
Implementation of a Fast Congruence
Closure Algorithm

Patrick Bahr

Abstract

In this paper an abstract algorithm for computing the congruence closure of a set of
ground equations using the standard union-find infrastructure is given as well as an abstract
algorithm that decides whether a ground equation is a semantic consequence of a set of
ground equations using the output of the congruence closure algorithm. Furthermore an
efficient C++ implementation of both algorithms is given using fast weighted union and
long find with path compression. Additionally we argue that the given congruence closure
algorithm runs in O(n logn) time for n being the total size of the input equations and
that the decision algorithm performs in linear time in the size of the equation that is to be
checked, independently of the size of the equations that induced the congruence closure.

1 Introduction
Deciding the word problem for a given finitely presented equational theory, i.e., deciding if an
equation follows from a finite set of other equations, is the cornerstone of many verification and
deduction systems. The interpretation of equations as a term rewriting system together with the
Knuth-Bendix completion provides at least a semi-decision procedure. In the particular case that
the equational theory is given by ground equations Knuth-Bendix completion always terminates
thus yielding a decision procedure. However the complexity of the ground completion is indeed
polynomial but then the word problem for a given ground equation is polynomial in the size of
the resulting completed set of equations and the size of the equation in question.
The alternative approach to the word problem for ground equations is to compute the congru-

ence closure of the given equalities and then decide the equation w.r.t. the computed closure.
The standard technique to accomplish this is to use the well-known union-find algorithms and
data structures to maintain the equivalence relation induced by the initial equalities and further
ones introduced by the algorithm to gain the congruence property. The idea of the union-find
equivalence closure algorithm is to present the equivalence relation as its quotient set, i.e. the
set of all equivalence classes. union then merges two equivalence classes, i.e. imposes an equal-
ity between some respective representatives and find provides the equivalence class of a given
element.
What then remains to be established to get a congruence relation is to ensure compatibility

of the equation relation ≈ with every function symbol of the signature, i.e., for all k ≥ 0 and all
k-ary function symbols f , if we have (i) ti ≈ si for all 1 ≤ i ≤ k, then also (ii) f(t1, . . . , tk) ≈
f(s1, . . . , sk). The idea is now to check (i) by find and if it holds true to establish (ii) by union.
This is done systematically for every subterm occurring in the equations until a fixed point is
reached. As only finitely many terms are considered this fixed point is reached after finitely many

1

iterations. Including also other terms that are not subterms of the initially given equations is
implicitly done by the decision algorithm.

2 Preliminaries
At first we want to formalise what the word problem for a set of ground equation actually is to
see then, that congruence closure really solves this problem.

Definition 1. An N-indexed family Σ = {Σ(k)}k∈N is called a signature. An element f ∈ Σ(k)

is called a k-ary function symbol. 0-ary function symbols are also called constants.

Definition 2. Let Σ be a signature. The set ground Σ-terms of TΣ is inductively defined by:
If k ≥ 0, f ∈ Σ(k) and ti ∈ TΣ for all 1 ≤ i ≤ k, then f(t1, . . . , tk) ∈ TΣ.

Definition 3. Let Σ be a signature and t ∈ TΣ. The set Pos(t) of all positions in t is recursively
defined by:
If t = f(t1, . . . , tk) for k ≥ 0 then Pos(t) = {ε} ∪

n⋃
i=1
{ip | p ∈ Pos(ti)}

Definition 4. Let Σ be a signature and t ∈ TΣ. The size of t, denoted |t|, is the number of
positions in t, i.e. |t| = |Pos(t)|.

Definition 5. Let Σ be a signature, t = f(t1, . . . , tk) ∈ TΣ and p ∈ Pos(t). The function symbol
in term t at position p, denoted t(p), is recursively defined as follows:

t(p) =
{
f if p = ε

ti(p′) if p = p′i for some p′ ∈ Pos(ti)

Definition 6. Let Σ be a signature and ≡ an equivalence relation on TΣ. ≡ is called a congruence
relation if the following condition holds:
If for some k ≥ 0 we have ti ≡ si for all 1 ≤ i ≤ k and f ∈ Σ(k) then also f(t1, . . . , tk) ≡
f(s1, . . . , sk).

Definition 7. Let Σ be a signature and s, t ∈ TΣ. s ≈ t is called a ground Σ-equation.

Definition 8. Let Σ be a signature. A Σ-algebra A is a pair (A, ·A) where

• A is a non-empty set, and

• ·A is a mapping that associates with each k-ary function symbol f ∈ Σ(k) a function
fA : Ak → A for all k ≥ 0.

Definition 9. Let Σ be a signature and A and B Σ-algebras. A mapping φ : A → B is called
Σ-homomorphism from A to B, denoted φ : A → B, iff for all k ≥ 0, f ∈ Σ(k), and a1, . . . , ak ∈ A
we have φ(fA(a1, . . . , ak)) = fB(φ(a1), . . . , φ(ak)).

Note that TΣ = (TΣ, ·TΣ), where fTΣ(t1, . . . , tk) = f(t1, . . . , tk), is a Σ-algebra such that for
every Σ-algebra A there is exactly one homomorphism φ : TΣ → A, i.e., TΣ is said to be initial
in the class of all Σ-algebras.

Definition 10. Let Σ be a signature, s ≈ t a ground Σ-equation, E a set of ground Σ-equations,
and A a Σ-algebra.

(i) s ≈ t holds in A, denoted A |= s ≈ t, iff for the unique homomorphism φ : TΣ → A we have
φ(s) = φ(t).

2

(ii) A models E, denoted A |= E, iff every equation in E holds in A.

(iii) s ≈ t is semantic consequence of E, denoted E |= s ≈ t, iff for all Σ-algebras B we have
that B |= E implies B |= s ≈ t.

(iv) The relation ≈E= {(s, t) ∈ TΣ × TΣ|E |= s ≈ t} is called the equational theory of E.

The word problem for a given set of ground Σ-equations and two ground Σ-terms s, t is now
the question whether s ≈E t holds. That considering the congruence closure is the solution for
this problem is stated in the following theorem.

Theorem 11. Let Σ be a signature and E be a set of ground Σ-equations. ≈E is the smallest
congruence relation containing E.

This is basically an immediate consequence of Birkhoff’s Theorem (cf. [2, lemma 3.5.12,
Theorem 3.5.14]).

3 Congruence Closure and Decision Algorithm
The algorithm that is presented in the following is based on the algorithm in [3].
For this to work each term has to be interpreted as a graph having a vertex for each position

in the term and edges from each position to its direct “subposition”.

Definition 12. Let Σ be a signature, t ∈ TΣ and E a set of ground Σ-equations.

(i) The labelled digraph Gt = (Vt, Et, lt), where Vt = Pos(t), l(p) = t(p) for all p ∈ Vt,
Et = {(p, p′) ∈ V 2

t | ∃i ∈ N.p′ = pi} and for each node p ∈ Vt the set of successors of p is
ordered by p1 < · · · < pk, is called the graph of t. Note that Gt is a tree. By vt ∈ Vt we
denote the root of this tree.

(ii) The graph GE =
⊎
s≈s′

Gs]Gs′ is called the graph of E.

The input of the algorithm will be GE , the graph of a finite set E of ground Σ-equations for a
fixed signature Σ. In the following we will only speak of a finite labelled graph G = (V,E, l) for
which every node’s successors are ordered, oblivious of the fact that the graph originated from
a finite set of ground Σ-equations. As already mentioned the algorithm will use the common
union-find infrastructure to maintain the properties of an equivalence relation. For this we need
a set C of names for the equivalence classes. This set must have at least as many elements as
V . For convenience we assume C to be countably infinite and that V ⊆ C. Then we have the
following operations on the set of equivalence relation representations EqG,C1 on the graph G
with equivalence class names from C:

• find : EqG,C × V → C;
where (R, v) 7→ name of the equivalence class in R containing the node v.

• union : EqG,C × C × C → EqG,C ;
where (R, c1, c2) 7→ R′, and R′ is the representation where the equivalence classes named
c1 and c2 are combined into an equivalence class named c1.

1This can be seen as the set CV of all mappings from vertices of G to equivalence class names in C.

3

• pred : EqG,C × C → 2V ;
where (R, c) 7→ {v ∈ V | ∃v′.find(R, v′) = c and (v, v′) ∈ E}
I.e., (R, c) is mapped to the set of vertices having a successor in the equivalence class named
c.

• weight : EqG,C × C → N;
where(R, c) 7→ |{v ∈ V | find(R, v) = c}|
I.e., (R, c) is mapped to the number of elements that are in the equivalence class named c.

To establish the congruence closure we need another data structure that keeps track of the
equivalence classes of the successors of nodes. Therefore, we need the notion of a signature table
which captures this idea.

Definition 13. Let Σ be a signature, G = (V,E, l : V → Σ) a labelled digraph, v a node
in G, v1 < · · · < vk its successors and R ∈ EqG,C . The Σ, C-signature of v w.r.t. R is the
(k + 1)-tuple sig(R, v) = (l(v), find(R, v1), . . . , find(R, vk)). The set of all Σ, C-signatures is
denoted by SigΣ,C := Σ × C∗. A Σ, C-signature table is a partial mapping τ : SigΣ,C ⇀ C
that maps a Σ, C-signature to an equivalence class name. The empty Σ, C-signature table is
denoted by ε, s.t. ε(s) =⊥ for all s ∈ SigΣ,C . The domain of a Σ, C-signature table τ is the set
dom(τ) = {s ∈ SigΣ,C | τ(s) 6=⊥}.

Additionally we need some operation to work on a Σ, C-signature table τ for some s′ ∈ SigΣ,C
and c ∈ C:

• τ ′ = τ [s′ 7→ c] is defined as τ ′(s) =
{
c if s = s′

τ(s) otherwise
for all s ∈ SigΣ,C

• τ ′ = τ\s′ is defined as τ ′(s) =
{
⊥ if s = s′

τ(s) otherwise
for all s ∈ SigΣ,C

So τ [s′ 7→ c] sets the image of s′ to c and τ\s′ removes s′ from the domain of τ .
Now we can give the algorithm that computes the congruence closure for the Graph GE of a

given finite set E of ground Σ-equations. The algorithm is given in figure 1. It starts by initialising
the equivalence relation representation as identifying those nodes vs, vt that correspond to terms
s, t for which we have an equation s ≈ t ∈ E. The Σ, C-signature table τ is initialised as empty
table. Furthermore we have two sets pending and combine. The set pending contains those
nodes v that need to be checked for their signature. If v’s signature is also found in the Σ, C-
signature table, say being mapping to the equivalence class c′, the pair (c, c′) is put into the set
combine, for c being the equivalence class of v, provided c and c′ are not equal. This set combine
contains pairs of eqivalence class (names) that both contain a respective node that have been
found to be equivalent (by having the same Σ, C-signature). Thus, these two equivalence classes
have to be merged using union. For the sake of efficiency the smaller class, say c, is merged into
the bigger one, say c′ — hence, weighted union. Since the class c is now c′ all nodes that had
a Σ, C-signature containing c are removed from the Σ, C-signature table and put into pending
for further investigation. This process is iterated until a fixed point is reached, i.e., pending is
empty. The result of the computation is then the Σ, C-signature table τ which contains for a
signature s the equivalence class (name) τ(s) that contains all nodes having the signature s.
The algorithm given in figure 2 that decides a given equation s ≈ t uses as input the Σ, C-

signature table τ that was produced by the congruence closure algorithm. The decision algorithm
now simply computes recursively the respective equivalence class of both terms using the Σ, C-
signature table τ . If the algorithm encounters a Σ, C-signature s that is not in the domain of τ ,
a fresh equivalence class name c from C is taken and τ is changed to map s to c.

4

1: input: set E of ground Σ-equations
2: τ ← ε . Initialise Σ, C-signature table τ as empty
3: set R s.t. find(R, v) = v for all v ∈ VE .
4: for s ≈ t ∈ E do . Impose the desired equalities.
5: R← union(R, vs, vt)
6: end for
7: pending ← VE
8: while pending 6= ∅ do
9: combine← ∅

10: for v ∈ pending do
11: if τ(sig(v)) =⊥ then
12: τ ← τ [sig(v) 7→ find(R, v)]
13: else if find(R, v) 6= τ(sig(v)) then
14: combine← combine ∪ {(find(R, v), τ(sig(v)))}
15: end if
16: end for
17: pending ← ∅
18: for (e1,2) ∈ combine do
19: if both e1 and e2 are used in R then . i.e. find(R, vi) = ei for some vi
20: if weight(R, e1) < weight(R, e2) then . Merge smaller class into bigger one.
21: (e1, e2)← (e2, e1) . Swap if e1 is smaller than e2.
22: end if
23: for u ∈ pred(R, e2) do
24: τ ← τ\sig(u)
25: pending ← pending ∪ {u}
26: end for
27: R← union(R, e1, e2)
28: end if
29: end for
30: end while
31: output: τ

Figure 1: Congruence closure algorithm.

1: input: ground Σ-equation s ≈ t, Σ, C-signature table τ
2: output: true if Class(s) = Class(t); otherwise false
3: function Class(t = f(t1, . . . tk) ∈ TΣ)
4: for i ∈ {1, . . . k} do
5: ci = Class(ti)
6: end for
7: if τ((f, c1, . . . , ck)) =⊥ then
8: take some c ∈ C \ dom(τ)
9: τ ← τ [(f, c1, . . . , ck) 7→ c].

10: else
11: c← τ((f, c1, . . . , ck))
12: end if
13: return c
14: end function

Figure 2: Decision algorithm.

5

4 Implementation
For the implementation of the algorithms presented above we chose C++. But before we get into
the details, we have to find a C++ implementation for the data structures used in the abstract
algorithms.
Most importantly we have to commit ourselves to a particular style of representing equivalence

classes. There are two complementary approaches. On the one hand the membership of a node
in an equivalence class can be represented as a lookup table that provides the equivalence class
for each node. Using this representation find can be implemented to run in constant time whereas
union takes in general O(n) time for n = |V |.
On the other hand equivalence classes can be represented as trees such that all nodes of the

tree are considered to be in the same equivalence class. Then the root of a tree can be taken
as the canonical element representing the equivalence class formed by the tree. union of two
equivalence class represented as roots of some trees is then just a matter of making the root of
the one tree a child of the other tree’s root. This can be done in constant time, whereas find
needs to travel up the tree to root and hence can take O(n) time in the worst case.
For a more detailed presentation see [1]. There it is also shown that the latter approach always

outperforms the first one. Therefore, we chose this method to represent equivalence classes.
Now we take a look on how to represent signatures, terms and Σ, C-signatures.
For each symbol we have an object of class Symbol containing the string representation and

its arity:
c l a s s Symbol {
p u b l i c :

Symbol (const s t r i n g name , const i n t a r i t y) ;
v i r t u a l ~Symbol () ;
const s t r i n g& getName () const ;
i n t g e tA r i t y () const ;

s i z e_ t hash () const ;
bool operator==(const Symbol &s) const ;
bool operator <(const Symbol &s) const ;

p r i v a t e :
const s t r i n g name ;
const i n t a r i t y ;

} ;

The additional operator overridings and the hash() method are necessary to use the hash table
implementation provided by the C++ Standard Template Library (STL) which will be necessary
as symbols are included in Σ, C-signatures.
The signature Σ is taken to be implicitly given by the input equations. That is, during the

parsing a table is created that maps strings to their symbol representation. This table will be of
the following hash map type:
typedef hash_map<s t r i n g , Symbol const∗> Ar i t yTab l e ;

Based on this definition terms can be defined easily:
c l a s s Term {
p u b l i c :

Term(Symbol const ∗ symbol , Term∗∗ a r g s) ;
Term(Symbol const ∗ symbol , Term∗∗ args , Term∗ merge) ;
v i r t u a l ~Term () ;

6

Symbol const ∗ getSymbol () const ;
Term∗∗ const getArgs () const ;
Term∗ operator [] (i n t i n d e x) const ;

protected :
Symbol const ∗ const symbol ;
Term∗∗ const a r g s ;

} ;

Note that this is rather the representation of the corresponding graph of a term as two different
objects of this type can represent the same term. That is why we will call objects of type Term
also nodes.
A Σ, C-signature is similarly represented as a term, with the difference that the arguments of

a function symbol are now elements of C. As we will want to use different representations of C,
we abstract from the respective type representing C:
template<c l a s s T> c l a s s S i g na t u r e
{
p u b l i c :

S i g n a t u r e (Symbol const ∗ symbol) ;
v i r t u a l ~ S i g na t u r e () ;

s i z e_ t hash () const ;
Symbol const ∗ getSymbol () const ;
i n t g e tA r i t y () const ;
T& operator [] (const i n t i n d e x) const ;

bool operator==(const S igna tu r e<T>& s) const ;
bool operator <(const S igna tu r e<T>& s) const ;

p r i v a t e :
Symbol const ∗ const symbol ;
T∗ s i g n a t u r e ;

} ;

A Σ, C-signature table is then just a hash table having Signature<EqClass> as key type and
EqClass as value type for some type EqClass representing names of equivalence classes.
typedef hash_map<S igna tu r e<EqClass >∗, EqClass> S i gna tu r eTab l e ;

To represent equivalence classes of objects of class Term, we have to extend the class Term
to a subclass called CCTerm that provides the structure needed to build trees that represent
the equivalence classes. Therefore, each object of class CCTerm has a member equivClass that
points to its parent in the equivalence class tree or to itself if it is the root. In addition some
members needed for bookkeeping are included. Those do only have a meaningful value for
CCTerm objects representing an equivalence class (i.e. those that are the root of an equivalence
class tree). weight contains the number of elements in the respective equivalence class, predList is
the list representation of pred(R, c) where R is the current equivalence representation and c the
equivalence class represented by the CCTerm object. auxMember is used later when normalising the
resulting Σ, C-signature table to an equivalent one that uses integers for representing equivalence
classes.
c l a s s CCTerm : p u b l i c Term {
p u b l i c :

7

CCTerm(Symbol const ∗ symbol , CCTerm∗∗ args , CCTerm∗ merge) ;
CCTerm(Symbol const ∗ symbol , CCTerm∗∗ a r g s) ;
v i r t u a l ~CCTerm () ;

bool i s E qC l a s s () const ;
EqC las s ge tEqC la s s () ;
S i gna tu r e<EqClass >∗ g e t S i g n a t u r e () const ;

P r e dL i s t ∗ g e tP r e dL i s t () const ;
CCTerm∗ operator [] (i n t i n d e x) const ;
i n t getAuxMember () const ;
vo id setAuxMember (i n t aux) ;
i n t getWeight () const ;
vo id un ionEqC la s s (EqClas s eq) ;

p r i v a t e :
P r e dL i s t ∗ p r e d L i s t ;
CCTerm∗ e qu i vC l a s s ;
i n t auxMember ;
i n t we ight ;

} ;

The additional constructor expecting an argument merge is used to do the initial union of the
terms in the equation at parse time. If it is NULL it is the same as the constructor without this
additional argument:
CCTerm : : CCTerm(Symbol const ∗ symbol , CCTerm∗∗ args , CCTerm∗ merge)
: Term(symbol , (Term∗∗) a r g s) ,
p r e d L i s t (merge == NULL ? new P r edL i s t () : NULL) ,
e q u i vC l a s s (merge == NULL ? t h i s : merge−>getEqC la s s ()) ,
auxMember(−1)
, we ight (0) // i s i nc r emented to 1 l a t e r
{

equ i vC l a s s−>weight++;
}

The type PredList is just a STL list of pointers to CCTerm, and EqClass is just an alias for
CCTerm∗ that is used if we expect a CCTerm object that represents a equivalence class:
typedef l i s t <CCTerm∗> Pr edL i s t ;
typedef CCTerm∗ EqClass ;

Let us take a closer look on the implementation of some of the methods of the CCTerm class.
Computing the Σ, C-signature of a node is quite simple:

S igna tu r e<EqClass >∗ CCTerm : : g e t S i g n a t u r e () const {
S igna tu r e<EqClass >∗ s i g = new S igna tu r e<EqClass >(symbol) ;
f o r (i n t i =0; i<symbol−>ge tA r i t y () ; i++) {

(∗ s i g) [i] = ((CCTerm∗) a r g s [i])−>getEqC la s s () ;
}
re tu rn s i g ;

}

Retrieving the equivalence class of a node is just a matter of ascending in the tree of the
equivalence class until the root and thereby the canonical representative is reached. This is done
by the getEqClass method, thereby implementing the find:

8

i n l i n e EqClass CCTerm : : g e tEqC la s s () {
i f (e q u i vC l a s s != t h i s) {

e q u i vC l a s s = equ i vC l a s s−>getEqC la s s () ;
}
re tu rn e q u i vC l a s s ;

}

Note that “on the way up“ we are setting the parent of each node we pass to be the root. This
technique, known as path compression, speeds up the access on subsequent calls of getEqClass on
these nodes!
If the node is also a representative of an equivalence class, i.e., it is the root of some equivalence

class tree, then the method unionEqClass takes another node being also an equivalence class
representative and merges it into the equivalence class of the current node:
i n l i n e vo id CCTerm : : un ionEqC la s s (EqClas s eq) {

we ight += eq−>weight ;
eq−>equ i vC l a s s = t h i s ;
p r e dL i s t−>s p l i c e (p r e dL i s t−>end () , ∗(eq−>p r e d L i s t)) ;
de le te eq−>p r e d L i s t ;

}

The first line just adds up the weights of the equivalence classes, the second one makes the
other node a child of the current node in the equivalence class tree, and the last two lines just
merge the two predecessor lists.
Also the fields predList , weight and auxMember do only have a meaningful value if the node is a

representative of an equivalence class. This fact can be queried by the isEqClass method:
i n l i n e bool CCTerm : : i s E qC l a s s () const {

re tu rn e q u i vC l a s s == t h i s ;
}

Representing ground Σ-equations is then an easy task. We chose to make the corresponding
class Equation parametric w.r.t. the type of the term, so that we can build equations of CCTerm
objects to do the congruence closure and also equations of Term objects to do the decision of an
equation.
template<c l a s s T> c l a s s Equat ion {
p u b l i c :

Equat ion (T∗ lh s , T∗ rh s) ;
v i r t u a l ~Equat ion () ;

T∗ const getLhs () const ;
T∗ const getRhs () const ;

p r i v a t e :
T∗ const l h s ;
T∗ const r h s ;

} ;

Now we can represent sets of equations. This is done by defining a class Theory which basically
just contains an array of objects of type Equation<CCTerm>, an ArityTable and a SignatureTable
instance.
c l a s s Theory {
p u b l i c :

v i r t u a l ~Theory () ;

9

SigTab∗ copySigTab () const ;
s t a t i c Theory ∗ pa r s e (i s t r e am& inpu t) ;
vo id b u i l d C l o s u r e () ;

p r i v a t e :
s t a t i c vo id swap (EqClas s& c1 , EqClas s& c2) ;
vo id comb ineA l l (Combine& combine , Pending& pend ing) ;
vo id i n s e r tToS i g n a t u r eTab l e (CCTerm∗ t , Combine& combine) ;
vo id t r a v e r s e (CCTerm∗ t , Combine& combine) ;

A r i t yTab l e a r i t yT a b l e ;
i n t axiomsCount ;
CCEquation ∗∗ axioms ;

S i gna tu r eTab l e s i g n a t u r eTab l e ;
} ;

The buildClosure method performs the congruence closure algorithm as described in the previ-
ous section:
vo id Theory : : b u i l d C l o s u r e () {

Combine combine ;
s i g n a t u r eTab l e = S i gna tu r eTab l e () ;
// t r a v e r s e ax ioms
f o r (i n t i =0; i<axiomsCount ; i++) {

t r a v e r s e (ax ioms [i]−>getLhs () , combine) ;
t r a v e r s e (ax ioms [i]−>getRhs () , combine) ;

}
Pending pend ing ;
comb ineA l l (combine , pend ing) ;
combine . c l e a r () ;
whi le (! pend ing . empty ()) {

f o r (Pending : : i t e r a t o r i t = pend ing . beg in () ;
i t != pend ing . end () ; i t++) {
i n s e r tToS i g n a t u r eTab l e (∗ i t , combine) ;

}
pend ing . c l e a r () ;
comb ineA l l (combine , pend ing) ;
combine . c l e a r () ;

}
}

Combine is the type of lists of EqClass pairs:
typedef l i s t < pa i r <EqClass , EqClass> > Combine ;

The method traverse initialises the predList of each node and also does the initialisation of the
Σ, C-signature table as it was done in the abstract algorithm in the first for loop by recursively
traversing every node of every term of the equations:
vo id Theory : : t r a v e r s e (CCTerm∗ t , Combine& combine) {

// i n i t i a l i s e s i g n a t u r e T a b l e
i n s e r tToS i g n a t u r eTab l e (t , combine) ;
// i n i t i a l i s e p r e d L i s t
f o r (i n t i =0; i<t−>getSymbol()−>ge tA r i t y () ; i++) {

(∗ t) [i]−>getEqC la s s ()−>ge tP r e dL i s t ()−>push_back (t) ;

10

t r a v e r s e ((∗ t) [i] , combine) ;
}

The method insertToSignatureTable now does exactly what is done in the first for loop in the
abstract algorithm. It first checks whether the node’s signature is already in the Σ, C-signature
table; if not the signature together with the node’s equivalence class is added to the table.
Otherwise both the considered node’s equivalence class and the equivalence class found in the
Σ, C-signature table are put in the combine list as a pair unless they are equal:
vo id Theory : : i n s e r tToS i g n a t u r eTab l e (CCTerm∗ t , Combine& combine) {

S i gna tu r e<EqClass >∗ s i g = t−>ge tS i g n a t u r e () ;
S i gna tu r eTab l e : : i t e r a t o r i t = s i g n a t u r eTab l e . f i n d (s i g) ;
EqClas s c = t−>getEqC la s s () ;
i f (i t == s i g n a t u r eTab l e . end ()) {

s i g n a t u r eTab l e . i n s e r t (make_pair (s i g , c)) ;
} e l s e {

de le te s i g ;
i f (c != i t−>second)

combine . push_back (make_pair (c , i t−>second)) ;
}

}

Let us go back to buildClosure : combineAll does exactly what the second for loop of the abstract
algorithm describes:
i n l i n e vo id Theory : : comb ineA l l (Combine& combine , Pending& pend ing) {

f o r (Combine : : i t e r a t o r i t = combine . beg in () ; i t !=combine . end () ; i t++) {
EqClass c1 = (∗ i t) . f i r s t , c2 = (∗ i t) . second ;
swap (c1 , c2) ;
P r e dL i s t ∗ c 1 l i s t = c1−>ge tP r e dL i s t () ;
P r e dL i s t : : i t e r a t o r c 1 l i s t E n d = c 1 l i s t −>end () ;
i f (c1−>i sEqC l a s s () && c2−>i sEqC l a s s ()) {

f o r (P r e dL i s t : : i t e r a t o r i t = c 1 l i s t −>beg in () ; i t != c 1 l i s t E n d ; i t++) {
S igna tu r e<EqClass >∗ s i g = (∗ i t)−>ge tS i g n a t u r e () ;
s i g n a t u r eTab l e . e r a s e (s i g) ;
de le te s i g ;
pend ing . push_back ((∗ i t)) ;

}
c2−>un ionEqC la s s (c1) ;

}
}

}

The swap method performes the swap of the nodes depending on the weight of the respective
equivalence class:
i n l i n e vo id Theory : : swap (EqClas s& c1 , EqClas s& c2) {

i f (c1−>getWeight () > c2−>getWeight ()) {
EqClas s& c = c1 ;
c1 = c2 ;
c2 = c ;

}
}

Now we can look at the implementation of the decision algorithm. The buildClosure method
computed the Σ, C-signature table. The method copySigTab produces an equivalent Σ, C-signature

11

table as an instance of the class SigTab where we use integers to represent equivalence classes
instead:
typedef hash_map<S igna tu r e<i n t >∗, i n t> In t S i g n a t u r eTab l e ;

c l a s s SigTab {
p u b l i c :

SigTab (const S i gna tu r eTab l e& s i g n a t u r eTab l e) ;
v i r t u a l ~SigTab () ;

Equat ion<Term>∗ pa r s eEqua t i on (const s t r i n g& equa t i on) ;
bool de c i d e (Equat ion<Term>∗ equa t i on) ;

p r i v a t e :
i n t f i n dEqC l a s s (Term∗ t) ;

A r i t yTab l e a r i t yT a b l e ;
I n t S i g n a t u r eTab l e s i g n a t u r eTab l e ;
i n t n e x tC l a s s ;

} ;

Note that it additionally contains necessary information such as the signature in the form of
the arityTable and the integer nextClass representing a fresh equivalence class name. This class
also comprises the decision algorithm:
bool SigTab : : d e c i d e (Equat ion<Term>∗ equa t i on) {

re tu rn f i n dEqC l a s s (equat ion−>getLhs ())
== f i n dEqC l a s s (equat ion−>getRhs ()) ;

}

i n t SigTab : : f i n dEqC l a s s (Term∗ t) {
const Symbol∗ sym = t−>getSymbol () ;
S i gna tu r e<i n t >∗ s i g = new S igna tu r e<i n t >(sym) ;
f o r (i n t i =0; i<sym−>ge tA r i t y () ; i++) {

(∗ s i g) [i] = f i n dEqC l a s s ((∗ t) [i]) ;
}
I n t S i g n a t u r eTab l e : : i t e r a t o r i t = s i g n a t u r eTab l e . f i n d (s i g) ;
i f (i t != s i g n a t u r eTab l e . end ()) {

de le te s i g ;
re tu rn i t−>second ;

}
s i g n a t u r eTab l e . i n s e r t (make_pair (s i g , n e x tC l a s s)) ;
re tu rn n e x tC l a s s++;

}

This is just a straightforward implementation of the algorithm given in figure 2.

5 Complexity Considerations
Now that we have given a concrete implementation of both algorithms we can consider their
respective time complexity. At first we will consider the congruence closure algorithm. For
this we assume that the input ground Σ-equations are w.r.t. a fixed and finite signature Σ.
Hence, there is a constant maximal arity k ≥ 0 of Σ, i.e., Σ(k) 6= ∅ and Σ(l) = ∅ for all l > k.
Therefore, each node of the graph of the input set of ground Σ-equations has at most k successors.

12

Furthermore for a given input of ground Σ-equations E we take n =
∑
s≈t∈E(|s|+ |t|) to be the

size of the input. One can easily verify that n is exactly the number of nodes of the graph GE
and hence the number of CCTerm instances produced when parsing the input. In the following
we analyse the average time complexity, hence we can assume that access operations on the
hashtables take constant time!
It is easy to see that the initialisation, i.e. the traversal through all nodes, can be done in O(n)

time as for each node the signature table operation takes constant time as well as each of the at
most k additions of the node to a predList . Also for every node there is at most one find operation,
i.e., a call to CCTerm::getEqClass, each of which takes constant time as in the beginning every
equivalence class contains at most two elements. In sum there are also only at most n additions of
pairs of nodes to combine. What follows now is an alternation of calls to combineAll(combine,pending)
and for every element ∗ it in pending to insertToSignatureTable (∗ it ,combine).
Next we bound the number of additions to pending. For this we have to observe that each node

can change its equivalence class at most logn times. The reason for this is that union is done
in a weighted manner, i.e., the smaller equivalence class is merged into the bigger one. Hence,
if a node’s equivalence class changes it is merged into a bigger one thereby at least doubling
its size. This can happen only logn times per node as the maximal size of an equivalence class
is obviously n. A node is added to pending only if one of its successors’ equivalence class has
changed. Each node has at most k successors. Thus, a single node is added to pending at most
k logn times. In sum there will be at most nk logn ∈ O(n logn) additions to pending. As the
number of additions to combine is bounded by the initial n times plus the number of additions
to pending we have at most O(n logn) additions to combine as well.
It is easy to see that there are at most n− 1 ∈ O(n) union operations, i.e., calls to the method

CCTerm::unionEqClass, as there are initially at most n equivalence classes and each union operation
decrements this number. Accessing an equivalence class’ predList and also its weight is bounded
by a constant times the number of union operations and hence also by O(n). The number of find
operations, i.e., calls to CCTerm::getEqClass, is bounded by the number of of additions to pending
plus the initial n times and hence, is bounded by O(n logn).
With the chosen representation each union and also each access to an equivalence class’ predList

and weight takes constant time. Hence, all union operations and accesses to predList s and weights
take O(n) time. Additionally it can also be shown that the O(n logn) find operations require
O(n logn) time [3]. The reason is that the algorithm can be shown to have a time bound of
O(n logn) on the equivalence class operations for the alternative representation using lookup
tables. However as already mentioned this approach can be shown to never outperform the
approach using trees chosen here.
Now consider the operations on the signature table. Both looking up a signature and adding a

signature take constant time in the average case and are only performed as many times as there
are additions to pending plus the additional n times in the initialisation. Hence, these operations
are overall bound in time by O(n logn) in the average case.
The finishing conversion of the computed Σ, C-signature to an equivalent one using integers to

represent equivalence classes is linear in the size of the Σ, C-signature table, which has at most
n entries (at most one for each equivalence class) of constant size.
Hence, in sum the congruence closure algorithm runs in O(n logn) time!
The analysis for the decision algorithm is a lot easier. Let s ≈ t be the input ground Σ-equation

and take m = |s|+ |t| to be the size of this input. It is easy to see that m is also the number of
nodes produced by parsing the input. For each node SigTab:: findEqClass is called exactly once by
recursion. The operations on the Σ, C-signature table also take only constant time in the average
case. Hence, the decision algorithms runs in O(m) time. That means in particular its runtime
is completely independent of the size of the ground Σ-equation that induced the congruence
closure!

13

6 Conclusion
We have briefly recapitulated the theory behind the word problem of ground Σ-equations and
argued that computing the congruence closure of the given equations can in fact solve this
problem efficiently. It was then shown how terms can be interpreted as graphs to then use this
structure to compute the congruence closure.
For this purpose the necessary data structures such as for equivalence classes and for Σ, C-

signature were introduced along with a set of operations on then. This was then used to concisely
show an abstract algorithm for computing congruence closures of graphs together with an abstract
decision algorithm that uses the output of the this algorithm to efficiently decide the word
problem.
Afterwards a concrete and efficient implementation of these algorithms using C++ was pre-

sented, by showing basic principles and the choice of data structures. Concludingly an argument
for the claimed time complexity of both algorithm was given. It has been shown that the con-
gruence closure of a set of ground equations is computed in O(n logn) time in average whereas
the decision procedure performs in linear time in the size of the equation that is to be checked,
independently of the size of the equations inducing the equational theory.
The presented algorithm differs from the one proposed in [3] basically only in the choice on

how to merge a pair of equivalence classes; i.e. the condition that decides whether the first
equivalence class is merged into the second or vice versa. Instead of using (the minimality of)
the size of the respective predecessor lists as the condition as it was done in [3] we used the size
of the equivalence class. This enabled us to really establish the upper time complexity bound
of O(n logn). Also in practice our choice — i.e., weighted union — outperforms the predecessor
list approach as one can see in figure 3. It shows the runtime of the congruence closure algorithm
using weighted and unweighted union depending on the size of the input equations. The input
equations were randomly generated.

25080 51820 75624 100730 126388 158326 184638 211056 237368 263748

0

100

200

300

400

500

600

Unweighted Union Weighted Union

Size

Ti
m

e

Figure 3: Runtime of the congruence closure algorithm for weighted and unweighted union de-
pending on the input size.

14

References
[1] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1974.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

[3] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subex-
pression problem. J. ACM, 27(4):758–771, 1980.

15

