Implementation of a Fast Congruence Closure
Algorithm

Patrick Bahr
s0404888Q@inf.tu-dresden.de

Technische Universitat Dresden

December 17, 2007

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Outline

@ Introduction
@ Motivation
@ Preliminaries

© Congruence Closure and Decision Algorithm
@ Congruence Closure Algorithm
@ Decision Algorithm

© Conclusive Remarks

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction

Outline

@ Introduction
@ Motivation
@ Preliminaries

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction Motivation

Preliminaries

Word Problem of Equational Logic

@ Given: Finite set of equations E, and a single equation s =~ t

@ Question: E = s~ t, i.e., follows s ~ t from the equations in E?

Definition

E = s ~ t, also written s ~¢ t, iff every model of E is a model of s =~ t¢.
That is, for all algebras A we have:

AEE implies AkEs~t

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction Motivation

Preliminaries

Solving the Word Problem: Rewriting Systems

o Idea: Read E as rewriting rules, i.e., equations in E are only
“applied” from left to right.

@ If the resulting rewriting system —g can be proven terminating and
confluent s ~¢ t is decidable by checking s| = t|.

o If it’s not: Use Knuth-Bendix completion to create an equivalent
rewriting system that can be proven terminating and confluent.

@ Of course, this procedure does not always succeed!

@ It does if all equations in E are ground!

Hence, s =g t is decidable if E is ground.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction

Motivation
Preliminaries

Solving the Word Problem: Congruence Closure

If E is ground, there is an alternative solution.

Let X be a signature and E be a set of ground ¥ -equations. ~g is the
smallest congruence relation containing E.

If we restrict ourselves to the subterms in E, s and t this congruence
closure is computable.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction

Congruence

Definition

Let X be a signature and = an equivalence relation on Tx. = is called a
congruence relation if the following condition holds:

If for some k > 0 we have t; = s; for all 1 < i < k and f € (¥ then also
f(tl, ceey tk) = 7((517 5600 Sk).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction

Representing and Manipulating Equivalence Relations

General idea:

@ Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.

@ Operation find to get the equivalence class of a given element.

@ Operation union to combine two equivalence classes.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction Motivation

Preliminaries

Representing and Manipulating Equivalence Relations

General idea:

@ Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.

@ Operation find to get the equivalence class of a given element.
@ Operation union to combine two equivalence classes.
Two different approaches:

@ Represent the quotient set as a lookup table mapping from elements

to equivalence class names.
~ find: O(1); union: O(n).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction

Representing and Manipulating Equivalence Relations

General idea:

@ Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.

@ Operation find to get the equivalence class of a given element.
@ Operation union to combine two equivalence classes.
Two different approaches:

@ Represent the quotient set as a lookup table mapping from elements
to equivalence class names.
~ find: O(1); union: O(n).

@ Represent the quotient set as a forest, where each tree represents an
equivalence class. The root of a tree is the canonical representative

of the class.
~ find: O(n); union: O(1).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction

Representing and Manipulating Equivalence Relations

General idea:

@ Represent the equivalence relation as its quotient set, i.e. the set of
all equivalence classes.

@ Operation find to get the equivalence class of a given element.
@ Operation union to combine two equivalence classes.
Two different approaches:

@ Represent the quotient set as a lookup table mapping from elements
to equivalence class names.
~ find: O(1); union: O(n).

@ Represent the quotient set as a forest, where each tree represents an
equivalence class. The root of a tree is the canonical representative

of the class.
~ find: O(n); union: O(1).

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction

Equivalence class ¢ = {vo, v1, vo, v3,va}
Equivalence class ¢; = {up, u1, tr}

8, ®
®

@ operation find traverses up the tree until the root is reached.

e eg. find(R,wvs) = find(R, v2) = v

@ operation union takes two roots of some trees, and makes one of
them child of the other.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction Motivation

Preliminaries

Equivalence Classes as Trees (2)

E.g. union(R, vp, p) produces the following:

We now have only one class ¢ = ¢; U ¢; = {vo, v1, V2, v3, Vi, Ug, U1, U2 }
represented by the node vy

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction Motivation

Preliminaries

Terms as Digraphs

Terms will be interpreted as labelled graphs in the following.

Let > be a signature, t € Ty and E a set of ground X-equations.

(i) The labelled digraph G; = (V4, Et, I+), where V; = Pos(t),
I(p) = t(p) for all p € Vi, E; = {(p,p’) € V?|3i € N.p' = pi} and
for each node p € V; the set of successors of p is ordered by
pl < --- < pk, is called the graph of t. Note that G; is a tree. By
vt € V; we denote the root of this tree.

(i) The graph G = |3} Gs W Gy is called the graph of E.

s~s’

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Introduction Motivation

Preliminaries

Achieving Congruence

Definition

Let X be a signature, G = (V,E,/: V — X) a labelled digraph, v a node
in G, v <--- < v its successors and R € Eqg.c. The X, C-signature of
v w.rt. Ris the (k + 1)-tuple

sig(R,v) = (I(v),find(R, v1), ..., find(R, vk)).

Nodes having the same ¥, C-signature should be in the same equivalence
class to achieve congruence!

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Closure Algorithm

Congruence Closure and Decision Algorithm ithm

Outline

© Congruence Closure and Decision Algorithm
@ Congruence Closure Algorithm
@ Decision Algorithm

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm

ongruence Closure and Decision Algorithm ' <
Cong| c & Decision Algorithm

The Idea of the Algorithm

Every term of the equations is interpreted as a graph.

Every node is put into a singleton class.

Roots of terms that are equal are put in the same equivalence class
using union.

Until no further changes can be derived the following is repeated:

o Find nodes that have the same X, C-signature but are in different
equivalence classes.
o Combine the equivalence classes of these two nodes.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm
Decision Algorithm

Congruence Closure and Decision Algorithm

An Example (1)

Graph of the set {g(f(a), c) ~ g(a, f(a))}

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm
Decision Algorithm

Congruence Closure and Decision Algorithm

An Example (1)

Graph of the set {g(f(a), c) ~ g(a, f(a))}

g g
N O\
f c a /
i i

o N o Nen
c_j i a
9 L
a a

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm
Decision Algorithm

Congruence Closure and Decision Algorithm

An Example (2)

uni the roots’ equivalence classes

»
pelii
Qe

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm
on Algorithm

Congruence Closure and Decision Algorithm

An Example (2)
uni the roots’ equivalence classes

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm
Decision Algorithm

Congruence Closure and Decision Algorithm

An Example (2)
union of the roots’ equivalence classes

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm

ongruence Closure and Decision Algorithm ' <
Cong| c & Decision Algorithm

How to Keep Track of Changes of Equivalence Classes?

e Maintain for each equivalence class ¢ the set pred(R, ¢) of nodes
that have a successor that is in c.
~> helps to find nodes that have to be checked for their
Y, C-signatures again

@ Maintain a set pending of nodes that have to be checked for their
¥, C-signatures.

@ Maintain a signature table 7, that maps from ¥, C-signatures to
equivalence classes that have a node having this X, C-signature.
~~ helps to find equivalence classes that have to be merged.

@ Maintain a set combine of pairs of equivalence classes that have to
be merged.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm

ongruence Closure and Decision Algorithm ' <
Cong| c & Decision Algorithm

The Algorithm

1:
2:
3:
4:
5:
6:
7:
8:
9:

input: set E of ground X-equations
T—¢€ > Initialise X, C-signature table 7 as empty
set R s.t. find(R,v) = v for all v € VE.
fors~teE do > Impose the desired equalities.
R « union(R, vs, v¢)
end for
pending «— Vg
while pending # () do
combine «— ()
CHECKSIGNATURE(R, 7, pending, combine)
pending «—)
COMBINE(R, T, pending, combine)
: end while
: output: 7

e e
E I A

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure and Decision Algorithm ﬁ°"§ 0 (Ol Al

Algorithm

The CHECKSIGNATURE Subprocedure

1: procedure CHECKSIGNATURE(R, T, pending, combine)

2 for v € pending do

3 if 7(sig(v)) =L then

4: T « 7[sig(v) + find(R, v)]

5: else if find(R, v) # 7(sig(v)) then

6: combine «— combine U {(find(R, v), 7(sig(v)))}
7 end if
8 end for
9: end procedure

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm

ongruence Closure and Decision Algorithm ' <
Cong| c & Decision Algorithm

The COMBINE Subprocedure

1: procedure COMBINE(R, 7, pending, combine)
2 for (e1, &) € combine do

3 if both e; and e are used in R then
4 if weight(R, e1) < weight(R, &) then
5: (e1,€) < (&2, €1)

6: end if

7 for u € pred(R, e;) do

8 T T\sig(u)

o: pending < pending U {u}

10: end for

11: R «— union(R, e1, &)

12: end if

13: end for

14: end procedure

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure and Decision Algorithm

Using the signature table to decide equations

@ Output of the congruence closure algorithm is the final signature
table 7.

o Equivalence class of a term can be recursively computed using the
signature table.

o If a X, C-signature s is computed that is not considered in 7, s is
put into 7 mapping it to a fresh equivalence class name from C.

@ Therefore 7 is transformed beforehand such that equivalence class
names are integers.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Congruence Closure Algorithm

Congruence Closure and Decision Algorithm Decision Algorithm

The Algorithm

1: input: ground X-equation s = t, X, C-signature table 7
2: output: true if CLASS(s) = CLASS(t); otherwise false
3: function CrLaAss(t = f(t1,...t) € Tx)

4 for i {1,...k} do

5: ¢; = CLaAss(t;)

6: end for

7 if 7((f,c1,...,cx)) =L then

8: take some c € C\ dom(1)
o: T—r71[(f,c1,...,¢k) — c].
10: else

11: c—1((f,c1,...,¢k))

12: end if

13: return ¢

14: end function

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Conclusive Remarks

© Conclusive Remarks

Patrick Bahr Implementati

f a Fast Congruence Closure Algorithm

Conclusive Remarks

Complexity

@ The congruence closure algorithm takes O(nlog n) time for input
equations of an overall size of n.

@ The decision algorithm takes O(m) time for an input equation of
size m.
@ l.e., in particular the runtime of the decision algorithm is

independent of the size of the equations defining the equational
theory.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Conclusive Remarks

Runtime Comparison to Downey et al.

600
500 —n
- Unweighted Union *Weighted Union
400
)
£ 300
=
200
100
,477—7*”'"/////’
- >
e
25080 51820 75624 100730 126388 158326 184638 211056 237368 263748

Size

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

Bibliography

[@ Alfred V. Aho and John E. Hopcroft.
The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1974.

@ Franz Baader and Tobias Nipkow.
Term Rewriting and All That.
Cambridge University Press, 1999.

@ Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan.
Variations on the common subexpression problem.
J. ACM, 27(4):758-771, 1980.

Patrick Bahr Implementation of a Fast Congruence Closure Algorithm

	Introduction
	Motivation
	Preliminaries

	Congruence Closure and Decision Algorithm
	Congruence Closure Algorithm
	Decision Algorithm

	Conclusive Remarks
	Appendix

