
Implementation of a Pragmatic Translation from
Haskell into Isabelle/HOL

Patrick Bahr
pa-ba@arcor.de

NICTA Sydney, TU Wien

December 17, 2008

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 1 / 29

Outline

1 Introduction
Haskell vs. Isabelle/HOL
Motivation
Goals

2 Translating Haskell into Isabelle/HOL
Haskell vs. Isabelle/HOL
Implementation

3 Conclusions

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 2 / 29

Outline

1 Introduction
Haskell vs. Isabelle/HOL
Motivation
Goals

2 Translating Haskell into Isabelle/HOL
Haskell vs. Isabelle/HOL
Implementation

3 Conclusions

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 3 / 29

Haskell vs. Isabelle/HOL
Haskell in a nutshell

purely functional programming language
non-strict semantics (mostly implemented by lazy evaluation)
comprehensive type system: Hindley-Milner (restricted Fω) + type
classes
uses monads to allow side effects

Isabelle/HOL in a nutshell
Isabelle: generic theorem prover
HOL: Isabelle formulation of classical higher-order logic
based on simply typed lambda calculus (system F1)
 comparatively weak type system
extended with type classes

more details when we come to the implementation

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 4 / 29

Haskell vs. Isabelle/HOL
Haskell in a nutshell

purely functional programming language
non-strict semantics (mostly implemented by lazy evaluation)
comprehensive type system: Hindley-Milner (restricted Fω) + type
classes
uses monads to allow side effects

Isabelle/HOL in a nutshell
Isabelle: generic theorem prover
HOL: Isabelle formulation of classical higher-order logic
based on simply typed lambda calculus (system F1)
 comparatively weak type system
extended with type classes

more details when we come to the implementation

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 4 / 29

Haskell vs. Isabelle/HOL
Haskell in a nutshell

purely functional programming language
non-strict semantics (mostly implemented by lazy evaluation)
comprehensive type system: Hindley-Milner (restricted Fω) + type
classes
uses monads to allow side effects

Isabelle/HOL in a nutshell
Isabelle: generic theorem prover
HOL: Isabelle formulation of classical higher-order logic
based on simply typed lambda calculus (system F1)
 comparatively weak type system
extended with type classes

more details when we come to the implementation
Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 4 / 29

Motivation

Program verification
Haskell’s semantics allows comparatively easy reasoning
there is no theorem prover for Haskell!
 translate Haskell into language of a generic theorem prover

Example: l4.verified project
aim: formalisation and verification of a microkernel
prototype implementation in Haskell
translation into Isabelle/HOL executable model
reasoning about executable model in Isabelle/HOL

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 5 / 29

Motivation

Program verification
Haskell’s semantics allows comparatively easy reasoning
there is no theorem prover for Haskell!
 translate Haskell into language of a generic theorem prover

Example: l4.verified project
aim: formalisation and verification of a microkernel
prototype implementation in Haskell
translation into Isabelle/HOL executable model
reasoning about executable model in Isabelle/HOL

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 5 / 29

Translation

Goals
cover a large subset of Haskell’s syntax
result should be easily readable

I preserve syntactic structure as much as possible
I translate syntactic sugar as well

keep reasoning simple Isabelle/HOL

 Translation is neither sound nor complete!

Implementation
implementation language: Haskell
based on existing work from TU Munich

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 6 / 29

Translation

Goals
cover a large subset of Haskell’s syntax
result should be easily readable

I preserve syntactic structure as much as possible
I translate syntactic sugar as well

keep reasoning simple Isabelle/HOL

 Translation is neither sound nor complete!

Implementation
implementation language: Haskell
based on existing work from TU Munich

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 6 / 29

Translation

Goals
cover a large subset of Haskell’s syntax
result should be easily readable

I preserve syntactic structure as much as possible
I translate syntactic sugar as well

keep reasoning simple Isabelle/HOL

 Translation is neither sound nor complete!

Implementation
implementation language: Haskell
based on existing work from TU Munich

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 6 / 29

Outline

1 Introduction
Haskell vs. Isabelle/HOL
Motivation
Goals

2 Translating Haskell into Isabelle/HOL
Haskell vs. Isabelle/HOL
Implementation

3 Conclusions

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 7 / 29

Haskell vs. Isabelle/HOL – Non-strictness/Partiality
in Isabelle/HOL only total functions are definable
 recursive definitions need termination proof
Haskell is Turing-complete partial functions definable
Haskell’s semantics is non-strict

Example (Haskell)
from :: Int -> [Int]
from n = n : from (n+1)

from does not terminate for any input
 not definable in Isabelle/HOL
due to non-strictness this function is still usable in Haskell

Example (Haskell)
nPrimes :: Int -> [Int]
nPrimes n = take n (filter isPrime (from 1))

Definitions that depend on non-strictness have to be avoided!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 8 / 29

Haskell vs. Isabelle/HOL – Non-strictness/Partiality
in Isabelle/HOL only total functions are definable
 recursive definitions need termination proof
Haskell is Turing-complete partial functions definable
Haskell’s semantics is non-strict

Example (Haskell)
from :: Int -> [Int]
from n = n : from (n+1)

from does not terminate for any input
 not definable in Isabelle/HOL
due to non-strictness this function is still usable in Haskell

Example (Haskell)
nPrimes :: Int -> [Int]
nPrimes n = take n (filter isPrime (from 1))

Definitions that depend on non-strictness have to be avoided!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 8 / 29

Haskell vs. Isabelle/HOL – Non-strictness/Partiality
in Isabelle/HOL only total functions are definable
 recursive definitions need termination proof
Haskell is Turing-complete partial functions definable
Haskell’s semantics is non-strict

Example (Haskell)
from :: Int -> [Int]
from n = n : from (n+1)

from does not terminate for any input
 not definable in Isabelle/HOL
due to non-strictness this function is still usable in Haskell

Example (Haskell)
nPrimes :: Int -> [Int]
nPrimes n = take n (filter isPrime (from 1))

Definitions that depend on non-strictness have to be avoided!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 8 / 29

Haskell vs. Isabelle/HOL – Non-strictness/Partiality
in Isabelle/HOL only total functions are definable
 recursive definitions need termination proof
Haskell is Turing-complete partial functions definable
Haskell’s semantics is non-strict

Example (Haskell)
from :: Int -> [Int]
from n = n : from (n+1)

from does not terminate for any input
 not definable in Isabelle/HOL
due to non-strictness this function is still usable in Haskell

Example (Haskell)
nPrimes :: Int -> [Int]
nPrimes n = take n (filter isPrime (from 1))

Definitions that depend on non-strictness have to be avoided!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 8 / 29

Haskell vs. Isabelle/HOL – Non-strictness/Partiality
in Isabelle/HOL only total functions are definable
 recursive definitions need termination proof
Haskell is Turing-complete partial functions definable
Haskell’s semantics is non-strict

Example (Haskell)
from :: Int -> [Int]
from n = n : from (n+1)

from does not terminate for any input
 not definable in Isabelle/HOL
due to non-strictness this function is still usable in Haskell

Example (Haskell)
nPrimes :: Int -> [Int]
nPrimes n = take n (filter isPrime (from 1))

Definitions that depend on non-strictness have to be avoided!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 8 / 29

Haskell vs. Isabelle/HOL – Local Function Definitions

Haskell allows recursive function definitions in local contexts (using
let or where where)
in Isabelle/HOL recursive function definitions are only allowed at the
top level

Example (Haskell)

sumLen :: Int -> [a] -> [a] -> Int
sumLen s l1 l2 = let len [] = 0

len (x:xs) = len xs + s
in len l1 + len l2

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 9 / 29

Haskell vs. Isabelle/HOL – Local Function Definitions

Haskell allows recursive function definitions in local contexts (using
let or where where)
in Isabelle/HOL recursive function definitions are only allowed at the
top level

Example (Haskell)

sumLen :: Int -> [a] -> [a] -> Int
sumLen s l1 l2 = let len [] = 0

len (x:xs) = len xs + s
in len l1 + len l2

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 9 / 29

Haskell vs. Isabelle/HOL – Local Function Definitions II
local function definitions have to be moved to the top level
closures have to be made explicit

Example (Isabelle/HOL)

fun l e n 1
where

" l e n1 _ N i l = 0"
| " l e n1 s (x # xs) = l en1 s xs + s "

fun sumLen : : " i n t => ’ a l i s t => ’ a l i s t => i n t "
where

" sumLen s l 1 l 2 = (l e t l e n = l en1 s
i n l e n l 1 + l e n l 2)"

Our implementation is able to make these transformations!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 10 / 29

Haskell vs. Isabelle/HOL – Local Function Definitions II
local function definitions have to be moved to the top level
closures have to be made explicit

Example (Isabelle/HOL)

fun l e n 1
where

" l e n1 _ N i l = 0"
| " l e n1 s (x # xs) = l en1 s xs + s "

fun sumLen : : " i n t => ’ a l i s t => ’ a l i s t => i n t "
where

" sumLen s l 1 l 2 = (l e t l e n = l en1 s
i n l e n l 1 + l e n l 2)"

Our implementation is able to make these transformations!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 10 / 29

Haskell vs. Isabelle/HOL – Local Function Definitions II
local function definitions have to be moved to the top level
closures have to be made explicit

Example (Isabelle/HOL)

fun l e n 1
where

" l e n1 _ N i l = 0"
| " l e n1 s (x # xs) = l en1 s xs + s "

fun sumLen : : " i n t => ’ a l i s t => ’ a l i s t => i n t "
where

" sumLen s l 1 l 2 = (l e t l e n = l en1 s
i n l e n l 1 + l e n l 2)"

Our implementation is able to make these transformations!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 10 / 29

Haskell vs. Isabelle/HOL – Order of Definitions

in Haskell definitions can appear in any order
in Isabelle/HOL:

I an identifier has to be defined before usage
I mutual recursive definitions have to be made in parallel

Our implementation reorders definitions accordingly!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 11 / 29

Haskell vs. Isabelle/HOL – Order of Definitions

in Haskell definitions can appear in any order
in Isabelle/HOL:

I an identifier has to be defined before usage
I mutual recursive definitions have to be made in parallel

Our implementation reorders definitions accordingly!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 11 / 29

Haskell vs. Isabelle/HOL – Polymorphism

Haskell: polymorphism over type constructors (of arbitrary kind)
Isabelle/HOL: polymorphism over types only

Example (type constructors)
types (constructors of kind ∗): Int, [Bool], Int -> Bool, . . .
type constructors of first-order kind: list ([]: ∗ → ∗), sum
(Either: ∗ → (∗ → ∗))
type constructor of higher-order kind: Tree: (∗ → ∗)→ (∗ → ∗)

data Tree c a = Node a (c (Tree c a))

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 12 / 29

Haskell vs. Isabelle/HOL – Ad Hoc Polymorphism
Haskell: type classes + constructor classes
Isabelle/HOL: type classes only

Example (classes)
type class:

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a

...

constructor class:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 13 / 29

Haskell vs. Isabelle/HOL – Ad Hoc Polymorphism
Haskell: type classes + constructor classes
Isabelle/HOL: type classes only

Example (classes)
type class:

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a

...

constructor class:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 13 / 29

Haskell vs. Isabelle/HOL – Ad Hoc Polymorphism
Haskell: type classes + constructor classes
Isabelle/HOL: type classes only

Example (classes)
type class:

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a

...

constructor class:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 13 / 29

Haskell vs. Isabelle/HOL – Ad Hoc Polymorphism II

monad class is not definable in Isabelle/HOL!
monads are crucial for practical Haskell programs
monads can be used to describe computations with side effects

Our solution
Translate only instances of the class Monad!
each monad instance has to use different names for the operation
e.g. one monad uses >>=, return; another one uses >>=’, return ’
type inference has to be performed to rename the operations correctly
not full type inference is used, only a simple heuristics

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 14 / 29

Haskell vs. Isabelle/HOL – Ad Hoc Polymorphism II

monad class is not definable in Isabelle/HOL!
monads are crucial for practical Haskell programs
monads can be used to describe computations with side effects

Our solution
Translate only instances of the class Monad!
each monad instance has to use different names for the operation
e.g. one monad uses >>=, return; another one uses >>=’, return ’
type inference has to be performed to rename the operations correctly
not full type inference is used, only a simple heuristics

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 14 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns

Example
In Haskell:

f :: [Int] -> [Int]
f l@(_:_) = 0 : l
f l@ ([]) = 1 : l

In Isabelle/HOL:

fun f where
" f (a0 # a1)

= (l e t l = (a0 # a1)
i n 0 # l)"

| " f N i l = (l e t l = N i l
i n 1 # l)"

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns

Example
In Haskell:

f :: [Int] -> [Int]
f l@(_:_) = 0 : l
f l@ ([]) = 1 : l

In Isabelle/HOL:

fun f where
" f (a0 # a1)

= (l e t l = (a0 # a1)
i n 0 # l)"

| " f N i l = (l e t l = N i l
i n 1 # l)"

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns
labelled fields in data types

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns
labelled fields in data types

Example (Haskell)

data MyRecord = A { aField1 :: String ,
common1 :: Bool ,
common2 :: Int }

| B { bField1 :: Bool ,
bField2 :: Int ,
common1 :: Bool ,
common2 :: Int }

| C Bool Int String

 This is reduced to an ordinary data type!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns
labelled fields in data types

Example (Haskell)

data MyRecord = A { aField1 :: String ,
common1 :: Bool ,
common2 :: Int }

| B { bField1 :: Bool ,
bField2 :: Int ,
common1 :: Bool ,
common2 :: Int }

| C Bool Int String

 This is reduced to an ordinary data type!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns
labelled fields in data types
guards

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns
labelled fields in data types
guards

Example (Haskell)

insert :: Int -> [Int] -> [Int]
insert n [] = [n]
insert n (m:ms)

| n < m = n:m:ms
| otherwise = m: insert n ms

 Guards are reduced to if-then-else expressions!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Haskell vs. Isabelle/HOL – Misc.
Further things that are taken care of in the translation

as-patterns
labelled fields in data types
guards

Example (Haskell)

insert :: Int -> [Int] -> [Int]
insert n [] = [n]
insert n (m:ms)

| n < m = n:m:ms
| otherwise = m: insert n ms

 Guards are reduced to if-then-else expressions!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 15 / 29

Overall Design of Implementation – Parsing

parse each Haskell module to
a syntax tree
imported modules are located
and parsed as well
parser only verifies
context-free part of the
syntax
syntactically correct Haskell
program is assumed

1. Parsing

Haskell syntax trees

Haskell modules

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 16 / 29

Overall Design of Implementation – Preprocessing

Guards are transformed into
if-then-else expressions.
Local function definitions are
transformed into top-level
function definitions.
Keywords and identifiers
defined in the Isabelle/HOL
library are renamed.

1. Parsing

2. Preprocessing

Haskell syntax trees
(simplified)

Haskell syntax trees

Haskell modules

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 17 / 29

Overall Design of Implementation – Analysis

Some global information about
the program is collected:

type annotations
the module where an
identifier was defined
what an identifier refers to
(type, function etc.)
associativity and precedence
of defined operators

1. Parsing

2. Preprocessing

3. Analysis
Haskell syntax trees

(simplified)

Haskell syntax trees

Haskell modules

Context
Information

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 18 / 29

Overall Design of Implementation – Conversion

Definitions are reordered
according to their
dependencies.
Haskell syntax trees are
translated into Isabelle/HOL
syntax trees.

1. Parsing

2. Preprocessing

4. Conversion

3. Analysis

Isabelle syntax trees
(intermediate)

Haskell syntax trees
(simplified)

Haskell syntax trees

Haskell modules

Context
Information

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 19 / 29

Overall Design of Implementation – Adaptation

Renaming of predefined
identifiers, e.g.:

Int 7→ int
[] 7→ Nil
++ 7→ @

1. Parsing

2. Preprocessing

4. Conversion

5. Adaptation

3. Analysis

Isabelle syntax trees
(intermediate)

Haskell syntax trees
(simplified)

Haskell syntax trees

Haskell modules

Isabelle syntax trees

Context
Information

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 20 / 29

Overall Design of Implementation – Printing

Isabelle/HOL syntax trees are
written into theory files.

1. Parsing

2. Preprocessing

4. Conversion

5. Adaptation

6. Printing

3. Analysis

Isabelle syntax trees
(intermediate)

Haskell syntax trees
(simplified)

Haskell syntax trees

Haskell modules

Isabelle syntax trees

Isabelle theories

Context
Information

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 21 / 29

Outline

1 Introduction
Haskell vs. Isabelle/HOL
Motivation
Goals

2 Translating Haskell into Isabelle/HOL
Haskell vs. Isabelle/HOL
Implementation

3 Conclusions

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 22 / 29

Summary

Original implementation covered
case, if-then-else, and let expressions
list comprehensions
where bindings
as-patterns
guards
mutually recursive functions and data type definitions
simple pattern bindings
definitions and instantiations of type classes

Some parts of the translations were unsound!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 23 / 29

Summary

Original implementation covered
case, if-then-else, and let expressions
list comprehensions
where bindings

8 as-patterns
8 guards
8 mutually recursive functions and data type definitions

simple pattern bindings
definitions and instantiations of type classes

Some parts of the translations were unsound!

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 23 / 29

Summary II

Our Contributions
4 mutually recursive function and data type definitions
4 as-patterns
4 guards

data types with labelled fields
closures in local function definitions
monomorphic uses of monads

What is missing
constructor type classes polymorphic uses of monads
non-simple pattern bindings
irrefutable patterns

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 24 / 29

Summary II

Our Contributions
4 mutually recursive function and data type definitions
4 as-patterns
4 guards

data types with labelled fields
closures in local function definitions
monomorphic uses of monads

What is missing
constructor type classes polymorphic uses of monads
non-simple pattern bindings
irrefutable patterns

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 24 / 29

Conclusions

What do we have
translation is unsound!
most of the Haskell 98 language can be translated
resulting Isabelle/HOL formalisation is close to Haskell program
comparatively easy reasoning in Isabelle/HOL
adequate translation for most purposes l4.verified

Alternative Approach
logic HOLCF is well suited to formalise partiality and non-strictness
even constructor classes can be formalised
reasoning in Isabelle/HOLCF is more complicated

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 25 / 29

Conclusions

What do we have
translation is unsound!
most of the Haskell 98 language can be translated
resulting Isabelle/HOL formalisation is close to Haskell program
comparatively easy reasoning in Isabelle/HOL
adequate translation for most purposes l4.verified

Alternative Approach
logic HOLCF is well suited to formalise partiality and non-strictness
even constructor classes can be formalised
reasoning in Isabelle/HOLCF is more complicated

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 25 / 29

Coping with Large Data Types

Dealing with syntax trees ⇒ dealing with large data types.

Data Types Defining Haskell Syntax Trees
500 lines of Haskell code
51 data types
“largest” data type contains 45 constructors

You don’t want to write all the code for all those data types and each
of their constructors!

⇒ Generic Programming + Code Generation

If you have to write it you only want to write it once!

⇒ Modularity

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 26 / 29

Coping with Large Data Types

Dealing with syntax trees ⇒ dealing with large data types.

Data Types Defining Haskell Syntax Trees
500 lines of Haskell code
51 data types
“largest” data type contains 45 constructors

You don’t want to write all the code for all those data types and each
of their constructors!

⇒ Generic Programming + Code Generation

If you have to write it you only want to write it once!

⇒ Modularity

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 26 / 29

Coping with Large Data Types

Dealing with syntax trees ⇒ dealing with large data types.

Data Types Defining Haskell Syntax Trees
500 lines of Haskell code
51 data types
“largest” data type contains 45 constructors

You don’t want to write all the code for all those data types and each
of their constructors!

⇒ Generic Programming + Code Generation
If you have to write it you only want to write it once!

⇒ Modularity

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 26 / 29

Generic Programming
“Scrap Your Boilerplate”

Problem Addressed by SYB
traverse a data structure to transform or query it
only a few parts of the data structure are relevant

Example
compute free variables of an expression
transform where clauses into let expressions

Difficulties when Applying SYB in our Setting
often context information is necessary
We want to define a piece of context information only once.

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 27 / 29

Generic Programming
“Scrap Your Boilerplate”

Problem Addressed by SYB
traverse a data structure to transform or query it
only a few parts of the data structure are relevant

Example
compute free variables of an expression
transform where clauses into let expressions

Difficulties when Applying SYB in our Setting
often context information is necessary
We want to define a piece of context information only once.

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 27 / 29

Generic Programming
“Scrap Your Boilerplate”

Problem Addressed by SYB
traverse a data structure to transform or query it
only a few parts of the data structure are relevant

Example
compute free variables of an expression
transform where clauses into let expressions

Difficulties when Applying SYB in our Setting
often context information is necessary
We want to define a piece of context information only once.

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 27 / 29

Environments
Data Structure as a Tree

A

B C

= changes environment

A and B needed A and C needed

Defining Environments by a -> (e -> e)
a is the type of the current node
e is the type of the environment

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 28 / 29

Environments
Data Structure as a Tree

A

B C

= changes environment

A and B needed A and C needed

Defining Environments by a -> (e -> e)
a is the type of the current node
e is the type of the environment

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 28 / 29

Extending SYB by Environment Propagation

Extension to SYB
allows to define environments
allows to combine environments
provides traversal strategies with environment propagation

Generalisation of Environment Propagation
non-uniform propagation
monadic computations to define an environment

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 29 / 29

Extending SYB by Environment Propagation

Extension to SYB
allows to define environments
allows to combine environments
provides traversal strategies with environment propagation

Generalisation of Environment Propagation
non-uniform propagation
monadic computations to define an environment

Patrick Bahr (NICTA Sydney, TU Wien) Translating Haskell into Isabelle/HOL December 17, 2008 29 / 29

	Introduction
	Haskell vs. Isabelle/HOL
	Motivation
	Goals

	Translating Haskell into Isabelle/HOL
	Haskell vs. Isabelle/HOL
	Implementation

	Conclusions
	Appendix
	Techniques

