
Implementation of a Pragmatic Translation from
Haskell into Isabelle/HOL

Patrick Bahr
pa-ba@arcor.de

NICTA

October 29, 2008

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 1 / 29



*

Outline

1 Introduction

2 Existing Implementation

3 Extensions to the Implementation
Translating Further Language Features
Useful Techniques

4 Summary

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 2 / 29



*

Outline

1 Introduction

2 Existing Implementation

3 Extensions to the Implementation
Translating Further Language Features
Useful Techniques

4 Summary

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 3 / 29



Motivation

seL4
Prototype implementation in Haskell.
Executable model in Isabelle/HOL for verification.

No Theorem Prover for Haskell
Haskell allows easy reasoning about its semantics.
no theorem prover to automate this

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 4 / 29



Motivation

seL4
Prototype implementation in Haskell.
Executable model in Isabelle/HOL for verification.

No Theorem Prover for Haskell
Haskell allows easy reasoning about its semantics.
no theorem prover to automate this

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 4 / 29



Isabelle/HOL as Target Language

Benefits
automated translation is simpler
resulting translation is close to original Haskell code
reasoning in HOL is easier (than in HOLCF)

Drawbacks
translation is not complete
translation is not sound
issues:

I comprehensive language features (e.g. type system)
I non-strictness

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 5 / 29



Isabelle/HOL as Target Language

Benefits
automated translation is simpler
resulting translation is close to original Haskell code
reasoning in HOL is easier (than in HOLCF)

Drawbacks
translation is not complete
translation is not sound
issues:

I comprehensive language features (e.g. type system)
I non-strictness

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 5 / 29



*

Outline

1 Introduction

2 Existing Implementation

3 Extensions to the Implementation
Translating Further Language Features
Useful Techniques

4 Summary

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 6 / 29



Design of the Implementation

The translation is performed in six steps:

Parsing
Preprocessing
Analysis
Conversion
Adaption
Printing

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 7 / 29



Design of the Implementation

The translation is performed in six steps:

Parsing
Preprocessing
Analysis
Conversion
Adaption
Printing

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 7 / 29



Preprocessing

Guards are transformed into if-then-else expressions.
Local function definitions are transformed into top-level function
definitions.
As-patters are transformed into additional nested pattern matches.
Keywords and identifiers defined in the Isabelle/HOL library are
renamed.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 8 / 29



Conversion

Definitions are reordered according to their dependencies.
Haskell syntax trees are translated into Isabelle/HOL syntax trees.

Translation in a (Very Small) Nutshell
function bindings 7→ fun
simple pattern bindings 7→ definition
data type declarations 7→ datatype
type class declararions 7→ class
instance declarations 7→ instantiation

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 9 / 29



Issues of the Implementation

Things that are not Supported
data types with field labels
closures of local function definitions
constructor type classes (+ multi-parameter type classes)
irrefutable patterns

Things that Go Wrong
Dependencies on data types are ignored.
The translation of as-patterns is unsound.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 10 / 29



*

Outline

1 Introduction

2 Existing Implementation

3 Extensions to the Implementation
Translating Further Language Features
Useful Techniques

4 Summary

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 11 / 29



Our Contributions

translation of data types with labelled fields

Jump to Details

translation of closures

Jump to Details

heuristic to translate monadic programs
infrastructure to customise the translation
dependencies on type definitions are respected
sound translation of as-patterns*
testing framework

Skip Details

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 12 / 29



Our Contributions

translation of data types with labelled fields Jump to Details

translation of closures Jump to Details

heuristic to translate monadic programs
infrastructure to customise the translation
dependencies on type definitions are respected
sound translation of as-patterns*
testing framework

Skip Details

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 12 / 29



Data Types with Labelled Fields
Haskell

data MyRecord = A { aField1 :: Int ,
aField2 :: String ,
common :: Char }

| B { bField1 :: Bool ,
bField2 :: Int ,
bField3 :: Int ,
common :: Char }

| C Bool Bool String

Isabelle/HOL

datatype MyRecord = A int string char
| B bool int int char
| C bool bool string

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 13 / 29



Data Types with Labelled Fields
Haskell

data MyRecord = A { aField1 :: Int ,
aField2 :: String ,
common :: Char }

| B { bField1 :: Bool ,
bField2 :: Int ,
bField3 :: Int ,
common :: Char }

| C Bool Bool String

Isabelle/HOL

datatype MyRecord = A int string char
| B bool int int char
| C bool bool string

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 13 / 29



Fields as Selection Functions

primrec aField1 :: " MyRecord => int"
where

" aField1 (A x _ _) = x"

primrec common :: " MyRecord => char"
where

" common (B _ _ _ x) = x"
| " common (A _ _ x) = x"

...

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 14 / 29



Related Syntax
Construction

Haskel

constr :: MyRecord
constr = A{ aField1 = 1, common = ’2’}

Isabelle/HOL

definition constr :: " MyRecord "
where

" constr = A 1 arbitrary CHR ’’2’’"

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 15 / 29



Related Syntax
Construction

Haskel

constr :: MyRecord
constr = A{ aField1 = 1, common = ’2’}

Isabelle/HOL

definition constr :: " MyRecord "
where

" constr = A 1 arbitrary CHR ’’2’’"

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 15 / 29



Related Syntax
Updates

Haskel

update :: MyRecord -> MyRecord
update x = x{ aField2 = "foo"}

Isabelle/HOL

fun update :: " MyRecord => MyRecord "
where

" update x = (case x of
A v1 v2 v3

=> A v1 ’’foo ’’ v3
| _ => arbitrary )"

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 16 / 29



Related Syntax
Updates

Haskel

update :: MyRecord -> MyRecord
update x = x{ aField2 = "foo"}

Isabelle/HOL

fun update :: " MyRecord => MyRecord "
where

" update x = (case x of
A v1 v2 v3

=> A v1 ’’foo ’’ v3
| _ => arbitrary )"

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 16 / 29



Related Syntax
Pattern Matching

Haskel

pattern :: MyRecord -> Int
pattern A{ aField1 = val} = val
pattern B{ bField3 = val} = val
pattern (C v1 v2 v3) = 1

Isabelle/HOL

fun pattern :: " MyRecord => int"
where

" pattern A val _ _ = val"
| " pattern B _ _ val _ = val"
| " pattern (C v1 v2 v3) = 1"

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 17 / 29



Related Syntax
Pattern Matching

Haskel

pattern :: MyRecord -> Int
pattern A{ aField1 = val} = val
pattern B{ bField3 = val} = val
pattern (C v1 v2 v3) = 1

Isabelle/HOL

fun pattern :: " MyRecord => int"
where

" pattern A val _ _ = val"
| " pattern B _ _ val _ = val"
| " pattern (C v1 v2 v3) = 1"

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 17 / 29



Closures

functions can be defined locally using where and let

transformed to top-level definitions

But
Locally defined function can refer to free variables only bound in the
local context.
⇒ Closure
The transformation has to make the environment of the closure
explicit.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 18 / 29



Closures

functions can be defined locally using where and let

transformed to top-level definitions

But
Locally defined function can refer to free variables only bound in the
local context.
⇒ Closure
The transformation has to make the environment of the closure
explicit.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 18 / 29



An Example
Haskell Definition of Several Closures

func x y = sum x + addToX y -- closure :
where addToX y = x + y -- x

addToY x = x + y -- y (+ x)
w = addToY x
sum y = w + y -- x (+ y)

Transformed Top-level Definitions

addToX ’ x y = x + y
addToY ’ (_, y) x = x + y
sum ’ env y = let (x, _) = env

w = addToY ’ env x
in w + y

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 19 / 29



An Example
Haskell Definition of Several Closures

func x y = sum x + addToX y -- closure :
where addToX y = x + y -- x

addToY x = x + y -- y (+ x)
w = addToY x
sum y = w + y -- x (+ y)

Transformed Top-level Definitions

addToX ’ x y = x + y
addToY ’ (_, y) x = x + y
sum ’ env y = let (x, _) = env

w = addToY ’ env x
in w + y

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 19 / 29



An Example
The Final Result

addToX ’ x y = x + y
addToY ’ (_, y) x = x + y
sum ’ env y = let (x, _) = env

w = addToY ’ env x
in w + y

func x y = let addToX = addToX ’ x
addToY = addToY ’ (x, y)
sum = sum ’ (x, y)
w = addToY x

in sum x + addToX y

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 20 / 29



An Example
The Final Result

addToX ’ x y = x + y
addToY ’ (_, y) x = x + y
sum ’ env y = let (x, _) = env

w = addToY ’ env x
in w + y

func x y = let addToX = addToX ’ x
addToY = addToY ’ (x, y)
sum = sum ’ (x, y)
w = addToY x

in sum x + addToX y

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 20 / 29



Coping with Large Data Types

Dealing with syntax trees ⇒ dealing with large data types.

Data Types Defining Haskell Syntax Trees
500 lines of Haskell code
51 data types
“largest” data type contains 45 constructors

You don’t want to write all the code for all those data types and each
of their constructors!

⇒ Generic Programming + Code Generation

If you have to write it you only want to write it once!

⇒ Modularity

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 21 / 29



Coping with Large Data Types

Dealing with syntax trees ⇒ dealing with large data types.

Data Types Defining Haskell Syntax Trees
500 lines of Haskell code
51 data types
“largest” data type contains 45 constructors

You don’t want to write all the code for all those data types and each
of their constructors!

⇒ Generic Programming + Code Generation

If you have to write it you only want to write it once!

⇒ Modularity

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 21 / 29



Coping with Large Data Types

Dealing with syntax trees ⇒ dealing with large data types.

Data Types Defining Haskell Syntax Trees
500 lines of Haskell code
51 data types
“largest” data type contains 45 constructors

You don’t want to write all the code for all those data types and each
of their constructors!

⇒ Generic Programming + Code Generation
If you have to write it you only want to write it once!

⇒ Modularity

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 21 / 29



Testing with QuickCheck

QuickCheck
allows to specify and test algebraic properties
needs generators that produce random test data
tests properties by generating a value for each universally quantified
element
uses type system to get the right generator for each type

We have to implement test data generators for Haskell syntax trees!

Generators for Data Types
randomly choose a constructor,
generate values for the argument of the constructor, and
combine the results

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 22 / 29



Testing with QuickCheck

QuickCheck
allows to specify and test algebraic properties
needs generators that produce random test data
tests properties by generating a value for each universally quantified
element
uses type system to get the right generator for each type

We have to implement test data generators for Haskell syntax trees!

Generators for Data Types
randomly choose a constructor,
generate values for the argument of the constructor, and
combine the results

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 22 / 29



Testing with QuickCheck

QuickCheck
allows to specify and test algebraic properties
needs generators that produce random test data
tests properties by generating a value for each universally quantified
element
uses type system to get the right generator for each type

We have to implement test data generators for Haskell syntax trees!

Generators for Data Types
randomly choose a constructor,
generate values for the argument of the constructor, and
combine the results

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 22 / 29



Template Haskell

Extension to Haskell that allows to generate Haskell code at compile time.

Using Template Haskell to Define Test Data Generators
We implemented a library of Template Haskell functions that allow

to define most generators in one line, and
to customise the defined generators.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 23 / 29



Template Haskell

Extension to Haskell that allows to generate Haskell code at compile time.

Using Template Haskell to Define Test Data Generators
We implemented a library of Template Haskell functions that allow

to define most generators in one line, and
to customise the defined generators.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 23 / 29



Generic Programming
“Scrap Your Boilerplate”

Problem Addressed by SYB
traverse a data structure to transform or query it
only a few parts of the data structure are relevant

Example
compute free variables of an expression
transform where clauses into let expressions

Difficulties when Applying SYB in our Setting
often context information is necessary
We want to define a piece of context information only once.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 24 / 29



Generic Programming
“Scrap Your Boilerplate”

Problem Addressed by SYB
traverse a data structure to transform or query it
only a few parts of the data structure are relevant

Example
compute free variables of an expression
transform where clauses into let expressions

Difficulties when Applying SYB in our Setting
often context information is necessary
We want to define a piece of context information only once.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 24 / 29



Generic Programming
“Scrap Your Boilerplate”

Problem Addressed by SYB
traverse a data structure to transform or query it
only a few parts of the data structure are relevant

Example
compute free variables of an expression
transform where clauses into let expressions

Difficulties when Applying SYB in our Setting
often context information is necessary
We want to define a piece of context information only once.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 24 / 29



Environments
Data Structure as a Tree

A

B C

= changes environment

A and B needed A and C needed

Defining Environments by a -> (e -> e)
a is the type of the current node
e is the type of the environment

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 25 / 29



Environments
Data Structure as a Tree

A

B C

= changes environment

A and B needed A and C needed

Defining Environments by a -> (e -> e)
a is the type of the current node
e is the type of the environment

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 25 / 29



Extending SYB by Environment Propagation

Extension to SYB
allows to define environments
allows to combine environments
provides traversal strategies with environment propagation

Generalisation of Environment Propagation
non-uniform propagation
monadic computations to define an environment

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 26 / 29



Extending SYB by Environment Propagation

Extension to SYB
allows to define environments
allows to combine environments
provides traversal strategies with environment propagation

Generalisation of Environment Propagation
non-uniform propagation
monadic computations to define an environment

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 26 / 29



*

Outline

1 Introduction

2 Existing Implementation

3 Extensions to the Implementation
Translating Further Language Features
Useful Techniques

4 Summary

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 27 / 29



Summary

Done
eliminated most shortcomings of the previous implementation
customisation mechanism
testing framework

Loose Ends
circular dependencies between modules
applying the translation to seL4.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 28 / 29



Summary

Done
eliminated most shortcomings of the previous implementation
customisation mechanism
testing framework

Loose Ends
circular dependencies between modules
applying the translation to seL4.

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 28 / 29



Thank you!

Patrick Bahr (NICTA) Translating Haskell into Isabelle/HOL October 29, 2008 29 / 29


	Introduction
	Existing Implementation
	Extensions to the Implementation
	Translating Further Language Features
	Useful Techniques

	Summary

