
Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks

Implementation of a Fast Congruence Closure
Algorithm

Patrick Bahr
s0404888@inf.tu-dresden.de

Technische Universität Dresden

December 17, 2007

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks

Outline

1 Introduction
Motivation
Preliminaries

2 Congruence Closure and Decision Algorithm
Congruence Closure Algorithm
Decision Algorithm

3 Conclusive Remarks

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Outline

1 Introduction
Motivation
Preliminaries

2 Congruence Closure and Decision Algorithm
Congruence Closure Algorithm
Decision Algorithm

3 Conclusive Remarks

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Word Problem of Equational Logic

Given: Finite set of equations E , and a single equation s ≈ t
Question: E |= s ≈ t, i.e., follows s ≈ t from the equations in E?

Definition
E |= s ≈ t, also written s ≈E t, iff every model of E is a model of s ≈ t.
That is, for all algebras A we have:

A |= E implies A |= s ≈ t

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Solving the Word Problem: Rewriting Systems

Idea: Read E as rewriting rules, i.e., equations in E are only
“applied” from left to right.
If the resulting rewriting system →E can be proven terminating and
confluent s ≈E t is decidable by checking s↓ = t↓.
If it’s not: Use Knuth-Bendix completion to create an equivalent
rewriting system that can be proven terminating and confluent.
Of course, this procedure does not always succeed!
It does if all equations in E are ground!

Hence, s ≈E t is decidable if E is ground.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Solving the Word Problem: Congruence Closure

If E is ground, there is an alternative solution.

Theorem
Let Σ be a signature and E be a set of ground Σ-equations. ≈E is the
smallest congruence relation containing E.

If we restrict ourselves to the subterms in E , s and t this congruence
closure is computable.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Congruence

Definition
Let Σ be a signature and ≡ an equivalence relation on TΣ. ≡ is called a
congruence relation if the following condition holds:
If for some k ≥ 0 we have ti ≡ si for all 1 ≤ i ≤ k and f ∈ Σ(k) then also
f (t1, . . . , tk) ≡ f (s1, . . . , sk).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Representing and Manipulating Equivalence Relations

General idea:
Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.
Operation find to get the equivalence class of a given element.
Operation union to combine two equivalence classes.

Two different approaches:
Represent the quotient set as a lookup table mapping from elements
to equivalence class names.
 find: O(1); union: O(n).
Represent the quotient set as a forest, where each tree represents an
equivalence class. The root of a tree is the canonical representative
of the class.
 find: O(n); union: O(1).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Representing and Manipulating Equivalence Relations

General idea:
Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.
Operation find to get the equivalence class of a given element.
Operation union to combine two equivalence classes.

Two different approaches:
Represent the quotient set as a lookup table mapping from elements
to equivalence class names.
 find: O(1); union: O(n).

Represent the quotient set as a forest, where each tree represents an
equivalence class. The root of a tree is the canonical representative
of the class.
 find: O(n); union: O(1).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Representing and Manipulating Equivalence Relations

General idea:
Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.
Operation find to get the equivalence class of a given element.
Operation union to combine two equivalence classes.

Two different approaches:
Represent the quotient set as a lookup table mapping from elements
to equivalence class names.
 find: O(1); union: O(n).
Represent the quotient set as a forest, where each tree represents an
equivalence class. The root of a tree is the canonical representative
of the class.
 find: O(n); union: O(1).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Representing and Manipulating Equivalence Relations

General idea:
Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.
Operation find to get the equivalence class of a given element.
Operation union to combine two equivalence classes.

Two different approaches:
Represent the quotient set as a lookup table mapping from elements
to equivalence class names.
 find: O(1); union: O(n).
Represent the quotient set as a forest, where each tree represents an
equivalence class. The root of a tree is the canonical representative
of the class.
 find: O(n); union: O(1).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Equivalence Classes as Trees (1)

Equivalence class c1 = {v0, v1, v2, v3, v4}
Equivalence class c2 = {u0, u1, u2}

c1: v0

v1 v2

v3 v4

c2: u0

u1 u2

operation find traverses up the tree until the root is reached.
e.g. find(R, v4) = find(R, v2) = v0

operation union takes two roots of some trees, and makes one of
them child of the other.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Equivalence Classes as Trees (2)

E.g. union(R, v0, u0) produces the following:

v0

v1 v2

v3 v4

u0

u1 u2

We now have only one class c = c1 ∪ c2 = {v0, v1, v2, v3, v4, u0, u1, u2}
represented by the node v0

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Terms as Digraphs

Terms will be interpreted as labelled graphs in the following.

Definition
Let Σ be a signature, t ∈ TΣ and E a set of ground Σ-equations.
(i) The labelled digraph Gt = (Vt ,Et , lt), where Vt = Pos(t),

l(p) = t(p) for all p ∈ Vt , Et = {(p, p′) ∈ V 2
t | ∃i ∈ N.p′ = pi} and

for each node p ∈ Vt the set of successors of p is ordered by
p1 < · · · < pk, is called the graph of t. Note that Gt is a tree. By
vt ∈ Vt we denote the root of this tree.

(ii) The graph GE =
⊎

s≈s′
Gs] Gs′ is called the graph of E .

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Motivation
Preliminaries

Achieving Congruence

Definition
Let Σ be a signature, G = (V ,E , l : V → Σ) a labelled digraph, v a node
in G , v1 < · · · < vk its successors and R ∈ EqG,C . The Σ,C -signature of
v w.r.t. R is the (k + 1)-tuple
sig(R, v) = (l(v), find(R, v1), . . . , find(R, vk)).

Nodes having the same Σ,C -signature should be in the same equivalence
class to achieve congruence!

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

Outline

1 Introduction
Motivation
Preliminaries

2 Congruence Closure and Decision Algorithm
Congruence Closure Algorithm
Decision Algorithm

3 Conclusive Remarks

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

The Idea of the Algorithm

Every term of the equations is interpreted as a graph.
Every node is put into a singleton class.
Roots of terms that are equal are put in the same equivalence class
using union.
Until no further changes can be derived the following is repeated:

Find nodes that have the same Σ,C -signature but are in different
equivalence classes.
Combine the equivalence classes of these two nodes.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

An Example (1)

Graph of the set {g(f (a), c) ≈ g(a, f (a))}
g

f c

a

g

a f

a

Singleton equivalence classes

g

f c

a

g

a f

a

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

An Example (1)

Graph of the set {g(f (a), c) ≈ g(a, f (a))}
g

f c

a

g

a f

a

Singleton equivalence classes

g

f c

a

g

a f

a

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

An Example (2)

union of the roots’ equivalence classes

g

f c

a

g

a f

a

Establish congruence

g

f c

a

g

a f

a

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

An Example (2)

union of the roots’ equivalence classes

g

f c

a

g

a f

a

Establish congruence

g

f c

a

g

a f

a

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

An Example (2)

union of the roots’ equivalence classes

g

f c

a

g

a f

a

Establish congruence

g

f c

a

g

a f

a

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

How to Keep Track of Changes of Equivalence Classes?

Maintain for each equivalence class c the set pred(R, c) of nodes
that have a successor that is in c.
 helps to find nodes that have to be checked for their
Σ,C -signatures again
Maintain a set pending of nodes that have to be checked for their
Σ,C -signatures.
Maintain a signature table τ , that maps from Σ,C -signatures to
equivalence classes that have a node having this Σ,C -signature.
 helps to find equivalence classes that have to be merged.
Maintain a set combine of pairs of equivalence classes that have to
be merged.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

The Algorithm

1: input: set E of ground Σ-equations
2: τ ← ε . Initialise Σ,C -signature table τ as empty
3: set R s.t. find(R, v) = v for all v ∈ VE .
4: for s ≈ t ∈ E do . Impose the desired equalities.
5: R ← union(R, vs , vt)
6: end for
7: pending ← VE
8: while pending 6= ∅ do
9: combine ← ∅

10: CheckSignature(R, τ, pending , combine)
11: pending ← ∅
12: Combine(R, τ, pending , combine)
13: end while
14: output: τ

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

The CheckSignature Subprocedure

1: procedure CheckSignature(R, τ, pending , combine)
2: for v ∈ pending do
3: if τ(sig(v)) =⊥ then
4: τ ← τ [sig(v) 7→ find(R, v)]
5: else if find(R, v) 6= τ(sig(v)) then
6: combine ← combine ∪ {(find(R, v), τ(sig(v)))}
7: end if
8: end for
9: end procedure

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

The Combine Subprocedure

1: procedure Combine(R, τ, pending , combine)
2: for (e1, e2) ∈ combine do
3: if both e1 and e2 are used in R then
4: if weight(R, e1) < weight(R, e2) then
5: (e1, e2)← (e2, e1)
6: end if
7: for u ∈ pred(R, e2) do
8: τ ← τ\sig(u)

9: pending ← pending ∪ {u}
10: end for
11: R ← union(R, e1, e2)
12: end if
13: end for
14: end procedure

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

Using the signature table to decide equations

Output of the congruence closure algorithm is the final signature
table τ .
Equivalence class of a term can be recursively computed using the
signature table.
If a Σ,C -signature s is computed that is not considered in τ , s is
put into τ mapping it to a fresh equivalence class name from C .
Therefore τ is transformed beforehand such that equivalence class
names are integers.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks
Congruence Closure Algorithm
Decision Algorithm

The Algorithm

1: input: ground Σ-equation s ≈ t, Σ,C -signature table τ
2: output: true if Class(s) = Class(t); otherwise false
3: function Class(t = f (t1, . . . tk) ∈ TΣ)
4: for i ∈ {1, . . . k} do
5: ci = Class(ti)
6: end for
7: if τ((f , c1, . . . , ck)) =⊥ then
8: take some c ∈ C \ dom(τ)
9: τ ← τ [(f , c1, . . . , ck) 7→ c].

10: else
11: c ← τ((f , c1, . . . , ck))
12: end if
13: return c
14: end function

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks

Outline

1 Introduction
Motivation
Preliminaries

2 Congruence Closure and Decision Algorithm
Congruence Closure Algorithm
Decision Algorithm

3 Conclusive Remarks

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks

Complexity

The congruence closure algorithm takes O(n log n) time for input
equations of an overall size of n.
The decision algorithm takes O(m) time for an input equation of
size m.
I.e., in particular the runtime of the decision algorithm is
independent of the size of the equations defining the equational
theory.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction
Congruence Closure and Decision Algorithm

Conclusive Remarks

Runtime Comparison to Downey et al.

25080 51820 75624 100730 126388 158326 184638 211056 237368 263748

0

100

200

300

400

500

600

Unweighted Union Weighted Union

Size

Ti
m

e

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Bibliography

Alfred V. Aho and John E. Hopcroft.
The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1974.
Franz Baader and Tobias Nipkow.
Term Rewriting and All That.
Cambridge University Press, 1999.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan.
Variations on the common subexpression problem.
J. ACM, 27(4):758–771, 1980.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

	Introduction
	Motivation
	Preliminaries

	Congruence Closure and Decision Algorithm
	Congruence Closure Algorithm
	Decision Algorithm

	Conclusive Remarks
	Appendix

