Master's Thesis in Computational Logic

Patrick Bahr

FAKULTÄT FÜR INFORMATIK

Technische Universität Wien Institut für Computersprachen Arbeitsbereich: Theoretische Informatik und Logik Betreuer: Ao. Univ. Prof. Dr. Bernhard Gramlich

September 23, 2009

Outline

Introduction

- From Finitary Rewriting to Infinitary Rewriting
- Why Infinitary Rewriting?
- Goals of the Thesis

Contributions

- Partial Order Model of Infinitary Rewriting
- Infinitary Term Rewriting
- Infinitary Term Graph Rewriting

3 Conclusion

Outline

Introduction

- From Finitary Rewriting to Infinitary Rewriting
- Why Infinitary Rewriting?
- Goals of the Thesis

Contributions

- Partial Order Model of Infinitary Rewriting
- Infinitary Term Rewriting
- Infinitary Term Graph Rewriting

Conclusion

A B A A B A

- ∢ 🗗 ▶

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

$$s^{2}(0) * s^{2}(0)$$

Patrick Bahr (TU Wien)

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s^{2}(0) * s^{2}(0)$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

 $s^{2}(0) * s^{2}(0) \rightarrow s^{2}(0) + (s^{2}(0) * s(0))$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

$$s^{2}(0) * s^{2}(0) \to s^{2}(0) + (s^{2}(0) * s(0))$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

$$s^{2}(0) * s^{2}(0) \rightarrow^{2} s^{2}(0) + (s^{2}(0) + (s^{2}(0) * 0))$$

< (17) > <

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x \neq 0 \to 0 \\ x+s(y) \to s(x+y) & x \neq s(y) \to x + (x \neq y) \end{cases}$$

$$s^{2}(0) * s^{2}(0) \rightarrow^{2} s^{2}(0) + (s^{2}(0) + (s^{2}(0) * 0))$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x + 0 \to x & x * 0 \to 0 \\ x + s(y) \to s(x + y) & x * s(y) \to x + (x * y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to s^{3} s^{2}(0) + (s^{2}(0) + 0)$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x + 0 \to x & x * 0 \to 0 \\ x + s(y) \to s(x + y) & x * s(y) \to x + (x * y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to s^{3} s^{2}(0) + (s^{2}(0) + 0)$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to s^{4}(0) + s^{2}(0)$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

$$s^{2}(0) * s^{2}(0) \to \frac{4}{3}s^{2}(0) + s^{2}(0)$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to s^{5} s(s^{2}(0) + s(0))$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to 5 s(s^{2}(0) + s(0))$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to^{6} s(s(s^{2}(0)+0))$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to {}^{6}s(s(s^{2}(0)+0))$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$

$$s^{2}(0) * s^{2}(0) \to^{7} s(s(s^{2}(0)))$$

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to s^{7} s^{4}(0)$$

Patrick Bahr (TU Wien)

What are rewriting systems?

- consist of directed symbolic equations over objects such as strings, terms, graphs etc.
- based on the idea of replacing equals by equals
- provide a formal model of computation
- term rewriting is the foundation of functional programming

Example (Term rewriting system defining addition and multiplication)

$$\mathcal{R}_{+*} = \begin{cases} x+0 \to x & x*0 \to 0\\ x+s(y) \to s(x+y) & x*s(y) \to x+(x*y) \end{cases}$$
$$s^{2}(0) * s^{2}(0) \to 7 s^{4}(0)$$

\mathcal{R}_{+*} is terminating!

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

< □ > < 同 > < 回 > < 回 > < 回 >

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

A B A A B A

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

from(0)

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow 0: from(1)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^2 0:1: from(2)$$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^3 0: 1: 2: from(3)$$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

$$from(0) \rightarrow^4 0: 1: 2: 3: from(4)$$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow {}^{5}0:1:2:3:4:from(5)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6)$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6) \rightarrow \ldots$

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ from(x) \rightarrow x : from(s(x)) \right\}$$

 $from(0) \rightarrow^{6} 0: 1: 2: 3: 4: 5: from(6) \rightarrow \ldots$

intuitively this converges to the infinite list $0:1:2:3:4:5:\ldots$

Infinitary Rewriting

What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with objects of possibly infinite size, i.e. infinite strings, terms, graphs etc.

E 6 4 E 6

Infinitary Rewriting

What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with objects of possibly infinite size, i.e. infinite strings, terms, graphs etc.

Why consider infinitary rewriting?

because we can

E 6 4 E

Infinitary Rewriting

What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with objects of possibly infinite size, i.e. infinite strings, terms, graphs etc.

Why consider infinitary rewriting?

- because we can
- model for lazy functional programming
- semantics for non-terminating systems
- semantics for process algebras
- arises in cyclic term graph rewriting

Formalising Infinitary Term Rewriting

Complete metric on terms • Skip this

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$

sim(s, t) – depth of the shallowest discrepancy of s and t
Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms is inversely proportional to the shallowest depth at which they differ:

 $\mathbf{d}(s,t) = 2^{-\sin(s,t)}$

Convergence of Transfinite Reductions

Two different kinds of convergence

- weak convergence: convergence in the metric space of terms
 - ✓ for weak convergence the depth of the discrepancies of the terms has to tend to infinity
- strong convergence: convergence in the metric space + rewrite rules have to (eventually) be applied at increasingly large depth
 - ✓ for strong convergence the depth of where the rewrite rules are applied has to tend to infinity

A B b A B b

Why Infinitary Rewriting?

$$f(g(x)) \rightarrow f(g(g(x)))$$

2

イロト イヨト イヨト イヨト

Why Infinitary Rewriting?

 $f(g(x)) \rightarrow f(g(g(x)))$

3

▶ < ∃ >

< 47 ▶

< 4 ₽ >

$f(g(x)) \rightarrow f(g(g(x)))$

< 47 ▶

< 47 ▶

 $f(g(x)) \to f(g(g(x)))$

▶ < ∃ >

< □ > < /□ >

 $f(g(x)) \to f(g(g(x)))$

▶ < ∃ >

< □ > < /□ >

 $f(g(x)) \to f(g(g(x)))$

ヨト イヨト

< □ > < /□ >

< 47 ▶

$$g(c) \rightarrow g(g(c))$$

Patrick Bahr (TU Wien)

Example: Strong Convergence

 $g(c) \rightarrow g(g(c))$

Patrick Bahr (TU Wien)

 $g(c) \rightarrow g(g(c))$

$$g(c) \rightarrow g(g(c))$$

Patrick Bahr (TU Wien)

2

ヨト・イヨト

$$g(c) \rightarrow g(g(c))$$

2

ヨト・イヨト

$g(c) \rightarrow g(g(c))$

Patrick Bahr (TU Wien)

 $g(c) \rightarrow g(g(c))$

 $g(c) \to g(g(c))$

ヨト イヨト

 $g(c) \rightarrow g(g(c))$

 $g(c) \rightarrow g(g(c))$

Goals of the Thesis

Survey of the field of infinitary term rewriting

- infinitary versions of abstract reduction systems
- infinitary versions of finitary properties (confluence, termination etc.)
- relation to term graph rewriting
- applications (to finitary rewriting or other areas)

Goals of the Thesis

Survey of the field of infinitary term rewriting

- infinitary versions of abstract reduction systems
- infinitary versions of finitary properties (confluence, termination etc.)
- relation to term graph rewriting
- applications (to finitary rewriting or other areas)

Research directions

- extending the theory
- how to implement infinitary term rewriting?
- finitely represent infinite terms and reductions
- overcome drawbacks and limitations of infinitary term rewriting

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- From Finitary Rewriting to Infinitary Rewriting
- Why Infinitary Rewriting?
- Goals of the Thesis

Contributions

- Partial Order Model of Infinitary Rewriting
- Infinitary Term Rewriting
- Infinitary Term Graph Rewriting

Conclusion

★ ∃ ► < ∃ ►</p>

Main Contributions

Partial order model of infinitary rewriting

- instead of a metric, a partial order is used to formalise convergence
 - → more fine-grained model of convergence
- both the metric and the partial order model are investigated and compared on an abstract level

(B)

Main Contributions

Partial order model of infinitary rewriting

- instead of a metric, a partial order is used to formalise convergence
 more fine-grained model of convergence
- both the metric and the partial order model are investigated and compared on an abstract level

Infinitary term rewriting w.r.t. the partial order model

- has more advantageous properties (confluence, normalisation)
- subsumes the metric model
- equivalent to Böhm reductions

A B M A B M

< □ > < 凸

Main Contributions

Partial order model of infinitary rewriting

- instead of a metric, a partial order is used to formalise convergence
 more fine-grained model of convergence
- both the metric and the partial order model are investigated and compared on an abstract level

Infinitary term rewriting w.r.t. the partial order model

- has more advantageous properties (confluence, normalisation)
- subsumes the metric model
- equivalent to Böhm reductions

Infinitary term graph rewriting

- a complete metric and a complete semilattice are devised
- infinitary term graph rewriting is introduced and analysed
Partial Order Model of Infinitary Rewriting

Described on the example of terms

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Partial Order Model of Infinitary Rewriting

Described on the example of terms

Partial order on terms

- partial terms: terms with additional constant \perp (read as "undefined")
- partial order \leq_{\perp} reads as: "is less defined than"
- \leq_{\perp} is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

• formalised by the limit inferior:

$$\liminf_{\iota\to\alpha} t_\iota = \bigsqcup_{\beta<\alpha} \prod_{\beta\leq\iota<\alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

э

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

э

A D N A B N A B N A B N

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

э

э

э

э

・ロト ・四ト ・ヨト ・ヨト

Weak convergence

э

Weak convergence

э

э

Properties of the Partial Order Model

Benefits

- reduction sequences always converge for complete semilattices
- more fine-grained than the metric model
- more intuitive than the metric model
- under certain conditions (met by terms and term graphs) subsumes metric model

Properties of orthogonal systems

property	metric	partial order
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

э

< □ > < □ > < □ > < □ > < □ > < □ >

Properties of orthogonal systems

property	metric	partial order
compression		
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Compression

Every reduction can be performed in at most ω steps:

$$s \twoheadrightarrow^{\alpha} t \implies s \twoheadrightarrow^{\leq \omega} t$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Properties of orthogonal systems

property	metric	partial order
compression	~	 Image: A set of the set of the
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Compression

Every reduction can be performed in at most ω steps:

$$s \twoheadrightarrow^{\alpha} t \implies s \twoheadrightarrow^{\leq \omega} t$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

Properties of orthogonal systems

property	metric	partial order
compression	~	 Image: A start of the start of
finite approximation		
complete developments		
infinitary confluence		
infinitary normalisation		

Finite approximation

Every outcome can be approximated by a finite reduction arbitrary well:

$$s \twoheadrightarrow^{\alpha} t \implies \forall d \in \mathbb{N} \exists t' \begin{cases} s \to^{\star} t' \\ t \text{ and } t' \text{ coincide up to depth } d \end{cases}$$

< □ > < 同 > < 三 > < 三 >

Properties of orthogonal systems

property	metric	partial order
compression	 	✓
finite approximation	v	 Image: A set of the set of the
complete developments		
infinitary confluence		
infinitary normalisation		

Finite approximation

Every outcome can be approximated by a finite reduction arbitrary well:

$$s \twoheadrightarrow^{\alpha} t \implies \forall d \in \mathbb{N} \exists t' \begin{cases} s \to^{\star} t' \\ t \text{ and } t' \text{ coincide up to depth } d \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Properties of orthogonal systems

property	metric	partial order
compression	 ✓ 	✓
finite approximation	 ✓ 	 Image: A set of the set of the
complete developments		
infinitary confluence		
infinitary normalisation		

Complete developments

reductions simulating simultaneous contraction of a set of redexes

э

A B A A B A

< □ > < 凸

Properties of orthogonal systems

property	metric	partial order
compression	~	 Image: A start of the start of
finite approximation	v	 ✓
complete developments	×	 ✓
infinitary confluence		
infinitary normalisation		

Complete developments

reductions simulating simultaneous contraction of a set of redexes

э

• • = • • = •

< □ > < 凸

Properties of orthogonal systems

property	metric	partial order
compression	~	 Image: A second s
finite approximation	v	 ✓
complete developments	×	 ✓
infinitary confluence		
infinitary normalisation		

Properties of orthogonal systems

property	metric	partial order
compression	 ✓ 	 Image: A set of the set of the
finite approximation	 ✓ 	 Image: A set of the set of the
complete developments	×	 ✓
infinitary confluence	×	 ✓
infinitary normalisation		

Properties of orthogonal systems

property	metric	partial order
compression	 	 Image: A start of the start of
finite approximation	 Image: A second s	 Image: A set of the set of the
complete developments	×	 Image: A set of the set of the
infinitary confluence	×	 ✓
infinitary normalisation		

Infinitary normalisation

every term has a normal form reachable by a possibly infinite reduction

< □ > < 同 > < 回 > < 回 > < 回 >

Properties of orthogonal systems

property	metric	partial order
compression	~	 Image: A start of the start of
finite approximation	v	 ✓
complete developments	×	 Image: A set of the set of the
infinitary confluence	×	 Image: A set of the set of the
infinitary normalisation	×	 Image: A set of the set of the

Infinitary normalisation

every term has a normal form reachable by a possibly infinite reduction

< □ > < 同 > < 回 > < 回 > < 回 >

Equivalence to Böhm Reduction

Definition (Böhm reduction)

▶ Skip Böhm Reduction

Jump to Conclusions

Let $\ensuremath{\mathcal{R}}$ be a term rewriting system.

- A term t is called a root-active if every reduct of t can be reduced to a redex.
- **②** The Böhm reduction \mathcal{B} of \mathcal{R} is the term rewriting system consisting of the rules

$$R \cup \{t \to \bot \mid t \in \mathcal{RA}_{\bot} \smallsetminus \{\bot\}\}$$

where \mathcal{RA}_\perp is the set of root-active terms in which some root-active subterms are replaced by $\perp.$

A B M A B M

Image: Image:

Equivalence to Böhm Reduction

Definition (Böhm reduction)

Let \mathcal{R} be a term rewriting system.

- A term t is called a root-active if every reduct of t can be reduced to a redex.
- **②** The Böhm reduction \mathcal{B} of \mathcal{R} is the term rewriting system consisting of the rules

$$R \cup \{t \to \bot \mid t \in \mathcal{RA}_{\bot} \smallsetminus \{\bot\}\}$$

where \mathcal{RA}_\perp is the set of root-active terms in which some root-active subterms are replaced by $\perp.$

Theorem (Böhm reductions = partial order reductions)

Let \mathcal{R} be an orthogonal system.

1 A total term t in \mathcal{R} is root-active iff $t \twoheadrightarrow_{\mathcal{R}} \bot$.

∃ ► < ∃ ►</p>

< 行

What are term graphs?

- generalisation of terms
- allow sharing of common substructures
- motivation: compact representation of terms

Example

f () a

What are term graphs?

- generalisation of terms
- allow sharing of common substructures
- motivation: compact representation of terms

What are term graphs?

- generalisation of terms
- allow sharing of common substructures
- motivation: compact representation of terms

What are term graphs?

- generalisation of terms
- allow sharing of common substructures
- motivation: compact representation of terms

Term Graph Rewriting

Benefits

- non-cyclic term graph rewriting can be used to efficiently implement term rewriting
- cyclic term graph rewriting can be used to implement restricted forms of infinitary term rewriting (rational term rewriting)

- 4 回 ト 4 ヨ ト 4 ヨ ト

Term Graph Rewriting

Benefits

- non-cyclic term graph rewriting can be used to efficiently implement term rewriting
- cyclic term graph rewriting can be used to implement restricted forms of infinitary term rewriting (rational term rewriting)

Introducing infinitary term graph rewriting

- complete ultrametric on terms is generalised to term graphs
- complete semilattice on terms is generalised to term graphs
- metric and partial order model of infinitary rewriting are applied to term graph rewriting

イロト 不得 トイヨト イヨト 二日

Term Graph Rewriting

Benefits

- non-cyclic term graph rewriting can be used to efficiently implement term rewriting
- cyclic term graph rewriting can be used to implement restricted forms of infinitary term rewriting (rational term rewriting)

Introducing infinitary term graph rewriting

- complete ultrametric on terms is generalised to term graphs
- complete semilattice on terms is generalised to term graphs
- metric and partial order model of infinitary rewriting are applied to term graph rewriting

Goal

identify closure properties of rational term rewriting

Patrick Bahr (TU Wien)

Outline

Introduction

- From Finitary Rewriting to Infinitary Rewriting
- Why Infinitary Rewriting?
- Goals of the Thesis

Contributions

- Partial Order Model of Infinitary Rewriting
- Infinitary Term Rewriting
- Infinitary Term Graph Rewriting

3 Conclusion

э

• • = • • = •

- (日)

Results

Partial order model of infinitary rewriting

- more fine-grained model of convergence
- captures the intuition of convergence of reductions

3

• • = • • = •

Results

Partial order model of infinitary rewriting

- more fine-grained model of convergence
- captures the intuition of convergence of reductions

Infinitary term rewriting w.r.t. the partial order model

- subsumes the metric model
- infinitary normalising and confluent ~ unique normal forms
- equivalent to Böhm reductions ~ normal forms are Böhm trees

★ ∃ ► < ∃ ►</p>
Results

Partial order model of infinitary rewriting

- more fine-grained model of convergence
- captures the intuition of convergence of reductions

Infinitary term rewriting w.r.t. the partial order model

- subsumes the metric model
- infinitary normalising and confluent ~ unique normal forms
- equivalent to Böhm reductions ~ normal forms are Böhm trees

Infinitary term graph rewriting

- a complete metric and a complete semilattice are devised
- infinitary term graph rewriting is introduced
- tool for investigating closure properties of rational term rewriting

A B A A B A

< □ > < @ >

Perspective

Further analysis of infinitary term graph rewriting

- generalise confluence results from finitary term graph rewriting
- identify which class of infinitary term rewriting can be simulated by (infinitary) term graph rewriting
- generalise Böhm trees (of terms) to "Böhm graphs" (of term graphs)

Perspective

Further analysis of infinitary term graph rewriting

- generalise confluence results from finitary term graph rewriting
- identify which class of infinitary term rewriting can be simulated by (infinitary) term graph rewriting
- generalise Böhm trees (of terms) to "Böhm graphs" (of term graphs)

Partial order infinitary term rewriting

- properties of weak convergence
- generalisation to higher-order term rewriting \sim refine the partial order
- use other term graph rewriting approaches (equational and double-pushout approach) to simulate partial order infinitary term rewriting

イロト 不得 トイヨト イヨト 二日

Perspective (contd.)

Implementing infinitary term rewriting

- find closure properties of rational term rewriting
- find more heuristics to transform term rewriting systems to term graph rewriting systems in order to implement infinitary term rewriting

A E N A E N

Perspective (contd.)

Implementing infinitary term rewriting

- find closure properties of rational term rewriting
- find more heuristics to transform term rewriting systems to term graph rewriting systems in order to implement infinitary term rewriting

Applications to functional programming

- reason about lazy functional programs
- optimisation through cyclic term graph rewriting

• • = • • = •

References

- Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite, ... Theoretical Computer Science, 83(1):71–96, 1991.
- Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries.
 Transfinite reductions in orthogonal term rewriting systems.
 Information and Computation, 119(1):18–38, 1995.

Richard Kennaway.

On transfinite abstract reduction systems.

Technical report, CWI, Amsterdam, 1992.

Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries.

On the adequacy of graph rewriting for simulating term rewriting. *ACM Transactions on Programming Languages and Systems*, 16(3):493–523, 1994.

Patrick Bahr (TU Wien)

References (contd.)

Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Meaningless terms in rewriting.

Journal of Functional and Logic Programming, 1999(1):1–35, February 1999.

Jeroen Ketema. *Böhm-Like Trees for Rewriting.* PhD thesis, Vrije Universiteit Amsterdam, 2006.

Stefan Blom.

An approximation based approach to infinitary lambda calculi. *Rewriting Techniques and Applications*, RTA, 2004.

A B < A B </p>