Implementation of a Fast Congruence Closure Algorithm

Patrick Bahr s0404888@inf.tu-dresden.de

Technische Universität Dresden

December 17, 2007

B A B A B B B A A A

Outline

- Motivation
- Preliminaries

2 Congruence Closure and Decision Algorithm

- Congruence Closure Algorithm
- Decision Algorithm

3 Conclusive Remarks

三日 のへで

< ∃

Motivation Preliminaries

Outline

- Motivation
- Preliminaries

2 Congruence Closure and Decision Algorithm

- Congruence Closure Algorithm
- Decision Algorithm

3 Conclusive Remarks

- T

< E ▶ < E ▶ E H つへ(?)

Word Problem of Equational Logic

- Given: Finite set of equations *E*, and a single equation $s \approx t$
- Question: $E \models s \approx t$, i.e., follows $s \approx t$ from the equations in E?

Definition

 $E \models s \approx t$, also written $s \approx_E t$, iff every model of E is a model of $s \approx t$. That is, for all algebras A we have:

$$\mathcal{A} \models E$$
 implies $\mathcal{A} \models s \approx t$

⇒ ↓ ≡ ↓ ≡ | = √Q ∩

Solving the Word Problem: Rewriting Systems

- Idea: Read *E* as rewriting rules, i.e., equations in *E* are only "applied" from left to right.
- If the resulting rewriting system \rightarrow_E can be proven terminating and confluent $s \approx_E t$ is decidable by checking $s \downarrow = t \downarrow$.
- If it's not: Use Knuth-Bendix completion to create an equivalent rewriting system that can be proven terminating and confluent.
- Of course, this procedure does not always succeed!
- It does if all equations in *E* are ground!

Hence, $s \approx_E t$ is decidable if *E* is ground.

伺 ト イヨ ト イヨ ト ヨ ヨ つくや

Motivation Preliminaries

Solving the Word Problem: Congruence Closure

If E is ground, there is an alternative solution.

Theorem

Let Σ be a signature and E be a set of ground Σ -equations. \approx_E is the smallest congruence relation containing E.

If we restrict ourselves to the subterms in E, s and t this congruence closure is computable.

∃ ► ▲ ∃ ► ∃ =

Motivation Preliminaries

Congruence

Definition

Let Σ be a signature and \equiv an equivalence relation on T_{Σ} . \equiv is called a congruence relation if the following condition holds: If for some $k \ge 0$ we have $t_i \equiv s_i$ for all $1 \le i \le k$ and $f \in \Sigma^{(k)}$ then also $f(t_1, \ldots, t_k) \equiv f(s_1, \ldots, s_k)$.

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

General idea:

- Represent the equivalence relation as its quotient set, i.e. the set of all equivalence classes.
- Operation find to get the equivalence class of a given element.
- Operation union to combine two equivalence classes.

∃ ► ▲ ∃ ► ∃ = ● ○ ○ ○

General idea:

- Represent the equivalence relation as its quotient set, i.e. the set of all equivalence classes.
- Operation find to get the equivalence class of a given element.
- Operation union to combine two equivalence classes.

Two different approaches:

• Represent the quotient set as a lookup table mapping from elements to equivalence class names.

 \rightsquigarrow find: $\mathcal{O}(1)$; union: $\mathcal{O}(n)$.

同 ト イヨ ト イヨ ト ヨ ヨ つくや

General idea:

- Represent the equivalence relation as its quotient set, i.e. the set of all equivalence classes.
- Operation find to get the equivalence class of a given element.
- Operation union to combine two equivalence classes.

Two different approaches:

• Represent the quotient set as a lookup table mapping from elements to equivalence class names.

 \rightsquigarrow find: $\mathcal{O}(1)$; union: $\mathcal{O}(n)$.

• Represent the quotient set as a forest, where each tree represents an equivalence class. The root of a tree is the canonical representative of the class.

 \rightsquigarrow find: $\mathcal{O}(n)$; union: $\mathcal{O}(1)$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

General idea:

- Represent the equivalence relation as its quotient set, i.e. the set of all equivalence classes.
- Operation find to get the equivalence class of a given element.
- Operation union to combine two equivalence classes.

Two different approaches:

• Represent the quotient set as a lookup table mapping from elements to equivalence class names.

 \rightsquigarrow find: $\mathcal{O}(1)$; union: $\mathcal{O}(n)$.

• Represent the quotient set as a forest, where each tree represents an equivalence class. The root of a tree is the canonical representative of the class.

 \rightsquigarrow find: $\mathcal{O}(n)$; union: $\mathcal{O}(1)$.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Motivation Preliminaries

Equivalence Classes as Trees (1)

Equivalence class $c_1 = \{v_0, v_1, v_2, v_3, v_4\}$ Equivalence class $c_2 = \{u_0, u_1, u_2\}$

- operation find traverses up the tree until the root is reached.
- e.g. $find(R, v_4) = find(R, v_2) = v_0$
- operation union takes two roots of some trees, and makes one of them child of the other.

∃ ► ∃ = <0 <0</p>

Equivalence Classes as Trees (2)

E.g. union (R, v_0, u_0) produces the following:

We now have only one class $c = c_1 \cup c_2 = \{v_0, v_1, v_2, v_3, v_4, u_0, u_1, u_2\}$ represented by the node v_0

SIN OR

- A 🗎 b

Terms as Digraphs

Terms will be interpreted as labelled graphs in the following.

Definition

Let Σ be a signature, $t \in T_{\Sigma}$ and E a set of ground Σ -equations.

- (i) The labelled digraph $G_t = (V_t, E_t, I_t)$, where $V_t = \mathcal{P}os(t)$, l(p) = t(p) for all $p \in V_t$, $E_t = \{(p, p') \in V_t^2 | \exists i \in \mathbb{N}. p' = pi\}$ and for each node $p \in V_t$ the set of successors of p is ordered by $p1 < \cdots < pk$, is called the graph of t. Note that G_t is a tree. By $v_t \in V_t$ we denote the root of this tree.
- (ii) The graph $G_E = \biguplus_{s \approx s'} G_s \uplus G_{s'}$ is called the graph of E.

▲御▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わすぐ

Motivation Preliminaries

Achieving Congruence

Definition

Let Σ be a signature, $G = (V, E, I : V \to \Sigma)$ a labelled digraph, v a node in G, $v_1 < \cdots < v_k$ its successors and $R \in Eq_{G,C}$. The Σ , *C*-signature of v w.r.t. R is the (k + 1)-tuple $sig(R, v) = (I(v), find(R, v_1), \dots, find(R, v_k))$.

Nodes having the same Σ , *C*-signature should be in the same equivalence class to achieve congruence!

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Congruence Closure Algorithm Decision Algorithm

Outline

Introduction

- Motivation
- Preliminaries

2 Congruence Closure and Decision Algorithm

- Congruence Closure Algorithm
- Decision Algorithm

3 Conclusive Remarks

ミト ▲ ミト 三日日 つへぐ

Congruence Closure Algorithm Decision Algorithm

The Idea of the Algorithm

- Every term of the equations is interpreted as a graph.
- Every node is put into a singleton class.
- Roots of terms that are equal are put in the same equivalence class using union.
- Until no further changes can be derived the following is repeated:
 - Find nodes that have the same Σ, C-signature but are in different equivalence classes.
 - Combine the equivalence classes of these two nodes.

∃ ► ▲ ∃ ► ∃ = ● ○ ○ ○

An Example (1)

<□> < => < => < => < =| = <0 < 0

An Example (1)

Singleton equivalence classes

< 6 b

ミト ▲ミト ミヨ のへで

An Example (2)

< (T) >

< E ▶ < E ▶ E = のQ (~

An Example (2)

Establish congruence

An Example (2)

Establish congruence

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

How to Keep Track of Changes of Equivalence Classes?

- Maintain for each equivalence class c the set pred(R, c) of nodes that have a successor that is in c.
 - \rightsquigarrow helps to find nodes that have to be checked for their
 - Σ , *C*-signatures again
- Maintain a set *pending* of nodes that have to be checked for their Σ , C-signatures.
- Maintain a signature table τ , that maps from Σ , *C*-signatures to equivalence classes that have a node having this Σ , *C*-signature. \rightsquigarrow helps to find equivalence classes that have to be merged.
- Maintain a set *combine* of pairs of equivalence classes that have to be merged.

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ ∃ 目 つく()

Congruence Closure Algorithm Decision Algorithm

The Algorithm

- 1: **input**: set *E* of ground Σ -equations
- 2: $\tau \leftarrow \varepsilon$ \triangleright Initialise Σ , *C*-signature table τ as empty
- 3: set R s.t. find(R, v) = v for all $v \in V_E$.
- 4: for $s \approx t \in E$ do \triangleright Impose the desired equalities.
- 5: $R \leftarrow union(R, v_s, v_t)$
- 6: end for
- 7: pending $\leftarrow V_E$
- 8: while pending $\neq \emptyset$ do
- 9: combine $\leftarrow \emptyset$
- 10: CHECKSIGNATURE(R, τ , pending, combine)
- 11: *pending* $\leftarrow \emptyset$
- 12: COMBINE(R, τ , pending, combine)
- 13: end while
- 14: output: au

∃ ► ▲ ∃ ► ∃ = ● ○ ○ ○

Congruence Closure Algorithm Decision Algorithm

The CHECKSIGNATURE Subprocedure

- 1: **procedure** CHECKSIGNATURE(R, τ , pending, combine)
- 2: for $v \in pending$ do
- 3: if $\tau(sig(v)) = \bot$ then

$$\tau \leftarrow \tau[\mathsf{sig}(\mathsf{v}) \mapsto \mathsf{find}(\mathsf{R},\mathsf{v})]$$

- 5: else if $find(R, v) \neq \tau(sig(v))$ then
 - $\textit{combine} \gets \textit{combine} \cup \{(\textit{find}(R, v), \tau(\textit{sig}(v)))\}$
- 7: end if
- 8: end for

4:

6.

9: end procedure

⇒ ↓ ≡ ↓ ≡ | = √Q ∩

Congruence Closure Algorithm Decision Algorithm

The COMBINE Subprocedure

1:	procedure COMBINE(R, τ , pending, combine)
2:	for $(e_1, e_2) \in combine$ do
3:	if both e1 and e2 are used in R then
4:	if weight $(R, e_1) < ext{weight}(R, e_2)$ then
5:	$(e_1,e_2) \leftarrow (e_2,e_1)$
6:	end if
7:	for $u \in pred(R, e_2)$ do
8:	$ au \leftarrow au \setminus sig(u)$
9:	$pending \leftarrow pending \cup \{u\}$
10:	end for
11:	$R \leftarrow union(R, e_1, e_2)$
12:	end if
13:	end for
14:	end procedure

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Using the signature table to decide equations

- Output of the congruence closure algorithm is the final signature table $\tau.$
- Equivalence class of a term can be recursively computed using the signature table.
- If a Σ, C-signature s is computed that is not considered in τ, s is put into τ mapping it to a fresh equivalence class name from C.
- Therefore τ is transformed beforehand such that equivalence class names are integers.

▲□ → ▲ □ → ▲ □ → □ □ → ○ ○ ○

Congruence Closure Algorithm Decision Algorithm

The Algorithm

- 1: input: ground Σ -equation $s \approx t$, Σ , C-signature table au
- 2: **output**: true if CLASS(s) = CLASS(t); otherwise false

3: function
$$CLASS(t = f(t_1, \ldots, t_k) \in T_{\Sigma})$$

4: **for**
$$i \in \{1, ..., k\}$$
 do

5:
$$c_i = \text{CLASS}(t_i)$$

6: end for

7: **if**
$$\tau((f, c_1, \dots, c_k)) = \bot$$
 then
8: take some $c \in C \setminus dom(\tau)$

9:
$$\tau \leftarrow \tau[(f, c_1, \ldots, c_k) \mapsto c]$$

10: else

11:
$$c \leftarrow \tau((f, c_1, \ldots, c_k))$$

- 12: end if
- 13: return c
- 14: end function

B A B A B B B A A A

Outline

Introduction

- Motivation
- Preliminaries

2 Congruence Closure and Decision Algorithm

- Congruence Closure Algorithm
- Decision Algorithm

3 Conclusive Remarks

- T

< E ▶ < E ▶ E H つへ(?)

Complexity

- The congruence closure algorithm takes $O(n \log n)$ time for input equations of an overall size of n.
- The decision algorithm takes $\mathcal{O}(m)$ time for an input equation of size m.
- I.e., in particular the runtime of the decision algorithm is independent of the size of the equations defining the equational theory.

Runtime Comparison to Downey et al.

- (B)

< E ▶ < E ▶ E = のQ (~

Alfred V. Aho and John E. Hopcroft. *The Design and Analysis of Computer Algorithms.* Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1974.

Franz Baader and Tobias Nipkow. *Term Rewriting and All That.* Cambridge University Press, 1999.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpression problem. *J. ACM*, 27(4):758–771, 1980.

ELE NQA