sub-term
graph g∣ϕ(l1) that corresponds to the x-node in ρ. Similarly, the double-primed nodes n′′3
and n′′4 constitute a copy of the sub-term graph g∣ϕ(l2) that corresponds to the y-node in
ρ. One can see, that the only difference between the different constructions is the sharing
behaviour. In other words: Both alternatives have the same unravelling. The construction
by explicit replacements has, however, less sharing. The following lemma confirms this in a
more general setting – independent of how the instantiation of the right-hand side is defined:

Lemma 6.1.7 (rewriting by replacement)
Let g, h ∈ G∞C (Σ), n ∈ Ng, ρ an infinitary term graph rewrite rule over Σ and g →n,ρ h. Then
there is a V-homomorphism ϕ∶ g[ρr]n →V h.

6.1 Term Graph Rewriting Systems 145

a
n0

s
r0

a
r1

s
n2

s
n3

0
n4

(a) Reduct of g.

a
n0

s
n3

0
n4

◻

(b) The context g[]n1 .

a
n0

s
n3

0
n4

s
r0

a
r1

s
n′2

s
n′3

0
n′4

s
n′′3

0
n′′4

(c) Alternative reduct of g.

Figure 6.2: Alternative definition of term graph rewriting.

Proof. Let g′ = g[ρr]n and ϕ the matching V-homomorphism of the rule application. Define
the function ψ∶ Ng′ → Nh as follows:

ψ(m) =
⎧⎪⎪⎨⎪⎪⎩

m if m ∈ Ng or m ∈ Nρ ∖Nρl

ϕ(m) if m ∈ Nρl

By a careful case analysis following the construction of h, one can show that ψ is indeed a
V-homomorphism from g′ to h.

Next, we want to extend the ARS semantics of term graph rewriting to an MRS and a
PRS semantics allowing transfinite reduction sequences. To this end, we need to generalise
the notions of height and context of a rewrite step to the setting of term graphs. We have
to be careful when we do this. A straightforward candidate for the height of a reduction
step ϕ∶ g →n,ρ h is 2−depthg(n). Similarly, we can easily define the context of ϕ as g[�]n, the
replacement of the redex by �. These candidates for heights and contexts of reduction steps,
however, do not yield an MRS or a PRS, respectively. The following example illustrates this:

Example 6.1.8
Consider the term graph rewrite rule

f

x

cρ∶

This rule gives rise to the following reduction step:

h

f

f
n

c
m

h

c
m′ f

c

ϕ∶
n, ρ

146 Chapter 6 Term Graph Rewriting

Let g be the term graph before the reduction and g′ the term graph afterwards. The depth
of the node n at which the reduction takes place is 2. Hence, 2−depthg(n) = 1

4 . However,
the c-node m in g and the corresponding c-node m′ in g′ have different acyclic sharing.
Since these two nodes are at depth 1, the similarity of g and g′ is sim(g, g′) = 1. Hence,
d(g, g′) = 1

2 . Therefore, 2−depthg(n) cannot be defined to be the height of the rewriting step
as this violates the condition on MRS that the height is greater or equal to the distance of
the involved objects.

g[�]n is the term graph

h

c f

�

For g[�]n to be a legitimate context for the rewrite step ϕ, we must have g[�]n ≤� g, g′. We
indeed have (also in general) g[�]n ≤� g′. Yet, it does not hold that g[�]n ≤� g. Also here
the problem is the different acyclic sharing of the respective c-nodes.

The following definition introducing the deletion of a whole sub-term graph and the depth
of a sub-term graph provides the necessary tools in order to solve the problem illustrated
above:

Definition 6.1.9 (sub-term graph depth, sub-term graph deletion)
Let g ∈ G∞(Σ�,V) and n ∈ Ng.

(i) The depth of the sub-term graph g∣n in g, denoted g∣n-depth(g), is the minimal depth
of nodes m ∈ Ng∣n in g, i.e.

g∣n-depth(g) = min {depthg(m) ∣m ∈ Ng∣n } .

(ii) The deletion of the sub-term graph g∣n from g, denoted g ∖ g∣n, is the term graph
(N, lab, suc, rg) given by

Mg∣n = {m ∈ Ng∣n ∣ ∃m′ ∈ Ng ∖Ng∣n, i ∈ N∶ sucgi (m
′) =m}

N = (Ng ∖Ng∣n) ∪Mg∣n

lab(m) =
⎧⎪⎪⎨⎪⎪⎩

labg(m) if m ∈ Ng ∖Ng∣n

� if m ∈Mg∣n

suc(m) =
⎧⎪⎪⎨⎪⎪⎩

sucg(m) if m ∈ Ng ∖Ng∣n

ε if m ∈Mg∣n

In the construction of the deletion of a sub-term graph, the set Mg∣n contains exactly
those nodes in the subterm graph which are on the fringe to the rest of the term graph.
These are the only nodes in the sub-term graph which are preserved by the deletion. Their
sole purpose is to fill the holes that are caused by the deletion of the sub-term graph. That
is why they are relabelled with �.

Example 6.1.10
Reconsider the reduction step discussed in Example 6.1.8. Instead of taking only the depth
of n for the definition of the height of the reduction step we are considering the depth
of the redex g∣n in g: g∣n-depth(g) is 1 since depthg(m) is 1. Defining the height of ϕ
as 2−g∣n-depth(g) yields a height of 1

2 . This satisfies the condition for heights in MRSs as
2−g∣n-depth(g) is greater or equal to the distance d(g, g′) = 1

2 .

6.1 Term Graph Rewriting Systems 147

Similarly, instead of simply replacing the node n by a �-node we consider the deletion
of the whole redex g∣n from g as the context of the reduction step. This yields the context

h

� f

�

Clearly, we have that g ∖ g∣n ≤� g, g′ and, thus, g ∖ g∣n satisfies the condition for contexts in
PRSs.

The following lemma confirms that the above observation for the example also holds in
general.

Lemma 6.1.11 (sub-term graph deletion)
Let ϕ∶ g →n h be a reduction step in an IGRS. Then it holds that g ∖ g∣n ≤� g, h.

Proof. Let g′ = g ∖ g∣n. Define the function ϕ∶ Ng′ → Ng by m↦m. It is straightforward to
check that ϕ is a strong �-homomorphism from g′ to g.

Define ψ∶ Ng′ → Nh by

ψ(m) =
⎧⎪⎪⎨⎪⎪⎩

m if m ∈ Ng ∖Ng∣n

suchi (m′) if m ∈Mg∣n, i ∈ N,m′ ∈ Ng ∖Ng∣n with sucgi (m′) =m

It can be easily checked that ψ is well-defined. Showing that it is a strong �-homomorphism
is straightforward.

With the above lemma we can safely define the MRS and the PRS that is induced by
an IGRS:

Definition 6.1.12 (transfinite semantics of IGRSs)
Let R = (Σ,R) be a IGRS.

(i) The MRS induced by R, denotedMR, is given by the tuple

(G∞C (Σ,V),Φ, src, tgt,d,hgt),

where (G∞C (Σ,V),Φ, src, tgt) is the ARS AR induced by R, d is the ultrametric on
G∞C (Σ,V), and hgt is defined as

hgt(ϕ) = 2−g∣n-depth(g) for each ϕ∶ g →n h

(ii) The PRS induced by R, denoted PR, is given by the tuple

(G∞C (Σ�,V),Φ, src, tgt,≤�, cxt),

where (G∞C (Σ�,V),Φ, src, tgt) is the ARS AR′ induced by the IGRS R′ = (Σ�,R), ≤�
is the partial order on G∞(Σ�,V), and cxt is defined as

cxt(ϕ) = g ∖ g∣n for each ϕ∶ g →n h

The following proposition confirms that the above definition indeed yield an MRS and
a PRS. Moreover, it shows that both transfinite semantics are complete.

Proposition 6.1.13 (transfinite semantics yields complete URS/PRS)
Each IGRS R induces a complete URSMR and a complete PRS PR.

148 Chapter 6 Term Graph Rewriting

Proof. At first consider MR: (G∞C (Σ,V),d) forms, according to Proposition 4.5.16 and
Proposition 4.5.19, a complete ultrametric space. Hence, it remains to be shown that
d(g, h) ≤ hgt(ϕ) for each reduction step ϕ∶ g →n,ρ h. According to Lemma 6.1.11, we
have g ∖ g∣n ≤� g, h and, therefore, g ∖ g∣n ≤� g ⊓� h. Hence, we have, due to Lemma 4.2.11,
that �-depth(g ∖ g∣n) ≤ �-depth(g ⊓� h), which is equivalent to �-depth(g ∖ g∣n) ≤ sim(g, h).

Since g is a total term graph, the only �-nodes in g∖g∣n are precisely those inMg∣n. It is
clear that, for each node m ∈ Ng∣n, there is a node m′ ∈Mg∣n with depthg(m′) ≤ depthg(m).
Since Mg∣n is also a subset of Ng∣n, we have

�-depth(g ∖ g∣m) = min {depthg∖g∣n(m) ∣m ∈Mg∣n }

= min {depthg(m) ∣m ∈Mg∣n }

= min {depthg(m) ∣m ∈ Ng∣n }
= g∣n-depth(g)

Hence, we have that g∣n-depth(g) ≤ sim(g, h) and we can conclude that

d(g, h) = 2−sim(g,h) ≤ 2−g∣n-depth(g) = hgt(ϕ).

Next, consider PR: Since (G∞C (Σ�,V),≤�) forms, according to Proposition 4.4.18, a
complete semilattice, it remains to be shown that cxt(ϕ) ≤� g, h holds for each rewrite step
ϕ∶ g →n h. This follows immediately from Lemma 6.1.11.

Recall that for ITRSs the PRS semantics always extends the corresponding MRS se-
mantics. For term graphs, we can at least show that the PRS semantics of IGRSs weakly
extends its MRS semantics:

Proposition 6.1.14 (PRS semantics of IGRSs weakly extends MRS semantics)
For each IGRS R, its induced PRS PR weakly extends its induced MRSMR.

Proof. We have to show that items (1) - (4) of Definition 3.3.10(ii) hold true. (1) holds by
Proposition 4.5.22. Items (2) - (4) follow immediately from Definition 6.1.12.

Also here we can apply the theory established in Section 3.3.2 in order to identify MRS
reductions with total PRS reductions:

Corollary 6.1.15 (total PRS reductions = MRS reductions)
Let R be an IGRS. Then the following holds for reduction sequences in R:

(i) S∶ s↪p . . . is total iff S∶ s↪m

(ii) S∶ s↪p t is total iff S∶ a↪m b.

Proof. Follows immediately from Proposition 6.1.14 and Proposition 3.3.11.

It is not known whether the PRS semantics also strongly extends the MRS semantics.
We conjecture, however, that it does.

6.2 Simulating Term Rewriting

As mentioned in the introduction to this chapter, the original aim of term graph rewriting
was to efficiently implement term rewriting. It is efficient in the sense that it allows sub-
structures to be shared when they are needed multiple times instead of being copied. We
have seen this in the translation of the duplicating term rewrite rule d(x) → a(x,x) to a
term graph rewrite rule. The goal is to be able to simulate a term reduction s →⋆ t by a
term graph reduction g →⋆ h such that U(g) = s and U(h) = t.

6.2 Simulating Term Rewriting 149

The particular utility of this idea for infinitary rewriting is that it is possible to represent
infinite terms by finite term graphs. Instead of horizontal sharing that is used for sharing of
subexpressions [Wad71], vertical sharing, i.e. cyclic term graphs, allows to represent infinite
terms by finite term graphs. A term t is represented by a term graph g if t = U(g). The
simplest example for vertical sharing is the term graph consisting of a single f -node and a
loop which represents the term fω. The principle motivation in this setting is to be able to
simulate a transfinite reduction s↠ t involving possibly infinite terms by a finite reduction
g →⋆ h on finite term graphs. This is, however, not always possible since not every infinite
term is representable by a finite term graph.

Definition 6.2.1 (rational term)
A term t ∈ T ∞(Σ,V) is called rational if there is a finite term graph g ∈ G(Σ,V) such that
t = U(g).

Infinite rational terms can be represented by finite term graphs through cycles. These
cycles are, however, only capable of repeating the same structure over and over again. Hence,
rational terms are precisely those which have only finitely many different subterms:

Theorem 6.2.2 (rational terms, [Cou83])
A term t is rational iff it has finitely many distinct subterms, i.e. S(t) is finite.

Example 6.2.3 (rational terms)
Consider the infinite term c(0, c(0, c(0, . . . that represents the infinite list [0,0,0, . . .]. This
term has only two different subterms, viz. 0 and the term c(0, c(0, c(0, . . . itself. Hence, this
term can be represented by a term graph consisting of only two nodes:

c

0

That is, c(0, c(0, c(0, . . . is a rational term. By contrast, the term c(0, c(s(0), c(s2(0), . . . ,
that represents the infinite list [0, s(0), s2(0), . . . , has infinitely many subterms, viz. for
each n ∈ N the terms sn(0) and c(sn(0), c(s(n+1)(0), c(s(n+2)(0), It is not possible to
represent this term by a finite term graph. For each subterm, one needs a node in the term
graph:

c

0 c

s c

s

We have intuitively used the notion of translating a term rewrite rule to a term graph
rewrite rule. The following definition makes this explicit:

Definition 6.2.4 (unravelling of IGRSs)
Let R = (Σ,R) be an IGRS.

(i) Let ρ ∈ R. The unravelling of ρ, denoted U(ρ), is the term rewrite rule U(ρl) → U(ρr).

(ii) The unravelling of R, denoted U(R), is the ITRS (Σ,U(R)), where

U(R) = {U(ρ) ∣ρ ∈ R} .

150 Chapter 6 Term Graph Rewriting

So we can say that a term rewrite rule ρ is translated to a term graph rewrite rule ρ′
if ρ = U(ρ′). It is obvious that a term rewrite rule might have several different translations
and we will see the ramifications of the different choices that are available.

As we have mentioned previously, cycles in term graphs can be used represent infinite
terms. Cycles may also be introduced by term graph rewriting. The following definition
aims to capture when this happens.

Definition 6.2.5 (cyclicity of IGRSs)
Let R = (Σ,R) be an IGRS.

(i) A rule ρ ∈ R is called cyclic if the underlying graph g of ρ is cyclic or contains a
non-empty path from the right root to the left root; otherwise, it is called acyclic.

(ii) R is called cyclic if some rule in R is cyclic. Otherwise R is called acyclic.

The above definition of cyclicity of term graph rewrite rules is non-standard. Besides
the standard notion of cyclicity of the underlying graph it also includes an implicit cyclicity
that is caused by an edge from the right-hand side of the rule to the rule’s left root. The
following example illustrates this implicit cyclicity:

Example 6.2.6
Consider the term graph rewrite rule

f

x

c

ρ∶

Note that the unravelling of ρ is U(ρ)∶ f(x) → c(x, f(x)) or U(ρ)∶ f(x) → x ∶ f(x) if c is
written as an infix ∶. If ∶ is interpreted as the list constructor, then the reducts of f(t) by
U(ρ) are increasingly long lists containing t. In terms of infinitary rewriting, f(t) strongly
converges to [t, t, . . .] in ω steps.

If we apply ρ to the term f(t), we obtain the reduction step

f

t

c

t

ϕ∶

The cycle in the result term h arises in the redirection step of the rewrite construction:

f

t

f

t

c f

t

c

t

c
build redirect garbage

collection

Although neither the term f(t) nor the applied rule ρ contains a cycle, the result h of the
reduction step is cyclic. Also note that the unravelling U(h) of the result is the infinite list
[t, t, . . .] that is obtained by infinitary term rewriting.

The phenomenon that we have seen above occurs whenever there is a non-empty path
from the right root to the left root. It is an artifact of the construction of the result term
graph. One could have defined the rewriting construction slightly different such that this
phenomenon does not appear. Farmer and Watro observed this behaviour also in their
variant of term graph rewriting [FW90]. It occurs when the right-hand side contains a
reference to the left-hand side. Thereby, the right-hand side captures the redex during the
application of the rule. Therefore, it is called redex capturing:

6.2 Simulating Term Rewriting 151

Definition 6.2.7 (redex capturing)
Let ρ = (g, l, r) be a term graph rewrite rule. ρ is said to capture its redexes if g contains a
non-empty path from r to l. The cyclisation of ρ is the term graph rewrite rule ρ′ = (g′, l, r)
given by

Ng′ = Ng labg
′
= labg

sucg
′
(n) =

⎧⎪⎪⎨⎪⎪⎩

r if sucg(n) = l and n ∈ Ng∣r

sucg(n) otherwise

That is, edges going from the right-hand side to the left root are redirected to the right root.

It is clear that the cyclisation of the rules of a IGRS does not change its semantics. It
just makes the implicit cycles caused by redex capturing explicit

Fact 6.2.8 (rewriting is invariant to cyclisation)
Let ρ be a term graph rewrite rule and ρ′ its cyclisation. Then it holds that

g →n,ρ h iff g →n,ρ′ h

Example 6.2.9
Reconsider the term graph rewrite rule ρ from Example 6.2.6. As we have seen, ρ captures
its redexes. The cyclisation of ρ is the term graph rewrite rule

f

x

c

ρ′∶

ρ′ yields the same reductions as ρ. For example, if applied to f(t), we obtain the same
reduction step ϕ. The construction, however, is slightly different, of course:

f

t

f

t

c f

t

c

t

c
build redirect garbage

collection

Redex capturing is not always desirable, e.g. when we want to simulate finitary rewriting.
As we have seen in Example 6.2.6, a single reduction step in an GRS R might take infinitely
many steps in the TRS U(R).

On the other hand, this is certainly desirable whenever we want to represent transfinite
term reduction sequences by finite term graph reduction sequences. The most prominent
example of an application of this method is the implementation of the fixed point combinator
Y in function programming languages (cf.[PJ87] and [Tur79]):

Example 6.2.10
In an applicative language, Y is defined by the rewrite rule ρ0∶ Y f → f(Y f). The f is
interpreted as a variable and function application is represented by juxtaposition. Written
as a term graph rewrite rule ρ0 becomes

@

Y f

@

@

Y

ρ1∶

152 Chapter 6 Term Graph Rewriting

The symbol @ represents function application explicitly. One can see that in ρ1 (as well as
in ρ0) the left-hand side occurs as a subterm in the right-hand side. Hence, it can be more
concisely represented by

@

Y f

@
ρ2∶

ρ2 captures its redexes. Note that we still have U(ρ1) = U(ρ2) = ρ0. The (equivalent)
cyclisation of ρ2 is the term graph rewrite rule

@

Y f

@
ρ3∶

The term graph rewrite rule ρ3 is used in most functional programming languages to imple-
ment the fixed point combinator. However, note that U(ρ3) ≠ ρ0.

The approach illustrated in Example 6.2.10 can be applied to any term rewrite rule, in
particular term rewrite rules of the form l → C[l, . . . , l] whose right-hand side contains the
left-hand side as a subterm – possibly multiple occurrences of it. This rule can then be
translated straightforwardly to a term graph rewrite rule similar to ρ1 in Example 6.2.10.
Then one can compute a variant of the obtained rule, i.e. one with the same unravelling,
having maximal sharing. This can be achieved by employing a congruence closure algorithm
(cf. [DST80] and [Bah07]). Eventually, a term graph rewrite rule is obtained which captures
its redexes. For further optimisation, one can then compute its cyclisation.

Next we want to discuss the adequacy of term graph rewriting for simulating term
rewriting. That is, we would like to have for each term rewriting system R and each of its
translation into a graph rewriting system G with U(G) = R, that G simulates R. Ideally, we
this includes both soundness, i.e. that g ↠G h implies U(g) ↠R U(h), and completeness,
i.e. that U(g) ↠R U(h) implies g ↠G h. One can easily see that full completeness can not
be satisfied since term graph rewriting is in general coarser that term rewriting. In term
rewriting, each redex can be contracted individually. In term graph rewriting, however, a
redex in a term graph can, through sharing, represent multiple redexes (in its unravelling).
Contracting a redex in a term graph might, therefore, correspond to contractions of mul-
tiple redexes in the corresponding term. To this end, a weaker notion of completeness is
considered.

The analysis of this adequacy of term graph rewriting is restricted to orthogonal systems.
Orthogonality of term graph rewriting systems is similar to the corresponding concept in
term rewriting:

Definition 6.2.11 (left-linearity, orthogonality)
Let R be an IGRS and ρ an infinitary term graph rewrite rule.

(i) ρ is called left-linear if its left-hand side is a term tree. R is called left-linear if each
rule in R is left-linear.

(ii) R is called orthogonal if it is left-linear, and its unravelling U(R) does not have any
critical pairs.

Non-left linearity in term graph rewriting is in some sense stronger than in term rewriting:
Equality in term rewriting can be enforced by having multiple occurrences of the same
variable in the left hand side. Equality in term graph rewriting can be enforced by sharing.
This is however not restricted to variables. Since, for the matching of the left-hand side with
the redex, a V-homomorphism is employed, matching requires the redex to have at least the
“same amount” of sharing as the left-hand side.

6.2 Simulating Term Rewriting 153

U(g) t U(h)

g h

∗
U(R)

∗
U(R)

∗
R

(a) Acyclic term graphs.

U(g) t U(h)

g h

r

U(R)
r

U(R)

∗
R

(b) Cyclic term graphs.

Figure 6.3: Weak completeness of term graph rewriting.

Remark 6.2.12. Since term graph rewrite rules are only allowed to have at most a single
v-node for each variable v ∈ V, restricting the left-hand side to have a tree structure, which
means that it is isomorphic to its own unravelling, causes the unravelling of left-linear
term graph rewrite rules to be left-linear term rewrite rules. Hence, also the unravelling of
orthogonal IGRSs results in orthogonal ITRSs.

At first we deal with the simulation of finitary term rewriting. Since cycles in term
graphs can cause a contraction of a single redex to represent infinitely many contractions in
the corresponding term rewriting system, we have to restrict the analysis to acyclic (I)GRSs
and acyclic term graphs.

The soundness of term graph rewriting is straightforward:

Theorem 6.2.13 (soundness of acyclic term graph rewriting, [KKSdV94])
Let R be a left-linear acyclic IGRS over Σ and g ∈ G∞C (Σ,V) an acyclic term graph. If
g →∗

R h, then U(g) →∗
U(R) U(h).

As we have already mentioned, full completeness is beyond the abilities of term graph
rewriting. Hence, we have to be satisfied with a weaker notion. It includes that normal
forms are preserved, and that term reductions can be simulated by a term graph reduction
which might overshoot the mark, but only so far such that term rewriting can catch up with
it; cf. Figure 6.3a.

Theorem 6.2.14 (completeness of acyclic term graph rewriting, [KKSdV94])
Let R be an orthogonal acyclic IGRS over Σ and g ∈ G∞C (Σ,V) an acyclic term graph. Then
the following holds:

(i) g is a normal form in R iff U(g) is a normal form in U(R).

(ii) If there is a finite reduction U(g) →∗
U(R) t, then there are finite reductions g →∗

R h and
t→∗

U(R) U(h); cf. Figure 6.3a.

This overshooting of term graph rewriting can be seen in the example illustrated in
Figure 6.4: Let ρ be the term graph rewrite rule c → d. The term graph in the lower left
corner represents the term f(c, c) by sharing a single c-node. The reduction step in the
upper left corner contracts the left occurrence of c by the term rewrite rule U(ρ)∶ c → d.
Since the shared c-node in the corresponding term graph represents two U(ρ)-redexes, the
result of its contraction by the term graph rewrite rule ρ yields a term graph representing
the term t(d, d). That is, both U(ρ)-redexes were contracted. Hence, in order to catch up
on the term rewriting side, also the second U(ρ)-redex has to be contracted.

Next, we consider term graph rewriting of cyclic term graphs. The problem that arises in
cyclic term graphs is that a node might not only represent finitely many term redexes through
horizontal sharing, but it can also represent infinitely many term redexes through vertical
sharing. Hence, even a single term graph rewriting step might simulate infinitely many term
rewriting steps. That is why the adequacy of cyclic term graph rewriting is regarded w.r.t.
infinitary term rewriting. The soundness of this kind of simulation is straightforward.

154 Chapter 6 Term Graph Rewriting

f

c c

f

d c

f

d d

f

c

f

d

U(ρ) U(ρ)

ρ

U U

Figure 6.4: Example for weak completeness of term graph rewriting.

Unfortunately, orthogonal term graph rewriting is not adequate for arbitrary infinitary
term rewriting. In order to obtain an adequacy result, one has to consider a subset of all
possible transfinite reductions:

Definition 6.2.15 (rational reduction, [KKSdV94])
Let R be an ITRS over Σ and t a rational term in T ∞(Σ,V).

(i) Let U ⊆ P(t) be a set of occurrences in t. U is called rational if the labelling t(U) of t
is still rational.

(ii) The set of rational reduction sequences inR is the smallest set S satisfying the following
conditions:

(a) If T is a complete development of a set of rational redex occurrences in a rational
term and T is of length at most ω, then T ∈ S.

(b) If T0, . . . , Tn ∈ S, then also ∏i≤n Ti ∈ S.

We use the notation S∶ s↠r t to indicate that a reduction sequence S∶ s↠ t is rational.

Indeed, cyclic term graph rewriting is also sound w.r.t. rational term graph rewriting:

Theorem 6.2.16 (soundness of cyclic term graph rewriting, [KKSdV94])
Let R be a left-linear IGRS over Σ and g ∈ G∞C (Σ,V). If g →∗

R h, then U(g) ↠r
U(R) U(h).

Another aspect one has to take into account is the fact that (infinitary) confluence is
essential for weak completeness of term graph reduction w.r.t. (infinitary) term rewriting,
whenever the signature has a symbol of arity 2 or higher:

Let R be an IGRS and t0 a term that is infinitarily reducible to t1 and t2 in the ITRS
U(R). Consider the term graph depicted in the lower left corner of Figure 6.5. Its unravelling
is the term f(t0, t0) which is infinitarily reducible to f(t1, t2). If weak completeness holds,
then there is a term graph reduction as shown in the lower half of Figure 6.5 and an infinitary
term reduction to the unravelling of the result term graph, shown in the upper right corner
of the picture. Provided that there is no rule in R having a left root labelled with f , the
reduction f(t1, t2) ↠ f(t3, t3) is only possible if there are reductions t1 ↠ t3 and t2 ↠ t3.
Note that we assume here arbitrary transfinite reductions and not only regular ones. This
abstract example should only illustrate the motivation for the restrictions that are imposed
to the analysis of completeness of cyclic term graph reduction.

The same argument can be made for acyclic term graph rewriting and its weak com-
pleteness w.r.t. finitary term rewriting. Orthogonal ITRSs are finitarily confluent (cf. The-
orem 2.3.31). They are, however, not necessarily infinitarily confluent (cf. Example 5.4.22).
We have seen that orthogonal ITRSs are infinitarily confluent iff they are almost non-
collapsing (cf. Theorem 5.4.28). Therefore, we also need a corresponding notion for IGRSs:

6.2 Simulating Term Rewriting 155

f

t0 t0

f

t1 t2

f

t3 t3

f

t0

f

t3

U(ρ) U(ρ)

⋆

ρ

U U

Figure 6.5: Necessity of (infinitary) CR for weak completeness of term graph rewriting.

0

1

2

3

(a) Term graph g.

0

0

0

0 1

1

1 2

1

1

1 2

2

2 3

U

(b) Term U(g).

0

1

2

3 3

2

3 3

1

2

3 3

2

3 3

ω

(c) Term t.

Figure 6.6: Infinitary term graph rewriting vs. infinitary term rewriting.

Definition 6.2.17 (almost non-collapsing)
An IGRS R is called almost non-collapsing if its unravelling U(R) is almost non-collapsing.

The unravelling of an almost non-collapsing orthogonal IGRS is by definition also almost
non-collapsing and orthogonal (cf. Remark 6.2.12), and is, therefore, infinitarily confluent
according to Theorem 5.4.28.

The following theorem shows that weak completeness holds for almost non-collapsing
IGRSs:

Theorem 6.2.18 (weak completeness of acyclic term graph rewriting, [KKSdV94])
Let R be an orthogonal and almost non-collapsing IGRS over Σ and g ∈ G∞C (Σ,V). Then
the following holds:

(i) g is a normal form in R iff U(g) is a normal form in U(R).

(ii) If there is a rational reduction U(g) ↠r
U(R) t, then there are reductions g →∗

R h and
t↠r

U(R) U(h); cf. Figure 6.3b.

Weak completeness does not hold for arbitrary transfinite term reductions – even if we
allow transfinite term graph reductions. The following example illustrates this:

156 Chapter 6 Term Graph Rewriting

Example 6.2.19 ([KKSdV94])
Consider the signature Σ which contains for each natural number n ∈ N a binary symbol n
and the GRS R over Σ containing for each n ∈ N a rule

n

x y

n + 1
ρn∶

The unravelling of ρn is the term rewrite rule U(ρn)∶ n(x, y) → n + 1(x, y). That is, each
symbol n in a term can be “incremented” by applying the term graph rewrite rule U(ρn).

Now consider the term graph g shown in Figure 6.6a and its unravelling U(g) shown in
Figure 6.6b. It is easy to see that one can reduce U(g) to the term t in the TRS U(R) in ω
steps. Each node at depth n in t has the label n for all n ∈ N. Hence, for each n ∈ N there are
only finitely many nodes in t labelled with n. In order to have weak completeness, there has
to be a term graph h with g↠R h and t↠U(R) U(h). However, g does solely (infinitarily)
reduce in R to term graphs which only differ from g in the labelling. In particular, each
reduct also contains loops which means that there is some n such that the unravelling of the
reduct contains infinitely many nodes labelled with n. On the other hand, each term that t
can be (infinitarily) reduced to has only finitely many nodes labelled with n for each n ∈ N.

The example above uses an infinite signature. One can, however translate this to a system
with only finitely many symbols.3 To this end, we consider the signature Σ′ = {f/2, g/1, h/1}.
In this way, each symbol n in Σ can be encoded in Σ′ by h(gn(f(⋅, ⋅))). The rewrite rules
in R can then be mimicked by the single rule

h

x

h

g

3In [KKSdV94] a similar translation to a system over a finite signature is given. For their translation,
however, the counterexample does not work anymore since it allows terms of the form gn(f(⋅, ⋅)) to be
reduced to gω by an transfinite reduction.

Chapter 7

Conclusions

In this thesis we have discussed various fields of infinitary rewriting. The focus of our work
was set on term rewriting and related areas such as term graph rewriting. It should be
pointed out though that also other reduction systems were analysed for the properties of
their transfinite reductions. This includes infinitary versions of λ-calculi [Nak75, KKSdV95b,
KKSdV97, BDC99, KvOdV99, Blo04, BK09] and combinatory reduction systems [KS05b,
KS05a, KS06, Ket08, Ket09] as well as stream definitions [Sĳ89, EGH+07, Zan09]. More-
over, most of the results that we have developed and presented in this thesis are restricted
to (almost) orthogonal systems. Yet, in the literature also non-orthogonal systems were
considered (cf. [IN91, GL06]). The analysis of infinitary systems that we have conducted
here was primarily concerned with the fundamental characteristics of transfinite reduction
sequences as well as with infinitary termination and confluence properties. Recently, how-
ever, also the modular behaviour of infinitary properties was investigated [Kah09, Sim06]. In
the following, we briefly summarise the results of our work, and suggest promising directions
for further research. Finally, we also outline possible applications.

7.1 Summary

In this thesis we have discussed several different approaches for modelling transfinite re-
duction sequences. This analysis was chiefly restricted to the well-known metric approach
(MRSs) and our novel method using partial orders (PRSs). We have seen that both ap-
proaches yield transfinite reductions which are intuitive and share some of the properties
that we know from finite reduction sequences. In addition, we have shown that termination
and confluence properties lifted to the infinitary setting exhibit a behaviour similar to that
known from the corresponding properties in the finitary setting.

We have also given a comparison between weakly and strongly convergent reductions
which both models – the metric and the partial order model – are able to distinguish. It
was argued that the strong variant describes the intuition of infinitary term and term graph
rewriting more accurately as it models the result of infinite reductions in terms of stable
parts of the intermediate objects. In particular, we think that this intuition of infinitary
rewriting is manifested most strikingly in strongly convergent PRS reductions: The result
of an infinite reduction sequence is quite literally the largest part of the term resp. term
graph that eventually remains untouched. Our finding that MRS reductions are precisely
the total PRS reductions – at least in the setting of term and term graph rewriting – shows
that the metric approach provides the same intuition and can be considered simply as a
more restrictive variant of the partial order method.

Most importantly, we were able to establish an equivalence of strongly convergent PRS
reductions of a term rewriting system and strongly convergent MRS reductions in the corre-
sponding Böhm reduction w.r.t. root-active terms. This is another indication which shows
that the partial order method constitutes a natural concept of transfinite reductions. The

157

158 Chapter 7 Conclusions

use of sets of meaningless terms and its induced Böhm reductions is a powerful but seemingly
rather artificial construction. The equivalence of both notions of reduction shows that Böhm
reductions occur naturally if the more intuitive model using partial orders is employed.

Surprisingly, despite their finer structure, strongly convergent PRS reductions possess –
compared to strongly convergent MRS reductions – more advantageous properties. In partic-
ular, orthogonal systems, unlike in the metric model, allow arbitrary complete developments
and are infinitary confluent, which generalises results known from finitary orthogonal term
rewriting. Moreover, orthogonal systems are infinitarily normalising. Similarly to strongly
convergent MRS reductions, the partial order approach allows to simulate every transfi-
nite reduction in at most ω steps and to approximate the result of a transfinite reduction
arbitrarily well by a finite reduction.

In order to apply the two models of transfinite reductions also to term graph rewriting,
we have introduced a partial order and a metric on term graphs. Both are extensions of the
corresponding concepts on terms and we were able to establish that they also have the same
fundamental properties as their term counterparts. More precisely, the metric was shown
to be a complete ultrametric and the partial order was shown to form a complete semilat-
tice. With the help of these tools we have introduced corresponding models of infinitary
term graph rewriting. Beyond that, we have argued the ability of term graph rewriting to
implement infinitary term rewriting in restricted cases.

In a nutshell, our analysis has shown that employing partial orders to describe transfinite
reductions constitutes a powerful model which is superior to the classic metric method
in many aspects including its formal properties and its ability to capture the intuition
of transfinite reductions. Nonetheless, it nicely subsumes the metric notion of transfinite
reductions. Therefore, we think that this framework constitutes an attractive basis for
further research and an interesting object of investigation itself.

7.2 Future Work and Possible Applications

Since several new concepts were developed in this thesis, which could not be analysed in their
full depth, there are a number of open questions and promising new directions for further
research. First and foremost, beyond abstract properties, the partial order framework for
transfinite reductions was analysed only in the setting of orthogonal term rewriting systems
– and only for its strongly convergent reductions. We have seen that weakly convergent
MRS reductions have comparatively unsatisfying properties. We did not investigate weakly
convergent PRS reductions and it might be the case that in this setting weak convergence
has nicer properties.

This thesis also introduced infinitary term graph rewriting employing both a metric and
a partial order on term graphs. We did not study any particular properties of infinitary
term graph rewriting. It might be promising to investigate whether some results known
from finitary term graph rewriting extend to infinitary term rewriting. This includes, in
particular, confluence and the existence of complete developments for orthogonal systems (cf.
[BvEG+87]). It is also interesting to explore whether some results known for infinitary term
rewriting such as the compression property and infinitary normalisation can be generalised
to the term graph setting. Moreover, we do not know whether the PRS semantics of IGRSs
not only weakly but also strongly extends the corresponding MRS semantics as it does in
the case of ITRSs. We do, however, conjecture that it does.

We have seen that, on the one hand, finitary (cyclic) term graph rewriting is adequate
for simulating rational term rewriting but that, on the other hand, not even infinitary
term graph rewriting is adequate for simulating infinitary term rewriting. This raises the
question which subset of infinitary term rewriting is infinitary term graph rewriting able
to simulate adequately. A more practically oriented question is how to transform term
rewriting systems into term graph rewriting systems in order to be able to simulate at least
some transfinite reductions. We have informally discussed a very simple approach which is

7.2 Future Work and Possible Applications 159

folklore in functional programming language implementations (cf. [PJ87, Tur79]). Finding
other techniques that allow employing term graph rewriting to implement infinitary term
rewriting is of great importance for its practical relevance.

In this thesis we favoured the term graph rewriting framework of Barendregt et al.
[BvEG+87]. It has been shown to be at least to some extent adequate in order to simulate
strongly convergent MRS reductions of ITRSs. As we have mentioned, there are many
other approaches to term graph rewriting. There are some indications suggesting that the
double-pushout approach [EPS73] and the equational approach [AK96] are more appropriate
for simulating strongly convergent PRS reductions. Corradini et al. [Cor93, CD97, CG95]
also investigated infinite reductions based on a partial order on terms and showed that term
graph rewriting in the double-pushout framework is able to adequately simulate their notion
of infinitary parallel term rewriting. We conjecture similar results for strongly convergent
PRS reductions of ITRSs and term graph rewriting in the double-pushout and the equational
framework.

For implementing infinitary term rewriting using term graph rewriting, it is necessary
to know the closure properties of the set of rational terms. In particular, it would be ad-
vantageous to establish criteria on ITRSs which assure that at least normalising transfinite
reductions preserve rationality, i.e. normal forms reachable from rational terms – possibly
through transfinite reductions – are also rational. For quite restrictive systems having only
constants as left-hand sides, so-called regular equations, this preservation holds [Cou83]. A
comparable result was presented by Kennaway et al. [KKSdV94] who showed that ratio-
nal reductions preserve rational terms. The intention of introducing infinitary term graph
rewriting is to provide a tool that helps identifying closure properties of rational terms.

We have introduced a partial order on term graphs which extends the usual partial order
on terms. The partial order on term graphs also has similar properties, most importantly
it also forms a complete semilattice. Böhm trees can be defined using direct approximants
[Lév78, Ket06]. This technique employs the partial order structure on terms. With the
partial order on term graphs one might be able to define a similar notion of “Böhm graphs”
for term graph rewriting systems.

As we have mentioned, also λ-calculi and combinatory reduction systems were investi-
gated for their transfinite reductions. The research on these higher-order systems is currently
almost entirely limited to the metric model. Only Blom [Blo04] considers a partial order
model similar to ours. However, this approach is only able to model strongly convergent
reductions. It is desirable to apply our partial order framework of infinitary rewriting to
these higher-order systems. Unfortunately, the partial order on terms is not appropriate
for higher-order terms. The reason for this is that it would allow reduction sequences to
converge to higher-order terms which are deemed meaningless, e.g. terms having infinitely
nested meta-variables or λ-abstractions. The same problem also arises for the metric model.
Usually, the considered infinitary higher-order systems use various alternative metrics by
employing different depth measurements which ignore certain edges of term trees. In order
to apply the partial order model to higher-order systems, this idea has to be conveyed to
the definition of the partial order on terms for the purpose of obtaining appropriate partial
orders on higher-order terms.

Bibliography

[AK96] Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting. Fun-
damenta Informaticae, 26(3-4):207–240, 1996.

[AKK+94] Zena M. Ariola, Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and
Fer-Jan de Vries. Syntactic definitions of undefined: On defining the unde-
fined. In Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects of
Computer Software, volume 789 of Lecture Notes in Computer Science, pages
543–554. Springer Berlin / Heidelberg, 1994. International Symposium TACS
’94 Sendai, Japan, April 19–22, 1994, Proceedings.

[AM96] Sergio Antoy and Aart Middeldorp. A sequential reduction strategy. Theoret-
ical Computer Science, 165(1):75–95, 1996.

[AN80] André Arnold and Maurice Nivat. The metric space of infinite trees. Algebraic
and topological properties. Fundamenta Informaticae, 3(4):445–476, 1980.

[Bah07] Patrick Bahr. Implementation of a fast congruence closure algorithm. Tech-
nical report, Technische Universität Dresden, Dresden, 2007.

[Bar84] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathemantics. Elsevier Science,
revised edition edition, 1984.

[Bar92] Henk P. Barendregt. Representing ’undefined’ in the lambda calculus. Journal
of Functional Programming, 2:367–374, 1992.

[BDC99] Alessandro Berarducci and Mariangiola Dezani-Ciancaglini. Infinite λ-calculus
and types. Theoretical Computer Science, 212(1-2):29–75, 1999.

[Ber96] Alessandro Berarducci. Infinite λ-calculus and non-sensible models. In
A. Ursini and P. Aglianó, editors, Logic and algebra, number 180 in Lecture
Notes in Pure and Applied Mathematics, pages 339–378. CRC Press, 1996.

[BK09] Henk P. Barendregt and Jan Willem Klop. Applications of infinitary lambda
calculus. Information and Computation, 207(5):559–582, 2009. From Type
Theory to Morphological Complexity: Special Issue dedicated to the 60th
Birthday Anniversary of Giuseppe Longo.

[Blo04] Stefan Blom. An approximation based approach to infinitary lambda cal-
culi. In Vincent van Oostrom, editor, Rewriting Techniques and Applications,
volume 3091 of Lecture Notes in Computer Science, pages 221–232. Springer
Berlin / Heidelberg, 2004. RTA ’04, Aachen, Germany, June 3-5, 2004, Pro-
ceedings.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

161

162 Bibliography

[BvEG+87] Henk P. Barendregt, Marko C.J.D. van Eekelen, John R.W. Glauert, Richard
Kennaway, Marinus J. Plasmeĳer, and M. Ronan Sleep. Term graph rewrit-
ing. In Philip C. Treleaven Jaco de Bakker, A. J. Nĳman, editor, Parallel
Architectures and Languages Europe, Volume II: Parallel Languages, volume
259 of Lecture Notes in Computer Science, pages 141–158. Springer Berlin /
Heidelberg, 1987. PARLE ’87, Eindhoven, The Netherlands, June 15-19, 1987,
Proceedings.

[CD97] Andrea Corradini and Frank Drewes. (Cyclic) term graph rewriting is adequate
for rational parallel term rewriting. Technical Report TR-14-97, Universita di
Pisa, Dipartimento di Informatica, 1997.

[CG95] Andrea Corradini and Fabio Gadducci. CPO models for infinite term rewrit-
ing. In Vangalur S. Alagar and Maurice Nivat, editors, Algebraic Methodology
and Software Technology, volume 936 of Lecture Notes in Computer Science,
pages 368–384. Springer Berlin / Heidelberg, 1995. 4th International Confer-
ence, AMAST ’95 Montreal, Canada, July 3–7, 1995 Proceedings.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33:346–366, 1932.

[CMR+97] Andrea Corradini, Ugo Montanari, Francesca. Rossi, Hartmut Ehrig, Reiko
Heckel, and Michael Löwe. Algebraic approaches to graph transformation,
part I: Basic concepts and double pushout approach. In Grzegorz Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transforma-
tion, Volume 1: Foundations, pages 163–245. University of Pisa, 1997.

[Cor93] Andrea Corradini. Term rewriting in CTΣ. In Marie-Claude Gaudel and Jean-
Pierre Jouannaud, editors, TAPSOFT’93: Theory and Practice of Software
Development, volume 668 of Lecture Notes in Computer Science, pages 468–
484. Springer Berlin / Heidelberg, 1993. Orsay, France, April 13-17, 1993
Proceedings.

[Cou83] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25(2):95–169, 1983.

[CR36] Alonzo Church and J. Barkley Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, May 1936.

[DK89] Nachum Dershowitz and Stéphane Kaplan. Rewrite, rewrite, rewrite, rewrite,
rewrite... In 16th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 250–259, New York, NY, USA, 1989. ACM. POPL
’89, Austin, Texas, January ,1989, Proceedings.

[DKP89] Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Infinite nor-
mal forms. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editors, Automata, Languages and Programming, 16th
International Colloquium,, volume 372 of Lecture Notes in Computer Science,
pages 249–262. Springer Berlin / Heidelberg, 1989. ICALP ’89, Stresa, Italy,
July 11-15, 1989, Proceedings.

[DKP91] Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite,
rewrite, rewrite, rewrite, rewrite, ... Theoretical Computer Science, 83(1):71–
96, 1991.

[DST80] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the
common subexpression problem. Journal of the ACM, 27(4):758–771, 1980.

Bibliography 163

[Ech08] Rachid Echahed. On term-graph rewrite strategies. In Jürgen Giesl, editor,
7th International Workshop on Reduction Strategies in Rewriting and Pro-
gramming, volume 204, pages 99–110, 2008. WRS ’07, Paris, France, June 25,
2007, Proceedings.

[EGH+07] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara, and
Jan Willem Klop. Productivity of stream definitions. In Erzsébet Csuhaj-
Varjú and Zoltán Ésik, editors, Fundamentals of Computation Theory, volume
4639 of Lecture Notes in Computer Science, pages 274–287. Springer Berlin /
Heidelberg, 2007. FCT ’07, Budapest, Hungary, August 27-30, 2007, Proceed-
ings.

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-
grammars: An algebraic approach. In 14th Annual Symposium on Switching
and Automata Theory, pages 167–180, Washington, DC, USA, 1973. IEEE
Computer Society. SWAT ’73, The University of Iowa, USA, October 15-17,
1973, Proceedings.

[FRW90] William M. Farmer, John D. Ramsdell, and Ronald J. Watro. A correctness
proof for combinator reduction with cycles. ACM Transactions on Program-
ming Languages and Systems, 12(1):123–134, 1990.

[FW90] William M. Farmer and Ronald J. Watro. Redex capturing in term graph
rewriting. International Journal of Foundations of Computer Science, 1:369–
386, 1990.

[GL06] Bernhard Gramlich and Salvador Lucas. Generalizing newman’s lemma for
left-linear rewrite systems. In Frank Pfenning, editor, Term Rewriting and
Applications, volume 4098 of Lecture Notes in Computer Science, pages 66–
80. Springer Berlin / Heidelberg, 2006. RTA ’06, Seattle, WA, USA, August
12-14, 2006, Proceedings.

[GTWW77] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B. Wright.
Initial algebra semantics and continuous algebras. Journal of the ACM,
24(1):68–95, 1977.

[HL91a] Gérard P. Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting
systems, I. In Jean-Louis Lassez and Gordon Plotkin, editors, Computational
Logic - Essays in Honor of Alan Robinson, chapter 11, pages 395–414. The
MIT Press, 1991.

[HL91b] Gérard P. Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting
systems, II. In Jean-Louis Lassez and Gordon Plotkin, editors, Computational
Logic - Essays in Honor of Alan Robinson, chapter 12, pages 415–443. The
MIT Press, 1991.

[HP85] David Harel and Amir Pnueli. On the development of reactive systems. In
Krzysztof R. Apt, editor, Logics and models of concurrent systems, pages 477–
498. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[IN91] Paola Inverardi and Monica Nesi. Infinite normal forms for non-linear term
rewriting systems. In Andrzej Tarlecki, editor, Mathematical Foundations
of Computer Science 1991, volume 520 of Lecture Notes in Computer Sci-
ence, pages 231–239. Springer Berlin / Heidelberg, 1991. MFCS’91, Kazimierz
Dolny, Poland, September 9-13, 1991, Proceedings.

164 Bibliography

[IN95] Paola Inverardi and Monica Nesi. Deciding observational congruence of finite-
state ccs expressions by rewriting. Theoretical Computer Science, 139(1-
2):315–354, 1995.

[Jos89] Mark B. Josephs. The semantics of lazy functional languages. Theoretical
Computer Science, 68(1):105–111, 1989.

[Kah09] Stefan Kahrs. Modularity of convergence in infinitary rewriting. In Ralf
Treinen, editor, Rewriting Techniques and Applications, volume 5595 of Lec-
ture Notes in Computer Science, pages 179–193. Springer Berlin / Heidelberg,
2009. RTA ’09, Brasília, Brazil, June 29-July 1, 2009, Proceedings.

[KdV03] Richard Kennaway and Fer-Jan de Vries. Infinitary rewriting. In Terese
[Ter03], chapter 12, pages 668–711.

[KdV05] Jan Willem Klop and Roel C. de Vrĳer. Infinitary normalization. In Sergei N.
Artëmov, Howard Barringer, Artur S. d’Avila Garcez, Luís C. Lamb, and
John Woods, editors, We Will Show Them! Essays in Honour of Dov Gabbay,
volume 2, pages 169–192. College Publications, 2005.

[Ken92] Richard Kennaway. On transfinite abstract reduction systems. Technical
report, CWI (Centre for Mathematics and Computer Science), Amsterdam,
1992.

[Ket06] Jeroen Ketema. Böhm-Like Trees for Rewriting. PhD thesis, Vrĳe Universiteit
Amsterdam, 2006.

[Ket08] Jeroen Ketema. On normalisation of infinitary combinatory reduction systems.
In Andrei Voronkov, editor, Rewriting Techniques and Applications, volume
5117 of Lecture Notes in Computer Science, pages 172–186. Springer Berlin /
Heidelberg, 2008. RTA ’08, Hagenberg, Austria, July 15-17, 2008, Proceedings.

[Ket09] Jeroen Ketema. Comparing Böhm-like trees. In Ralf Treinen, editor, Rewrit-
ing Techniques and Applications, volume 5595 of Lecture Notes in Computer
Science, pages 239–254. Springer Berlin / Heidelberg, 2009. RTA ’09, Brasília,
Brazil, June 29-July 1, 2009, Proceedings.

[KKSdV91] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries.
Transfinite reductions in orthogonal term rewriting systems. In Ronald V.
Book, editor, Rewriting Techniques and Applications, volume 488 of Lecture
Notes in Computer Science, pages 1–12. Springer Berlin / Heidelberg, 1991.
RTA ’91, Como, Italy, April 10-12, 1991, Proceedings.

[KKSdV94] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries.
On the adequacy of graph rewriting for simulating term rewriting. ACM
Transactions on Programming Languages and Systems, 16(3):493–523, 1994.

[KKSdV95a] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries.
Transfinite reductions in orthogonal term rewriting systems. Information and
Computation, 119(1):18–38, 1995.

[KKSdV95b] Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries.
Infinitary lambda calculi and böhm models. In Jieh Hsiang, editor, Rewrit-
ing Techniques and Applications, volume 914 of Lecture Notes in Computer
Science, pages 257–270. Springer Berlin / Heidelberg, 1995. RTA ’95 Kaiser-
slautern, Germany, April 5-7, 1995 Proceedings.

[KKSdV97] Richard Kennaway, Jan Willem Klop, M R. Sleep, and Fer-Jan de Vries. In-
finitary lambda calculus. Theoretical Computer Science, 175(1):93–125, 1997.

Bibliography 165

[KP93] Gilles Kahn and Gordon D. Plotkin. Concrete domains. Theoretical Computer
Science, 121(1-2):187–277, 1993.

[KS05a] Jeroen Ketema and Jakob Grue Simonsen. Infinitary combinatory reduction
systems. In Jürgen Giesl, editor, Term Rewriting and Applications, volume
3467 of Lecture Notes in Computer Science, pages 438–452. Springer Berlin /
Heidelberg, 2005. RTA ’05, Nara, Japan, April 19-21, 2005, Proceedings.

[KS05b] Jeroen Ketema and Jakob Grue Simonsen. On confluence of infinitary com-
binatory reduction systems. In Geoff Sutcliffe and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, volume 3835 of
Lecture Notes in Computer Science, pages 199–214. Springer Berlin / Heidel-
berg, 2005. LPAR ’05, Montego Bay, Jamaica, December 2-6, 2005, Proceed-
ings.

[KS06] Jeroen Ketema and Jakob Grue Simonsen. Infinitary combinatory reduction
systems. Technical Report D-558, University of Copenhagen, 2006.

[KvOdV99] Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Meaningless
terms in rewriting. Journal of Functional and Logic Programming, 1999(1):1–
35, February 1999.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 144–154, New York, NY, USA, 1993. ACM. POPL ’93, Charleston,
South Carolina, USA, January 1993, Proceedings.

[Lév76] Jean-Jacques Lévy. An algebraic interpretation of the λβk-calculus; and an
application of a labelled λ-calculus. Theoretical Computer Science, 2(1):97–
114, 1976.

[Lév78] Jean-Jacques Lévy. Reductions Correctes et Optimales dans le Lambda-Calcul.
PhD thesis, Université Paris, January 1978.

[Lev79] Azriel Levy. Basic Set Theory. Perspective in Mathematical Logic. Springer-
Verlag, 2nd edition, 1979.

[Lon83] Giuseppe Longo. Set-theoretical models of λ-calculus: theories, expansions,
isomorphisms. Annals of pure and applied logic, 24(2):153–188, 1983.

[Luc01] Salvador Lucas. Transfinite rewriting semantics for term rewriting systems.
In Aart Middeldorp, editor, Rewriting Techniques and Applications, volume
2051 of Lecture Notes in Computer Science, pages 216–230. Springer Berlin
/ Heidelberg, 2001. RTA ’01, Utrecht, The Netherlands, May 22-24, 2001,
Proceedings.

[Mid97] Aart Middeldorp. Call by need computations to root-stable form. In
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 94–105, New York, NY, USA, 1997. ACM. POPL ’97, Paris,
France, 15-17 January, 1997, Proceedings.

[Mun00] James Munkres. Topology. Prentice Hall, 2nd edition, 2000.

[Nak75] Reĳi Nakajima. Infinite normal forms for the lambda-calculus. In Corrado
Böhm, editor, Lambda-Calculus and Computer Science Theory, volume 37 of
Lecture Notes in Computer Science, pages 62–82. Springer Berlin / Heidelberg,
1975. Symposium on Lambda-Calculus and Computer Science Theory, Rome,
Italy, March 25-27, 1975, Proceedings.

166 Bibliography

[PJ87] Simon Peyton-Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

[Pla95] Marinus J. Plasmeĳer. Clean: a programming environment based on term
graph rewriting. In Andrea Corradini and Ugo Montanari, editors, Joint COM-
PUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation,
volume 2, pages 215–221, 1995. SEGRAGRA 95, Volterra, Italy, August 28 -
September 1, 1995, Proceedings.

[Plu99] Detlef Plump. Term graph rewriting. In Hartmut Ehrig, Gregor Engels,
Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 2: Applications,
Languages, and Tools, pages 3–61. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 1999.

[PR69] John L. Pfaltz and Azriel Rosenfeld. Web grammars. In Donald E. Walker
and Lewis M. Norton, editors, 1st International Joint Conference on Artificial
Intelligence, pages 609–620, 1969. ĲCAI ’69, Washington, DC, USA, May
1969, Proceedings.

[Pra71] Terrence W. Pratt. Pair grammars, graph languages and string-to-graph trans-
lations. Journal of Computer and System Sciences, 5(6):560—-595, 1971.

[Rao84] Jean Claude Raoult. On graph rewritings. Theoretical Computer Science,
32(1-2):1–24, 1984.

[Rod98] Pieter Hendrik Rodenburg. Termination and confluence in infinitary term
rewriting. The Journal of Symbolic Logic, 63(4):1286–1296, 1998.

[Sie65] Wacław Sierpiński. Cardinal and Ordinal Numbers. Państwowe Wydawnictwo
Naukowe, 2nd edition, 1965.

[Sĳ89] Ben A. Sĳtsma. On the productivity of recursive list definitions. ACM Trans-
actions on Programming Languages and Systems, 11(4):633–649, 1989.

[Sim04] Jakob Grue Simonsen. On confluence and residuals in Cauchy convergent
transfinite rewriting. Information Processing Letters, 91(3):141–146, 2004.

[Sim06] Jakob Grue Simonsen. On modularity in infinitary term rewriting. Information
and Computation, 204(6):957–988, 2006.

[Sta80a] John Staples. Computation on graph-like expressions. Theoretical Computer
Science, 10(2):171–185, 1980.

[Sta80b] John Staples. Optimal evaluations of graph-like expressions. Theoretical Com-
puter Science, 10(3):297–316, 1980.

[Sta80c] John Staples. Speeding up subtree replacement systems. Theoretical Computer
Science, 11(1):39–47, 1980.

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition,
2003.

[Tur79] D.A. Turner. A new implementation technique for applicative languages. Soft-
ware: Practice and Experience, 9(1):31–49, 1979.

[vESP97] Marko C. J. D. van Eekelen, Sjaak Smetsers, and Rinus Plasmeĳer. Graph
rewriting semantics for functional programming languages. In Dirk van Dalen
and Marc Bezem, editors, Computer Science Logic, volume 1258 of Lecture

Bibliography 167

Notes in Computer Science, pages 106–128. Springer Berlin / Heidelberg, 1997.
CSL ’96 Annual Conference of the EACSL Utrecht, The Netherlands, Septem-
ber 21–27, 1996, Proceedings.

[Wad71] Christopher P. Wadsworth. Semantics and pragmatics of the lambda calculus.
Ph.D. thesis, University of Oxford, 1971.

[Zan09] Hans Zantema. Well-definedness of streams by termination. In Ralf Treinen,
editor, Rewriting Techniques and Applications, volume 5595 of Lecture Notes
in Computer Science, pages 164–178. Springer Berlin / Heidelberg, 2009. RTA
’09, Brasília, Brazil, June 29-July 1, 2009, Proceedings.

Index

WN∞, see infinitary normalisation

abstract reduction system, 18
acyclic

graph, 51
path, 51
predecessor, 75
sharing, 64
term graph, 52
term graph rewrite rule, 150
term graph rewriting system, 150
term rewriting system, 88

acyclicity, 88
algebraic term graph rewriting, 139, 159
almost non-collapsing

term graph rewriting system, 155
term rewriting system, 106

almost orthogonal term rewriting system,
25

α-reduction sequence, 19
α-sequence, 11
ancestor, 100, 120
applicable

term graph rewrite rule, 143
term rewrite rule, 24

argument of a redex, 24
ARS, see abstract reduction system

Böhm reduction, 109
Böhm reduction sequence, 109
Böhm tree, 110
basis element, 14
basis for a topology, 14
bcpo, see bounded complete partial order
�,U-instance, 109
bounded complete partial order, 9
build step, 142

canonical term graph, 57
capture a redex, 151
Cauchy sequence, 16
closed

reduction sequence, see closed sequence
sequence, 11

set, 14
closure

reflexive symmetric transitive, 19
reflexive transitive, 19
symmetric, 19
symmetric transitive, 19
transitive, 19

coincide, 22
collapsing

position, 25
redex, 25
rule, 25
tower, 25

infinite, 101
maximal, 25

combinatory reduction system, 157
COMP, see completeness
compatible elements, 8
complete

development, 100, 123
metric reduction system, 28
partial order, 9
partial reduction system, 36
semilattice, 9

completeness, 20
composition

of functions, 7
of partial functions, 7

concatenation, 11
conflicting redex occurrences, 25
confluence, 19

ground, 89
infinitary, 42

constructor, 24
context, 22
context function, 36
continuous

at point, 14
function, 14
sequence, 14

convergent sequence, 15
conversion sequence

finite, 19

169

170 Index

CR, see confluence
CR∞

hc, see infinitary confluence modulo hy-
percollapsing terms

CR∞, see infinitary confluence
critical pair, 24

joinable, 24
trivial, 24

cyclic
graph, 51
path, 51
sharing, 64
term graph, 52
term graph rewrite rule, 150
term graph rewriting system, 150

cyclisation, 151

defined symbol, 24
deletion of a sub-term graph, 146
∆-homomorphism, 54
∆-isomorphic, 54
∆-isomorphism, 54
∆-node, 50
dense set, 18
depth

of a node, 52
of a sub-term graph, 146

depth of ∆, 52
depth-increasing reduction, 113
descendant, 98, 117
destructive reduction sequence, 133
development, 100, 123

complete, 100, 123
total, 124

diamond property, 20
directed set, 8
disjoint

positions, 21
sequences, 11

domain
of a partial function, 7
of a substitution, 22

double-pushout approach, 159
DP, see diamond property

edge of a path, 125
equational term graph rewriting, 139, 159
equivalence relation, 8
extension

of a metric reduction system, 46
of a metric space, 45
of a sequence, 11

fair reduction sequence, 112
finite

conversion sequence, 19
graph, 50
ground term, 20
jumps, 127
sequence, 11
substitution, 22
term, 20
term graph, 51

fragile term, 133
fringe node, 75
function, 7

composition, 7
context, 36
continuous, 14
continuous at point, 14
domain, 7
height, 28
identity, 7
inverse, 7
labelling, 50
monotone, 8
range, 7
source, 18
successor, 50
target, 18

garbage collection step, 142
GCR, see ground confluence
glb, see greatest lower bound
graph, 50

acyclic, 51
cyclic, 51
finite, 50

greatest element, 8
greatest lower bound, 8
ground confluence, 89
ground term, 20

finite, 20
GRS, see term graph rewriting system

Hausdorff space, 14
hc-equivalent, 106
height function, 28
homomorphic, 54
horizontal sharing, 64, 149
hypercollapsing term, 106

identity function, 7
IGRS, see infinitary term graph rewriting

system
induced abstract reduction system

of a term graph rewriting system, 144
of a term rewriting system, 24

induced metric reduction system

Index 171

of a term graph rewriting system, 147
of a term rewriting system, 28

induced partial reduction system
of a term graph rewriting system, 147
of a term rewriting system, 37

infinitarily normalising
reduction sequence, 110
reduction strategy, 111

infinitarily terminating, 44
infinitary confluence, 42
infinitary confluence modulo hypercollaps-

ing terms, 106
infinitary ground term, 20
infinitary normalisation, 42
infinitary term, 20
infinitary term graph rewrite rule, 140
infinitary term graph rewriting system, 140,

see term graph rewriting system
infinitary term rewrite rule, 23
infinitary term rewriting system, 23
infinitary unique normal form property w.r.t.

reduction, 42
infinite collapsing tower, 101
infinite sequence, 11
innermost

redex, 88
reduction sequence, 88

innermost normalisation, 89
innermost termination, 89
inverse

of a partial function, 7
inverse of a function, 7
irreducible, 1
isomorphic, 8
ITRS, see infinitary term rewriting system

joinable critical pair, 24

labelled
signature, 122
symbol, 122
term, 122
term rewriting system, 122

labelling function, 50
λ-calculus, 157
lazy evaluation, 2
lazy functional programming language, 2
least element, 8
least upper bound, 8
left root of a term graph rewrite rule, 140
left-hand side

of a term graph rewrite rule, 140
of a term rewrite rule, 23

left-linear

term graph rewrite rule, 152
term graph rewriting system, 152
term rewrite rule, 25
term rewriting system, 25

left-narrow partial order, 8
length of a sequence, 11
limit, 15
limit inferior, 13
limit ordinal, 10
linear, 25
lower bound, 8
lub, see least upper bound

matching an occurrence representation, 62
matching step, 141
matching term, 129
matching V-homomorphism, 143
maximal collapsing tower, 25
meaningless terms, 108
metric, 15
metric completion, 18
metric reduction system, 28

complete, 28
extension, 46
weak extension, 46

metric space, 15
extension, 45

metric topology, 16
monotone

function, 8
order, 23

MRS, see metric reduction system
MRS reduction, 90

needed
redex occurrence, 111
reduction sequence, 111

needed reduction, 111
needed-fair reduction sequence, 112
neighbourhood, 14
NF, see normal form property
node

fringe, 75
of a graph, 50
of a path, 125
truncation, 75

non-conflicting redex occurrences, 25
non-∆-node, 50
non-looping term rewriting system, 88
non-loopingness, 88
non-σ-node, 50
normal form, 1, 19
normal form property, 20
normalisation, 20

172 Index

innermost, 89

occurrence
in a term, 21
in a term graph, 52

occurrence representation, 61
occurrences

rational, 154
ω-normalising

reduction sequence, 111
reduction strategy, 111

ω-termination, 88
open

reduction sequence, see open sequence
sequence, 11
set, 14

open ball, 16
operational term graph rewriting, 139
order, see partial order
order isomorphic, 8
order isomorphism, 8
ordinal, 9
ordinal space, 14
orthogonal

term graph rewriting system, 152
term rewriting system, 25

outermost-volatile position, 116
overlap, 24, 108
overlay, 24
overlay system, 25

P -reduction, 111
parallel-outermost reduction sequence, 113
partial function, 7

composition, 7
inverse, 7
range, 7

partial order, 8
bounded complete, 9
complete, 9
left-narrow, 8
well-founded, 8

partial reduction system, 36
complete, 36

partial term, 23
partial term graph, 63
partially ordered class, 8
partially ordered set, 8
path, 51, 52, 125

acyclic, 51
cyclic, 51
edge, 125
node, 125
trace, 127

pattern of a term rewrite rule, 24
polynomial termination, 88
position

disjoint, 21
in a term, 21
of a trace, 129
outermost-volatile, 116
prefix, 21
volatile, 116

predecessor
acyclic, 75

prefix
of a position, 21
of a sequence, 11

preservation of sharing, 64
prestep

of a graph rewriting system, 144
of a term rewriting system, 24

proper subsequence, 11
proper subterm, 21
PRS, see partial reduction system
PRS reduction, 90

quotient, 8

R-fair reduction sequence, 112
range

of a function, 7
of a partial function, 7

rational occurrences, 154
rational reduction sequence, 154
rational term, 149
reachable node, 51
redex

of a term graph rewriting system, 143
of a term rewriting system, 24

redex capturing, 150
redex occurrence, 24
redex pattern, 24
redirection step, 142
reduce, 19
reduct, 19
reduction, see reduction sequence
reduction sequence, 19

ω-normalising, 111
closed, see closed sequence
destructive, 133
infinitarily normalising, 110
open, see open sequence
strongly α-convergent, 30, 38
strongly continuous, 29, 38
strongly convergent, 29, 38
strongly divergent, 30, 38
total, 40

Index 173

weakly α-convergent, 30, 38
weakly continuous, 29, 38
weakly convergent, 29, 38
weakly divergent, 30, 38

reduction strategy, 110
ω-normalising, 111
infinitarily normalising, 111
strongly convergent, 111

reflexive symmetric transitive closure, 19
reflexive transitive closure, 19
regular equations, 159
replacement

of a term, 22
of a term graph, 53

representation by a term graph, 149
residual, 98, 118
result term, 24
result term graph, 143
reverse of a relation, 19
rewrite rule, 23
ρ-redex

of a term graph rewriting system, 143
of a term rewriting system, 24

ρ-redex occurrence, 24
right-hand side

of a term graph rewrite rule, 140
of a term rewrite rule, 23

right-root of a term graph rewrite rule,
140

root node of a term graph, 51
root-active term, 107

segment of a sequence, 11
semilattice, 9
sequence, 11

Cauchy, 16
closed, 11
concatenation, 11
continuous, 14
convergent, 15
converges to, 15
disjoint, 11
finite, 11
infinite, 11
length, 11
open, 11
prefix, 11
segment, 11
suffix, 11
transfinite, 11

set
closed, 14
dense, 18
directed, 8

open, 14
set of meaningless terms, 108
sharing

acyclic, 64
cyclic, 64
horizontal, 64, 149
of subexpressions, 49
vertical, 64, 149

Σ-graph, 50
σ-node, 50
signature, 20

labelled, 122
similarity

of term graphs, 75
of terms, 22

simple termination, 88
SIN, see innermost termination
SN, see termination
SN∞, see infinitarily terminating
source function, 18
step

of a term graph rewriting system, 144
of a term rewriting system, 24

stream definition, 157
strong ∆-homomorphism, 65
strong extension, 46
strongly α-convergent reduction sequence,

30, 38
strongly continuous reduction sequence, 29,

38
strongly convergent reduction sequence, 29,

38
strongly convergent reduction strategy, 111
strongly divergent reduction sequence, 30,

38
sub-term graph, 52
subgraph, 52
subsequence, 11

proper, 11
substitution, 22

domain, 22
finite, 22

subterm, 21
at position, 22

successor function, 50
successor ordinal, 10
suffix of a sequence, 11
symbol at position, 22
symbol of a trace, 129
symmetric closure, 19
symmetric transitive closure, 19
syntactic accident, 29

target function, 18

174 Index

TARS, see transfinite abstract reduction
system

term, 20
finite, 20
labelled, 122
partial, 23
rational, 149
total, 23

term graph, 51
acyclic, 52
canonical, 57
cyclic, 52
finite, 51
total, 63

term graph rewrite rule, 140
acyclic, 150
applicable, 143
cyclic, 150
left-hand side, 140
right-hand side, 140
unravelling, 149

term graph rewriting
algebraic, 139, 159
equational, 139, 159
operational, 139

term graph rewriting system, 140
acyclic, 150
almost non-collapsing, 155
cyclic, 150
unravelling, 149

term rewrite rule, 23
applicable, 24
left-hand side, 23
right-hand side, 23

term rewriting system, 23
labelled, 122

term tree, 52
termination, 20

ω-, 88
innermost, 89
polynomial, 88
simple, 88
top-, 25

tiling diagram, 102
top-termination, 25
topological space, 14
topology, 14
total

development, 124
reduction sequence, 40
term, 23
term graph, 63

trace of a path, 127
transfinite abstract reduction system, 42

transfinite induction, 10
transfinite recursion, 10
transfinite sequence, 11
transitive class, 9
transitive closure, 19
trivial critical pair, 24
TRS, see term rewriting system
truncation node, 75
truncation of a term graph, 75

U-equivalent, 108
ultrametric, 15
ultrametric reduction system, 28
ultrametric space, 15
UN, see unique normal form property
underlying abstract reduction system

of a metric reduction system, 28
of a partial reduction system, 36

underlying graph, 51
unique normal form property, 20
unique normal form property w.r.t. reduc-

tion, 20
unlabelled

symbol, 122
UN→, see unique normal form property

w.r.t. reduction
unravelling

of a term graph, 60
of a term graph rewrite rule, 149
of a term graph rewriting system, 149

UN∞
→ , see infinitary unique normal form

property w.r.t. reduction
upper bound, 8
URS, see ultrametric reduction system

vertical sharing, 64, 149
volatile position, 116

weak extension of a metric reduction sys-
tem, 46

weakly α-convergent reduction sequence,
30, 38

weakly continuous reduction sequence, 29,
38

weakly convergent reduction sequence, 29,
38

weakly divergent reduction sequence, 30,
38

weakly orthogonal term rewriting system,
25

well-founded partial order, 8
well-order, 8
well-ordered class, 8
well-ordered set, 8

Index 175

WIN, see innermost normalisation
WN, see normalisation

Symbols

N+ . 7
N . 7
R . 7
R+ . 7
R+

0 . 7
○ . 7
range(f) 7
idA . 7
f−1 . 7
dom(f) 7
f(A) 7
f−1(B′) 7
Rn . 7
R∗ . 7
R+ . 7
⊔ . 8
⊓ . 8
⊔ . 9
⊔P (i) xi 9
⊓ . 9
⊓P (i) xi 9
On . 9
S(α) . 10
ω . 10
(aι)ι<α 11
Mα . 11
M≤α . 11
M<α . 11
M∗ . 11
ε . 11
∣S∣ . 11
⋅ . 11
S/f . 11
S∣[β,γ) 11
∏ι<α Sι 12
lim inf
ι→α

aι 13
T . 14
B . 14
limι→α xι 15
d . 15
Bd(m,ε) 16
A . 18
src . 18

tgt . 18
src . 18
tgt . 18
S∶ a→∗

A b 19
S∶ a→A b 19
S∶ a→+

A b 19
S∶ b←∗

A a 19
S∶ b←A a 19
S∶ b←+

A a 19
S∶ a↔∗

A b 19
S∶ a↔A b 19
S∶ a↔+

A b 19
S∶ a→∗

As b 19
S∶ a→As b 19
S∶ a→+

As b 19
CR . 19
DP . 20
SN . 20
WN . 20
COMP 20
NF . 20
UN . 20
UN→ . 20
Σ . 20
ar(f) 20
T (Σ,V) 20
V . 20
T (Σ) 20
T ∞(Σ,V) 20
T ∞(Σ) 20
P(t) . 21
S(t) . 21
t∣π . 22
t(π) . 22
t[s]π . 22
PΣ(t) 22
C[, . . . ,] 22
C⟨, . . . , ⟩ 22
C{, . . . ,} 22
C[] . 22
dom(σ) 22
sim(t, t′) 22
≤� . 23

177

178 SYMBOLS

Σ� . 23
P∖�(t) 23
P�(t) 23
ρ∶ l → r 23
AR . 24
s→π,ρ t 24
M . 28
hgt . 28
MR . 28
S∶ a↪αA 32
S∶ a↠α

A 32
S∶ a↪αA b 32
S∶ a↠α

A b 32
S∶ a4α

A 32
S∶ a�α

A 32
P . 36
cxt . 36
PR . 37
CR∞ . 42
WN∞ 42
UN∞
→ 42

a↔w
T b 43

a↔s
T b 43

NF∞ . 43
UN∞ 43
UN∞
→ 43

WN∞ 43
SN∞ . 44
SN∞ . 44
lab . 50
suc . 50
suci . 50
arg(n) 50
G∞(Σ) 51
G(Σ) 51
P(g) 52
Pg(n) 52
depthg(n) 52
depth(g) 52
∆-depth(g) 52
σ-depth(g) 52
g∣n . 52
nodeg(π) 52
arg(π) 52
g∣π . 52
ϕ∶ g →∆ h 54
ϕ∶ g →̃∆ h 54
≅∆ . 54

ϕ∶ g →σ h 54
ϕ∶ g → h 54
ϕ∶ g →̃σ h 54
ϕ∶ g →̃ h 54
≅σ . 54
≅ . 54
G∞C (Σ) 57
GC(Σ) 57
∼g . 58
U(g) . 60
Pa(g) 64
Pag (n) 64
≤� . 66
sim(g, h) 75
Preag(n) 75
Ng
<d . 75

Ng
=d . 75

g∣d . 75
SIN . 89
WIN . 89
≡hc . 106
CR∞

hc . 106
≡U . 108
U� . 109
BR,U 109
→U,� . 109
B . 109
→� . 109
S(t) . 110
U//S . 117
Σl . 122
∥t∥ . 122
Rl . 122
∥ρ∥ . 122
t(U) . 122
P(t,U,R) 127
pos(T) 129
sym(T) 129
F(t,U,R) 129
AR . 144
g →n,ρ h 144
g∣n-depth(g) 146
g ∖ g∣n 146
MR . 147
PR . 147
U(ρ) . 149
U(R) 149
S∶ s↠r t 154

	Contents
	List of Figures
	Introduction
	Reduction Systems
	Motivation
	Structure of the Thesis
	Main Contributions

	Preliminaries
	Set Theory
	Partial Orders
	Ordinal Numbers and Sequences
	Limits in Partial Orders

	Topology
	Topological Spaces
	Metric Spaces

	Reduction Systems
	Abstract Reduction Systems
	Terms
	Term Rewriting Systems

	Transfinite Reductions
	Metric Reduction Systems
	Partial Reduction Systems
	Transfinite Abstract Reduction Systems
	Properties of Transfinite Reductions
	Relating MRSs to PRSs

	Alternative Models of Transfinite Reductions

	Term Graphs
	Graphs and Term Graphs
	Homomorphisms
	Canonical Term Graphs
	A Partial Order on Term Graphs
	A Metric on Term Graphs

	Infinitary Term Rewriting
	Finitary Properties on Infinite Terms
	Termination Properties
	Confluence Properties

	MRS vs. PRS Model of Infinitary Term Rewriting
	Weakly Convergent MRS Reductions
	Compression and Approximation
	Confluence
	Connection to Strongly Convergent Reductions

	Strongly Convergent MRS Reductions
	Compression and Approximation
	Complete Developments
	Tiling Diagrams and Projections
	Confluence
	Meaningless Terms and Böhm Trees
	Reduction Strategies
	Termination

	Strongly Convergent PRS Reductions
	Descendants
	Complete Developments
	Relation to Böhm Trees

	Term Graph Rewriting
	Term Graph Rewriting Systems
	Simulating Term Rewriting

	Conclusions
	Summary
	Future Work and Possible Applications

	Bibliography
	Index
	Symbols

