
Bakkalaureatsarbeit

An Executable Rewriting Logic Semantics
for Concurrent Haskell

Patrick Bahr

November 2007

Abstract

Concurrent Haskell is an extension to the pure-functional language Haskell that provides primitives
to construct concurrent programs. There is already an operational semantics for this extension as
well as a huge number of semantics for the core language in a variety of different styles. The
aim of this thesis is to present a coherent dynamic semantics of Concurrent Haskell comprising
a wide range of its features including laziness, pattern matching, mutual recursion, imprecise
exceptions (synchronous and asynchronous), I/O and of course concurrency. This is done using
Meseguer’s semantic framework of rewriting logic. Despite the algebraic formulation the style
of the semantics is still operational. Moreover the resulting rewrite theory of the semantics of
Concurrent Haskell is shown to meet certain requirements that makes it executable by the Maude
system, an implementation of rewriting logic. This and the modularity and extensibility of the
developed rewrite theory distinguishes it from previous semantic definitions for Haskell in general
and makes it furthermore usefull for practical purposes. In addition the choice of the formulation
of the semantic rewrite theory is justified by showing its equivalence to several existing semantics
each of which only covers a different subset of the language features that are considered here.

Technische Universität Dresden
Fakultät Informatik

Verantwortlicher Hochschullehrer: Prof. Dr. Christel Baier
Betreuer: Dr. habil. Michael Posegga

Erklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die angege-
benen Hilfsmittel benutzt habe.

Dresden, den 27. November 2007

Patrick Bahr

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Rewriting Logic . 3

2.1.1 Syntax and Semantics of Generalised Rewriting Logic 3
2.1.2 Notation . 5

2.2 Executable Theories . 6

3 Functional Semantics 8
3.1 Syntax of Pure Haskell . 8
3.2 Formulating the Syntax as a MEL Theory . 9
3.3 Semantic Expressions . 12
3.4 Semantics of Pure Haskell . 17
3.5 Executability . 25
3.6 Relation to Existing Semantics . 26

4 Concurrency Semantics 33
4.1 Syntax of the Concurrent Extension . 33
4.2 Semantics of the Concurrent Extension . 34
4.3 Relation to Existing Semantics . 47
4.4 Executability and beyond . 54

5 Conclusion 55

Bibliography 56

III

List of Figures

2.1 Deduction rules for membership equational theories. 4
2.2 Deduction rules for generalised rewrite theories. 5
2.3 Commutative diagrams showing the coherence property. 7

3.1 Basic syntactic elements of Haskell. 8
3.2 Expression syntax of Haskell. 9
3.3 Program syntax of Haskell. 9
3.4 Operator and subsort declarations for patterns and expressions. 11
3.5 Definition of free variables. 16
3.6 Definition of the application of substitutions to expressions. 17
3.7 Syntax of Haskell expressions in whnf. 20
3.8 Definitions describing the transformation of structural Haskell expressions in whnf. 21
3.9 Additional equational sentences describing the semantics of a selection of built-in

primitives of Haskell. 22
3.10 Definitions describing the matching of expressions with patterns. 22
3.11 Definitions describing the matching of expressions with defined matches. 23
3.12 Definitions describing the matching of expressions with cases. 23
3.13 Rules defining the convergence relation ⇓. 27
3.14 Rules defining the exceptional convergence relation ↗. 27
3.15 Defining equations for the translation into MEL terms. 30

4.1 Definition of RRec, the theory of a record structure. 35
4.2 Definitions for the input field. 36
4.3 Definitions for the output field. 36
4.4 Equational definition of id generators. 39
4.5 Definitions for functional semantics of concurrent primitives. 41
4.6 Operational definition of E contexts. 42
4.7 Operational definition of F contexts. 43
4.8 Operational definition of E [unblock F] contexts. 44
4.9 Rewrite sentences describing the concurrency semantics (1). 45
4.10 Rewrite sentences describing the concurrency semantics (2). 46

IV

1 Introduction
Declarative programming languages are of particular interest in theoretical computer science as
they somewhat combine on the one hand implementation and on the other hand specification and
verification. For the particular case of functional programming — which this thesis is concerned
with — this means, a functional program is considered as a specification of the problem which
is then transformed into an equivalent, but much more efficient, functional program which then
serves as the implementation for solving the problem. The most common example of such an
approach is the Bird-Meertens formalism [Bir84].
Unfortunately this pure functional method is too limited to cover practical computational

aspects like input/output (I/O), error handling and concurrency. Traditional, i.e. imperative
style, approaches can include these features in a rather straightforward manner as the order of
evaluation is fixed. For functional programs the order of evaluation can be left unspecified since
there are no side effects. However realising I/O and concurrency in functional programming cer-
tainly introduces side effects, hence destroying this property of referential transparency. Therefore
an expression like e + f , where both e and f can cause and as well be affected by side effects,
can surely evaluate to different results depending on the order of evaluation. The same holds
true if possible errors that are encountered evaluating e + f should be handled. What if both e
and f produce an error? Which one is propergated and eventually handed to the error handling
function?
Luckily this can be solved rather gracefully by introducing monads [Mog91, JW93]. Basically

this enables to specify an order of evaluation where needed, i.e. for the cases of I/O, concurrency
and error handling as discussed above. The functional programming language Haskell is based on
this logical foundation using monads and the lazy lambda calculus.
Specifically for this functional programming language a number of dynamic semantics were

proposed covering different aspects of the language using different styles of presentation including
algebraic [Ben04], denotational [JRH+99] and primarily operational [BR00, MJT04, JGF96, HH92,
MJMR01, MLJ99, Lau93] semantics. So the semantics of Haskell is well studied to some extent.
The aim of this thesis is to present a coherent semantical treatment of Haskell including I/O,

error handling and most notably concurrency as defined by Concurrent Haskell. It is chosen to
do this in an algebraic manner using the framework of rewriting logic (RL) [MR07]. This allows
both aspects on the one hand the lazy functional part and on the other hand the concurrency
respectively I/O part to be specified in one single semantic framework.
For this purpose the operational semantics as proposed in [MLJ99] for the pure functional part

including error propagation and in [MJMR01] for the concurrent part are taken as the basis of
this algebraic formulation of the Concurrent Haskell semantics. Hence also the algebraic semantics
presented here will be in an operational style. In addition also the semantics of pattern matching
and recursion is considered, thus offering a full-scale dynamic semantics for Haskell.
Another reason for advocating RL as the framework for the Haskell semantics is the existence

of implementations for it — particularly the Maude [CDE+] system. This allows getting an
interpreter for the semantics’ object language for free. Moreover by the availability of a large set
of further tools for this particular implementation this also offers amongst others model checking
and semi-automated inductive proofs inside the semantic theory. Therefore the semantic theory of
Concurrent Haskell will be given in a special — executable — form that allows the use of Maude.
Needless to say, this implies that we get a hole set of tools for analysing possible future changes

or extensions to the language as well. This in mind the semantic theory of Concurrent Haskell
was designed in a modular manner as proposed by [MB03], which enables extensions to the object
language to be incorporated into the existing semantic theory as presented here without touching
the definitions of the existing language features. An additional set of sentences describing the new
language features will suffice.
The presentation in this thesis is as follows: At first basic preliminaries are introduced in

section 2 including a brief introduction to RL and the notion of execuability of a RL theory.

1

2 1 Introduction

The presentation of the semantics of Concurrent Haskell is subdivided into two parts: Section 3
covers the functional part of Haskell. The semantic theory for the given sublanguage of Haskell is
introduced, executability and equivalence to the semantics given in [MLJ99] are briefly shown. The
concurrent extension is then considered in section 4, also including besides the semantic RL theory
proofs for the executability and the equivalence to the semantics given in [MJMR01]. Furthermore
some drawbacks of the restriction to an executable RL theory are mentioned and possible solutions
ignoring this restriction are outlined.

2 Preliminaries
The purpose of this section is to shortly introduce some preliminaries needed to understand this
thesis. Nevertheless, not everything can be mentioned here. In the following the reader is assumed
to have basic knowledge of universal algebra and term rewriting. In particular the more general
notion of many-sorted algebras will be used. Recent textbooks on that matter are [BN99, Wec92].

2.1 Rewriting Logic
The goal of this thesis is to present the semantics of Concurrent Haskell inside the framework of
rewriting logic (RL). As this logic forms the theoretical basis of several specification languages such
as ELAN, CafeOBJ and particularly Maude, it is somewhat evolving to include new features of the
specification languages. Furthermore it is parametric w.r.t. the underlying equational sublogic.
Hence there are several different flavours of rewriting logic, making it necessary to clearly fix the
version of rewriting logic used here.
As it is very close to the implementation of the Maude specification language — and of course

ultimately it is aspired getting the executable theory developed here running — a form of gener-
alised rewriting logic (GRL) as proposed in [BM03] is used here.
Atomic formulae of rewriting logic are statements of the form t −→ t′ having both a logical and

a computational reading. As rewriting logic is used as a semantic framework here, only the latter
reading will be of interrest. t and t′ are terms of some language defined by the signature of the
rewriting theory in question, they represent — in a semantical setting — states of computation.
So, t −→ t′ is read as, “During the computation the program state changes from t to t′”.
As already mentioned rewriting logic includes an equational sublogic s.t. reasoning is done

modulo the equational subtheory. The equational sublogic used here is membership equational
logic (MEL) (cf. [Mes97]). It provides besides — of course — equational statements t = t′ also
membership statements t : s, whereas s denotes a sort.
At first MEL will be introduced briefly. Those of the readers who are already familiar with

MEL might notice that our definition here is different from the usual one. The variant introduced
here is somewhat weaker since kinds are not defined explicitly by the signature but through an
order on the sorts.

2.1.1 Syntax and Semantics of Generalised Rewriting Logic
Definition 2.1. A membership equational signature (or MEL signature) is a triple Ω = (Σ, S,<),
where S is a finite set of elements called sorts, < is a strict order on S, Σ = {Σw,k}(w,k)∈K∗×K
is a K∗ × K-indexed family of function symbols. K := S/≡< is the set of kinds induced by the
equivalence closure of <, i.e. two sorts are in the same kind if and only if they are in the same
connected component of <. If s is a sort then [s]≡< or more shortly [s] denotes the corresponding
kind of s. The notation Sk for a kind k is used to refer to the set of all sorts in that kind
{s ∈ S | [s] = k}.

Please note that kinds in this context are usually referred to as sorts in the context of many-
sorted algebras. In that context Σ would be called a K-sorted signature, a family X = {Xk}k∈K a
K-sorted set of variables, TΣ(X) the term language over the signature Σ and the variables X and
TΣ(X)k the respective terms of sort k. In this context of MEL this notion of a sort is called kind
as the notion of a sort will be used for something similar but different. Hence the term “K-kinded”
will be used instead of “K-sorted” respectively “of kind k” instead of “of sort k”.

Definition 2.2. Let K be a non-empty finite set of kinds, Σ = {Σw,k}(w,k)∈K∗×K a K∗ × K-
indexed family of sets of function symbols, or shortly a K-kinded signature, and X = {Xk}k∈K a

3

4 2 Preliminaries

t ∈ TΣ(X)
E ` (∀X) t = t

(Refl)
E ` (∀X) t = t′

E ` (∀X) t′ = t
(Symm)

E ` (∀X) t = t′ E ` (∀X) t′ = t′′

E ` (∀X) t = t′′
(Trans)

f ∈ Σk1···kn,k ti, t
′
i ∈ TΣ(X)ki 0 ≤ i ≤ n ∈N

E ` (∀X) ti = t′i
E ` (∀X) f(t1, . . . , tn) = f(t′1, . . . , t′n)

(Cong)

E ` (∀X) t = t′ E ` (∀X) t : s
E ` (∀X) t′ : s

(Member Eq)
s < s′ E ` (∀X) t : s

E ` (∀X) t : s′
(Member Sub)

(∀X) t = t′ ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj ∈ E θ : X → TΣ(Y)

E ` (∀Y) θ(ui) = θ(vi) 1 ≤ i ≤ n E ` (∀Y) θ(wj) = sj 1 ≤ j ≤ m
E ` (∀Y) θ(t) = θ(t′)

(MP Eq)

(∀X) t′′ : s⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj ∈ E θ : X → TΣ(Y)

E ` (∀Y) θ(ui) = θ(vi) 1 ≤ i ≤ n E ` (∀Y) θ(wj) : sj 1 ≤ j ≤ m
E ` (∀Y) θ(t) : s

(MP Mb)

Fig. 2.1: Deduction rules for membership equational theories.

K-indexed family of sets of variables, or shortly a K-kinded set of variables. Then for every kind
k ∈ K the set of terms over Σ and X of kind k, TΣ(X)k, is inductively defined as follows:

1. Xk ⊆ TΣ(X)k,

2. if σ ∈ Σk1...kn,k for some n ≥ 0, k1, . . . , kn, k ∈ K and ti ∈ TΣ(X)ki for every 1 ≤ i ≤ k then
σ(t1, . . . , tn) ∈ TΣ(X)k.

Then TΣ(X) = {TΣ(X)k}k∈K will denote the K-indexed family of sets of terms over Σ and X, or
shortly the K-kinded set of terms over Σ and X.

Definition 2.3. Let Ω = (Σ, S,<) be a MEL signature, K the corresponding set of kinds, X a K-
kinded set of variables, I, J some finite index sets, t, t′ ∈ TΣ(X)k for some k ∈ K, ui, vi ∈ TΣ(X)ki
for i ∈ I and some ki ∈ K, wj ∈ TΣ(X)[sj], sj ∈ S for j ∈ J and t′′ ∈ TΣ(X)[s]. Then the following
are membership equational sentences (or MEL sentences):

(∀X) t = t′ ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj (Equation)

(∀X) t′′ : s⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj (Membership)

Definition 2.4. A membership equational theory (or MEL theory) E is a pair (Ω, E) where Ω is
a MEL signature and E a is set of MEL sentences.

Now that the constitutes of a MEL theory are defined, it can be defined as well which equalities
are entailed by a particular theory E . For this purpose the operational semantics of MEL is given
as a deduction calculus in figure 2.1. Note that by θ : X → TΣ(Y) a K-kinded assignment is
meant, i.e. θ = {θk : Xk → TΣ(Y)k}k∈K .
With MEL syntax and semantics defined, we can approach GRL.

2.1 Rewriting Logic 5

t ∈ TΣ(X)
R ` (∀X) t −→ t

(Refl)
R ` (∀X) t −→ t′ R ` (∀X) t′ −→ t′′

R ` (∀X) t −→ t′′
(Trans)

E ` (∀X) t = u R ` (∀X) u −→ u′ E ` (∀X) u′ = t′

R ` (∀X) t −→ t′
(Eq)

f ∈ Σk1···kn,k ti, t
′
i ∈ TΣ(X)ki R ` (∀X) ti −→ t′i

R ` (∀X) f(t1, . . . , tn) −→ f(t′1, . . . , t′n)
(Cong)

(∀X) r : t −→ t′ ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj ∧
∧
l∈L

tl −→ t′l ∈ R

θ, θ′ : X → TΣ(Y)
E ` (∀Y) θ(ui) = θ(vi) i ∈ I E ` (∀Y) θ(wj) : sj j ∈ J

R ` (∀Y) θ(tl) −→ θ(t′l) l ∈ L R ` (∀Y) θ(x) −→ θ′(x) x ∈ X
R ` (∀Y) θ(t) −→ θ′(t′)

(Nested Repl)

Fig. 2.2: Deduction rules for generalised rewrite theories.

Definition 2.5. Let Ω = (Σ, S,<) be a MEL signature, K the corresponding set of kinds X a
K-kinded set of variables, I, J, L some finite index sets, t, t′ ∈ TΣ(X)k for some k ∈ K, ui, vi ∈
TΣ(X)ki for i ∈ I and some ki ∈ K, wj ∈ TΣ(X)[sj], sj ∈ S for j ∈ J and tl, t′l ∈ TΣ(X)k′l for l ∈ L
and some k′l ∈ K. Then the following is a generalised rewrite sentence (or GRL sentence):

(∀X) t −→ t′ ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj ∧
∧
l∈L

tl −→ t′l (Rewrite)

Definition 2.6. A generalised rewrite theory (or GRT) is a triple R = (Ω, E,R) where E = (Ω, E)
is a MEL theory and R is a set of GRT sentences of signature Ω .

The operational semantics of a GRT R is given in figure 2.2.

2.1.2 Notation
Now that we have rigorously defined syntax and semantics of generalised rewriting logic we can
stipulate some notational conventions. Readers already familiar with Maude will find the nota-
tional abbreviations introduced in the following similarly familiar.
Firstly, the strict order on the sorts of a theory is usually given as a collection of statements of

the form s0 < s1 < . . . < sn with the intended meaning that < is the smallest strict order that
agrees upon those statements.
The family Σ of function symbols is given as a collection of statements of the form f : k1 · · · kn →

k or c : k for some kinds k, k1, . . . , kn and n > 0 with the intended meaning f ∈ Σk1···kn,k or c ∈ Σε,k
respectively. Statements of this form will also be referred to as declarations. Furthermore such
declarations of operator symbols will also be stated at sort level, i.e. f : s1 · · · sn → s for n > 0
or c : s for some sorts s, s1, . . . , sn. The intended meaning of this is f ∈ Σ[s1]···[sn],[s] or c ∈ Σε,[s]
respectively and an additional membership sentence (∀{xi : ki|1 ≤ i ≤ n}) f(x1, . . . , xn) : s ⇐∧

1≤i≤n xi : si or c : s respectively.
Apart from ordinary prefix operator symbols we are also interrested in mixfix operators that will

become essential when defining the syntax of an object language so that words of that language
become terms of MEL. A dot “·” will be used to mark the places where an argument of a mixfix
operator is expected, e.g.

(\ · . ·) : Var Term → LambdaAbstraction

could be a definition for a mixfix function symbol for the lambda abstraction.

6 2 Preliminaries

We also want to get rid of the variable quantification and assume implicit quantification of all
variables of a sentence. To do so we have to fix the kind (or the sort) of the variables used in the
sentences beforehand. This is done by giving variable names in braces when introducing the sorts
of a rewrite theory, e.g. Exp{ei} ∈ S states that the variables ei range over the sort Exp and the
variables [e]i range over the kind [Exp].
The intended meaning of a variable ranging over a sort is the same as the variable ranging over

the corresponding kind plus a membership condition stating the membership of that variable in
the sort. In particular if a variable v ranging over the sort s is used in a sentence it can be replaced
by [v] and an additional condition [v] : s in that sentence.
There is another shorthand that is used by Maude that can be quite useful: The owise attribute.

It will be used here as an additional condition “otherwise” — like atomic equational, membership
and rewrite formulae. Informally the otherwise condition is fullfilled if no other sentence of the
theory not having the otherwise condition is applicable, i.e. neither by its head nor its conditions, if
any. So the sentences of a rewriting theory are — informally speaking — segregated into “ordinary“
sentences and otherwise sentences where the first have their usual semantics whereas the latter are
only considered if none of the first is applicable. But actually the semantics of rewriting logic does
not have to be touched at all, merely a translation of the theory is necessary that introduces a
predicate symbol enabled(·) : [s] → [Bool] defined to be equal to true if one of the non-otherwise
sentences can be applied to its argument term. Then the otherwise condition can be replaced by
(enabled(t) 6= true) = true 1 where t is the sentence’s lefthand term. A more detailed discussion
on this is given in [CDE+, section 4.5.5].
In order to make the rewriting logic sentences more readable it is also convenient to use an

inference style presentation:
ui = vi wj : sj

t = t′
(Equation’)

ui = vi wj : sj
t : s

(Membership’)

ui = vi wj : sj tl −→ t′l
t −→ t′

(Rewrite’)

In some cases of rather complex sentences the following presentation is chosen for rewrite sen-
tences:

ui = vi wj : sj tl −→ t′l
t

t′
−−−−−−−−−−−−−−−−−−→

(Rewrite”)

2.2 Executable Theories
A considerable advantage of the rewriting logic over other semantic frameworks is the availability
of an implementation that offers the possibility to “execute” a theory. In the case of a theory
describing a semantics this automatically yields an interpreter for the object language.
Unfortunately not every arbitrary theory can be executed by those implementations. The pur-

pose of this section is to discuss requirements theories have to meet to be executable. This is done
here for the particular case of the Maude implementation [CDE+].
As already mentioned reasoning in rewriting logic is done modulo the equational subtheory E .

One approach is to use a representative of each equivalence class in TΣ(X)/E. Those representatives
should be unique, of course. Such a unique representative for a term t ∈ TΣ(X)/E can be found
by rewriting w.r.t. E — that is using the equations in E in an oriented form — provided that
the corresponding rewriting system →E is confluent and terminating. Of course, as we are only
interrested in its initial algebra semantics, that is ground terms (i.e. in TΣ),→E is only demanded
to be ground confluent and ground terminating.

1Of course also an appropriate predicate · 6= · : s s → Bool needs to be equationally defined. By the result
in [BT80] this can be done, even in a way that complies with the notion of executability introduced in the
upcoming section.

2.2 Executable Theories 7

t
R - t′

s

E

wwwwwwwwwww
R - s′

E

wwwwwwwwww
(a)

t
R - t′

u

E!

-

s

E!

? R - s′

E
!

-

(b)

Fig. 2.3: Commutative diagrams showing the desired property for rewrite theories (a) and the
sufficient property of coherence (b).

However these restrictions are quite demanding, if one considers equational sentences for associa-
tivity and commutativity of binary operators — fairly common and essential properties — which
trivially destroy the termination property immediately. Fortunately there is a complete rewriting
algorithm (cf. [HM07]) for rewriting systems that are, excluding their rules for associativity and
commutativity, terminating and confluent. So in principal equational sentences establishing asso-
ciativity and commutativity do not have to be considered when reasoning about termination of
the equational theory.
Furthermore it is also needed that every term has a least sort w.r.t. the sort order <. A

sufficient requirement for this property is the preregularity property. A MEL theory E = (Ω, E)
is preregular if for every operator symbol f ∈ Σk1···kn,k for some kinds k1, . . . , kn, k ∈ K, there
is for every (s1, . . . , sn) ∈ Sk1 × · · · × Skn a smallest s ∈ Sk amongst all of those for which
E ′ ` f(c1, . . . , cn) : s is derivable. Where E ′ = (Ω ∪ ({ci}ki), E′ ∪ {ci : si}) for E′ the subset of
E containing only membership sentences and those equational sentences establishing associativity
or commutativity, i.e. the theory E ′ with additional fresh constants ci of the sort si respectively.
Or to put it more compact: Every operator has to have a smallest codomain sort. Note that the
definition of E′ considers only equational sentences defining associativity or commutativity. That
is because as already mentioned such sentences are treated differently to maintain termination.
Moreover the rewriting system induced by a MEL theory has to be ground sort-decreasing. By

preregularity every term t has among its sorts, if any, a smallest one LS(t). The rewriting system
induced by a MEL theory E = (Ω, E) is called sort-decreasing if t →E t′ and t has a sort implies
that LS(t) ≥ LS(t′) where ≥ is the reflexive closure of the order > on sorts.
So far only restrictions for the equational subtheory of a rewrite theory were mentioned, but also

the set of rewrite sentences has to meet some requirements depending on its equational subtheory.
When trying to proof an atomic sentence t −→ t′ a breadth first search strategy in the rewriting
system →R induced by the rewrite rules (similar to →E) is clearly complete provided that →R is
terminating. But since reasoning in rewriting logic is done modulo the equational subtheory (see
deduction rule Eq in figure 2.2), is must be guaranteed that rewriting on the canonical normal
forms of the equational theory is still complete. Or to be more precise: The diagram in figure
2.3(a) has to commute.
This property can be assured if the rewrite theory is coherent. The commutative diagram in

figure 2.3(b) depicts the requirements for a rewrite theory to be coherent. The “!” on the arrows
is supposed to be understood as “until a normal form is reached”. Clearly commutativity of the
second diagram implies commutativity of the first one provided the equational rewriting system
is confluent and terminating. Of course this property is also only necessary for ground terms.

3 Functional Semantics

3.1 Syntax of Pure Haskell
The goal of this section is to formulate a MEL theory that describes the functional semantics
of Concurrent Haskell. In the context of this thesis this is meant to be understood as the non-
concurrent semantics, that is, the pure Haskell semantics without the concurrent extension.
For the sake of conciseness of the presentation of the semantics it is preferable to concentrate on

a sufficiently expressive sublanguage of Haskell. Thus it is necessary to define this sublanguage.
This should be done here in form of a grammar in Backus-Naur form (bnf).
Figure 3.1 describes the basic elements of the syntax of Haskell. The basic literals, described by

the nonterminals Float, Int and Char , as well as the identifiers for variables and data constructors,
described by the nonterminals Var and CustCtor respectively, are only defined informal. For
details on how those can be defined formally please refer to [Jon03].

Float ::= < floating point literals >
Int ::= < integer point literals >

Char ::= < character literals >
String ::= ε |Char String

Var ::= < variables >
BinOp ::= + | - | * | / | <= | >= | < | >

| /= | == | !! | && | || | ** | ++ | $ | $!

BoolConst ::= True | False

PDCtor ::= BoolConst |Float | Int | ’ Char ’ | " String " | () | []

CustCtor ::= < data constructor >
Ctor ::= CustCtor |PDCtor

Primitive ::= seq | not | raise | (BinOp)

AtExp ::= Ctor |Var |Primitive

Fig. 3.1: Basic syntactic elements of Haskell.

Please note that in the following syntactic variables are confused with their respective syntactic
category. Thus, by writing BinOp outside a bnf definition the set { + , - , * , . . . } is meant for
example.
Now that the basic syntactic elements are defined, Haskell expressions can be defined. For the

sublanguage of Haskell that is investigated here, this is done in figure 3.2. Note that let expression
are not included, but as a matter of fact their most common usage for non-recursive pattern binding
can be simulated by a case expression whereas recursive bindings can be simulated by function
bindings that will be introduced later. Furthermore patterns are defined that will be used for
pattern matching in lambda abstractions, case expressions and function bindings. Also note
that lambda expressions are defined here — inconsistently with [Jon03] — as having its argument
patterns separated by commas. This is done to make the semantic definitions a bit easier.
Finally figure 3.3 on the next page gives the syntax of a program in our Haskell sublanguage.

Note that Haskell programs in this sense only contain function bindings, and therefore particularly
no type signatures or type declarations. As this thesis is only concerned about the dynamic seman-
tics, type information typically given in a Haskell program is completely ignored here. Whereas

8

3.2 Formulating the Syntax as a MEL Theory 9

Exp ::= AtExp
|Exp Exp
| \ NePatList -> Exp
| case Exp of { Cases }

| if Exp then Exp else Exp
|Exp : Exp
|Exp BinOp Exp
| [ExpList]

| (ExpList)

AtPat ::= Var | _ |Ctor
Pat ::= AtPat

|Pat Pat
|Pat : Pat
| [PatList]

| (PatList)

ExpList ::= Exp |ExpList , Exp
PatList ::= Pat |PatList , Pat

Case ::= Pat -> Exp
Cases ::= Case |Cases ; Case

Fig. 3.2: Expression syntax of Haskell.

the Haskell syntax as described in [Jon03] allows omitting type signatures as well, for they can
be inferred, this is — syntactically — of no further impact, type declarations are crucial for the
static semantics, as they define amongst others the type signature of each data constructor.
Therefore the dynamic semantics that will be given here as a rewrite theory is only meaningfull

for a subset of those programs defined by the preceding syntax definitions that, enriched with the
“right” type declarations, fullfills certain context sensitive properties as typability and closedness,
i.e. that every occurrence of a variable is a bound one. A static semantics that addresses these
concerns very thoroughly can be found in [JW92].
Another context sensitive property, besides typing related ones, generously ignored by these

definitions for the sake of a concise presentation is the repeated occurrence of variables in a
pattern which is not allowed.

FuncBindLhs ::= Var |FuncBindLhs Pat
FuncBind ::= FuncBindLhs = Exp
Program ::= FuncBind |Program ; FuncBind

Fig. 3.3: Program syntax of Haskell.

3.2 Formulating the Syntax as a MEL Theory
Now the Haskell syntax given in the previous section has to be translated into an appropriate
MEL signature and a set of membership and equational sentences such that Haskell programs are

10 3 Functional Semantics

represented as terms of MEL. But note that we will stick to the context-free characterisation that
was introduced in the previous section using bnf. Hence only the subset of terms that corresponds
to a typable program resp. expression of Haskell will be considered.
For our purposes it is assumed that there are already defined the sorts FloatConst{fci},

IntConst{ici}, CharConst{cci}, StringConst{sci}, Var{vi} and CustCtor having the
obvious respective meaning. Whereas the sorts FloatConst, IntConst, CharConst and
StringConst mentioned above are supposed to be literals only, i.e. they are pure syntax not
having any operation defined on them, there is a need for their “semantic” counterparts. Hence
the sorts Float{fi}, Int{ii}, Char{ci} and String{stri} are assumed to be properly defined along
with operators to switch between the pure literal sorts and these semantic sorts, that is, for exam-
ple fromFloat : Float → FloatConst and toFloat : FloatConst → Float . It is also assumed
that there is an appropriate set of operators defined on these semantic sorts to calculate with
(+, ∗, . . .), manipulate (substring, concat, . . .) and compare (<,≤, . . .) elements of these sorts. For
truth values that might be the result of some of these operators a sort Bool{bi} is assumed, also
with an appropriate set of operators defined on it. Later such operators will become necessary to
define the semantics of those elements.
Having these different sorts, there is a clear distinction between the syntactic elements and their

intended meaning. But these semantic sorts are not to be confused with a possible (flat) domain
of some kind. They are merely a tool to define built-in functions of Haskell.
With this defined only few basic syntactic elements are left to be translated into MEL syntax.

In the following the sorts BoolConst{bci}, PDCtor, Ctor{cti}, Primitive and AtExp are
defined.
Some of the syntax is only a sublanguage relation, e.g. all literals are also pre-defined construc-

tors, pre-defined constructors are constructors etc. This can be expressed as a subsort relation:

BoolConst,FloatConst, IntConst,CharConst,StringConst < PDCtor
CustCtor,PDCtor < Ctor

Ctor,Var,Primitive < AtExp
CtorVar < AtPat

The rest can be expressed as operator declarations:

b : BoolConst (b ∈ BoolConst)
() , [] : PDCtor

seq , not , raise : Primitive
(◦) : Primitive (◦ ∈ BinOp)

_ : AtPat

But note that — since the above operator declarations are at sort level — this implicitly includes,
as described in section 2.1.2, a set of membership sentences.
Now these newly defined sorts can be used to define the sorts Exp{ei} and Pat{pti} for Haskell

expressions and patterns respectively. But beforehand we need some auxiliary sorts like Case{cai}
and Cases{casi} for case expressions:

Case < Cases

· -> · : Pat Exp → Case
· ; · : Cases Cases → Cases

Also the sorts ExpList{li} and PatList{pli} for (possibly empty) lists of expressions
and patters respectively as well as their non-empty correspondents NeExpList{nli} and
NePatList{npli} are needed

Pat < NePatList < PatList

3.2 Formulating the Syntax as a MEL Theory 11

nil : PatList
· , · : PatList PatList → PatList
· , · : PatList NePatList → NePatList
· , · : NePatList PatList → NePatList

, and similar for ExpList plus the following obvious relation between them:

PatList < ExpList
NePatList < NeExpList

It is not necessary to have empty lists of expressions to define the Haskell syntax but the adjoined
empty list nil will help to formulate some of the sentences for the semantics quite concisely.
Additionally we have to give some equational sentences establishing the operator · , · as asso-

ciative and having nil as its identity:

[l]1 , [l]2 = [l]2 , [l]1
assoc

[l]1 , nil = [l]1
id1

nil , [l]1 = [l]1
id2

Please remember that the variables [l]1, [l]2 are of kind [ExpList] which contains amongst
others the sorts ExpList, NeExpList, PatList and NePatList due to the subsort order <.
Now all necessary preparations are made to define the sorts Exp and Pat, this is done in

figure 3.4.

AtExp < Exp
AtPat < Pat

Pat < Exp

Operator declarations for expressions:

· · : Exp Exp → Exp
\ · -> · : NePatList Exp → Exp

case · of · : Exp Cases → Exp
if · then · else · : Exp Exp Exp → Exp

· : · : Exp Exp → Exp
· ◦ · : Exp Exp → Exp (◦ ∈ BinOp)

[·] : ExpList → Exp
(·) : ExpList → Exp

Operator declarations for patterns:

_ : Pat
· · : Pat Pat → Pat
· : · : Pat Pat → Pat

[·] : PatList → Pat
(·) : PatList → Pat

Fig. 3.4: Operator and subsort declarations for patterns and expressions.

12 3 Functional Semantics

String literals are only treated as syntactic sugar for the corresponding list of characters. Simi-
larly list expressions of the form [e1 , . . . , en] are just a shorthand for e1 : . . . : en : [] . Here
are the corresponding equational sentences describing this:

length(toString(sc1)) = 0
sc1 = []

str1

str1 = toString(sc1) cc1 = fromChar(head(str1)) sc2 = fromString(tail(str1))
sc1 = cc1 : sc2

str2

[nil] = []
list1

[e1 , l1] = e1 : [l1]
list2

where head(·) : [String] → [Char] is supposed to evaluate to the first character of the argument
string if it is nonempty and tail(·) : [String] → [String] to the rest string of the argument string
if it is nonempty. Note that sentence str2 does not need the precondition length(toString(sc1)) = 0
as this is implicitly stated by cc1 = fromChar(head(str1)). Remember that cc1 ranges over sort
CharConst. Therefore implicitly the precondition cc1 : CharConst is added to this sentence
such that cc1 = fromChar(head(str1)) can only be fullfilled if fromChar(head(str1)) : CharConst
witch is only true for non-empty str1.
Defining the sort Program{pi} describing Haskell programs is easy now after having defined

FuncBindLhs{fli} — left-hand-sides of function bindings — and FuncBind{fbi} — function
bindings:

FuncBind < Program
Var < FuncBindLhs

· · : FuncBindLhs Pat → FuncBindLhs
· = · : FuncBindLhs Exp → FuncBind
· ; · : Program Program → Program

3.3 Semantic Expressions
Before being able to describe the semantics of the sublanguage of Haskell defined in the previous
section, the notion of an erroneous computation is needed to be defined. In Haskell this is the
exception. In principle an exception is only an expression of the type Exception . Since static
semantics is beyond the scope of this treatment this type has to be explicitly captured by an
appropriate syntax definition. For this purpose ExcCtor — exception constructors — a subsort
of Ctor along with ExcExp{ecei} — exception expressions — a subsort of Exp have to be
introduced to describe precisely expressions of that type1. Furthermore a sort ExcPat of exception
patterns that includes patterns of type Exception is needed to keep the theory preregular:

ExcCtor < PDCtor
ExcCtor < ExcExp < Exp

ExcPat < ExcExp,Pat

e : ExcCtor (e ∈ {ArithException,ArrayException, . . .})
· · : ExcExp Exp → ExcExp
· · : ExcExp Pat → ExcPat

1If the expression is well typed in the sense given in section 3.1.

3.3 Semantic Expressions 13

Additionally “real” exceptions are introduced using the sort Exception{ec1} and an constructor
symbol 〈 · 〉 along with a operation to retrieve the underlying exception expression:

〈 · 〉 : ExcExp → Exception
exp(·) : Exception → ExcExp

exp(〈ece1〉) = ece1
exp

So exception handling inside the Haskell program is of course done with terms of the sort
ExcExp whereas the exception handling in the semantic definitions is done on the level of the
sort Exception. In that way there is a clear distinction between “syntactic” and “semantic”
exception. Nevertheless the rôle of exceptions in this sense is different from the one of sorts like
Float, Int etc. as exceptions can be the denotation of a Haskell expression whereas elements of
the latter cannot.
We also need (finite) sets of exceptions as an equational defined data structure. Since expressions

may have different exceptional behaviour depending on the evaluation order, exceptional behaviour
will be denoted by a set of exceptions as proposed in [JRH+99]. So let us assume we have sorts
Exceptions{ecsi} and NeExceptions{necsi} of finite sets and nonempty finite sets of exceptions
respectively (i.e. elements of sort Exception) with an appropriate set of operations like · ∪ · , · ∩ · ,
· \ · and · ∈ · and a usual syntax like e.g. {〈 ArithException Overflow 〉 , 〈 IOException 〉 }
for a set having two exceptions.
Still not all preparations are made to define the semantics of Haskell properly. Beforehand it is

necessary to enrich the syntax with a few expressions such that we are able to express partially
applied function bindings. For example if we have a binary function defined in Haskell, say add ,
the correct result of add 1 should be the unary successor function.
For this purpose the sorts DefMatch{mi}, which is in principle a lambda abstraction having a

different syntax plus an exceptional case (having the particular subsort ExcDefMatch{emi} for
this), DefMatches{msi}, a list of those, and NeDefMatches{nmsi}, its nonempty correspon-
dent, are introduced:

ExcDefMatch < DefMatch < NeDefMatches < DefMatches

· :→ · : PatList Exp → DefMatch
:→ · : Exceptions → ExcDefMatch

nil : DefMatches
· ; · : DefMatches DefMatches → DefMatches
· ; · : NeDefMatches DefMatches → NeDefMatches
· ; · : DefMatches NeDefMatches → NeDefMatches
{ · } : DefMatches → Exp

The necessary equational sentences establishing the associativity of · ; · and its identity nil are
trivial and are not explicitly mentioned here.
Of course the reader might argue that this could instead be expressed with a combination of

a lambda abstraction and a case expression rendering the above syntax extension unnecessary.
But this would be cumbersome and would yield a quite cluttered semantics definitions as well.
For example the following expressions are supposed to be equivalent:

{ 1 , y :→ y ;
2 , y :→ 4 * y ;
3 , y :→ 8 * y }

(\a b -> case (a,b) of

1 , y -> y ;
2 , y -> 4 * y ;
3 , y -> 8 * y)

14 3 Functional Semantics

In addition, when choosing the second approach, the semantic definition has to introduce fresh
variables, in this example a and b and hence spawning the need for a syntax extension anyway,
not mentioning a syntax for explicit exceptional behaviour. At the end the choice remains a matter
of taste, of course.
The inclusion of an empty list of defined matches in the above operator declaration is intention-

ally. It allows a concise formulation of the semantics if the following equality is included:

{nil :→ e1} = e1

The same holds true for the following extension of the lambda abstraction that allows an empty
list of argument patterns:

\ · -> · : PatList Exp → Exp

\ nil -> e1 = e1

To describe function application, matching etc. it is required to have substitutions and means
to manipulate them and to apply them to Haskell expressions. However it is not necessary to get
too much into the details on how to define them equationally, for our purposes it may suffices
to informally introduce the required sorts SubstEntry and SubstEntrys{pssi} for entries and
collections of entries respectively and SimpSubst{ss1} for simple substitutions and to show how
they are supposed to work on examples only:
For example { x 7→ 1 , y 7→ (+) } is of sort SimpSubst whereas y 7→ (+) is of sort

SubstEntry and x 7→ 1 , y 7→ (+) of sort SubstEntrys, ss1(v1) yields the image of v1 if
it is in the domain of ss1 and ⊥ otherwise and ss1

←−∪ ss2 is the substitution that maps every vari-
able v1 being in the domain of ss2 to ss2(v1) and every other variable v2 to ss1(v2). ε will be
assumed to denote the empty substitution.
We also need finite sets of variables as an equational defined data structure. So let us assume

having the sorts Vars{vsi} and NeVars{nvsi} of finite sets and nonempty finite sets of variables
(i.e. elements of sort Var) with an appropriate set of operations like · ∪ · , · ∩ · , · \ · and · ∈ ·
and a usual syntax like {v1, v2, v3} for a set having three variables.
Now we are able to define some operations concerning both simple substitutions and sets of

variables: dom(·), the domain of a simple substitution, · | · the restriction of simple substitution
to a domain and · \ · the subtraction of a domain:

dom(·) : SimpSubst → Vars
· | · : SimpSubst Vars → SimpSubst
· \ · : SimpSubst Vars → SimpSubst

dom(ε) = ∅
dom1

dom({v1 7→ e1, pss1}) = v1 ∪ dom({pss1})
dom2

v1 ∈ vs1 = true

{v1 7→ e1, pss1}|vs1 = {pss1}|vs1
←−∪{v1 7→ e1}

restr1
¬(v1 ∈ vs1) = true

{v1 7→ e1, pss1}|vs1 = {pss1}|vs1

restr1’

ε|vs1 = ε
restr2

v1 ∈ vs1 = true

{v1 7→ e1, pss1}\vs1 = {pss1}\vs1

rem1
¬(v1 ∈ vs1) = true

{v1 7→ e1, pss1}\vs1 = {pss1}\vs1
←−∪{v1 7→ e1}

rem1’

ε\vs1 = ε
rem2

Before defining how substitutions are applied to Haskell expression, we need another kind of
substitution: A fixed point substitution. Fixed point substitutions are — well — fixed points of
simple substitutions, and hence are able to express mutual recursion thus being the perfect tool to

3.3 Semantic Expressions 15

define the semantics of function bindings. Here is the definition of the respective sort FixpSubst:

fix(·) : SimpSubst → FixpSubst
〈〈 · | · 〉〉 : SimpSubst Vars → FixpSubst

fix(ss1) = 〈〈ss1|dom(ss1)〉〉
fix

So a fixed point is, syntactically speaking, only a pair containing a simple substitution and a set
of variables. The set of variables is intended to denote the domain of the fixed point substitution.
The reader might argue that the simple substitution has already a defined domain. So why the need
for this explicit indication? Well, the intended inductive semantics of a fixed point substitution is
the same as for simple substitutions except that, if they are applied to a variable they do not only
yield the image expression for the variable but the expression after having applied the substitution
to it again. So we get — in principle — the fixed point of the original simple substitutions. The
crux now are the operations on the domain, which need to be defined for fixed point substitutions
as well. Those operations will only remove elements from the set of variables carried by the fixed
point substitution instead of removing elements from the simple substitution. If entries of the
underlying substitution would be removed, this could clearly affect the image expression of the
variables that are still in the domain as well:

dom(·) : FixpSubst → Vars
· | · : FixpSubst Vars → FixpSubst
· \ · : FixpSubst Vars → FixpSubst

dom(〈〈ss1|vs1〉〉) = vs1
fixdom

〈〈ss1|vs1〉〉|vs2 = 〈〈ss1|vs1 ∩ vs2〉〉
fixrestr

〈〈ss1|vs2〉〉\vs1 = 〈〈ss1|vs2\vs1〉〉
fixrem

Still this is not enough for defining fixed points of substitutions. If the semantics of fixed
point substitutions would be defined as outlined above, the application of recursive substitutions,
that is, substitutions for which there is a variable whose (fixed point) image expression has a
free occurrence of that variable, would yield an expression of infinite length (or operationally
speaking: It would not terminate). For example consider the following substitution defining the
multiplication: {

mult 7→
{ 1 y :→ y;

x y :→ y + (mult (x - 1) y) }

}

If the application of the fixed point of this simple substitution to the variable mult would yield
— as proposed above — the image expression with the substitution applied to it, the variable
mult in it would also be replaced by this expression and so on. Thus every such application of a
fixed point of a recursive substitution would have to yield an infinite expression.
Therefore we need a means to defer the repeated substitution application until the variable

is “needed”, i.e. a lazy variant of substitution application is needed. To do so the syntax of
expressions has to be extended once more by recursive closures RecCl{rci}:

RecCl < Exp

· ` · : Env Var → RecCl ,

with the intended meaning of ss1 ` v1 as being the image expression of v1 of the fixed point of
ss1. The unfolding of this closure can be given right away:

unfold(·) : RecCl → Exp

16 3 Functional Semantics

e1 = ss1(v1)
unfold(ss1 ` v1) = e1[fix(ss1)]

unfold

The use of fix(ss1) restores the original fixed point substitution.
To properly define the application of substitutions the notion of free variables in Haskell expres-

sions must be defined. This is done by equationally defining a function symbol fv(·), denoting the
set of free variables of an expression, in figure 3.5.

fv(·) : ExpList → Vars
fv(·) : Cases → Vars
fv(·) : DefMatches → Vars
fv(·) : SimpSubst → Vars

fv(nil) = ∅
list1

fv(e1 , nl1) = fv(e1) ∪ fv(nl1)
list2

fv(v1) = {v1}
var

fv(ct1) = ∅
ctor

fv(pr1) = ∅
primitive

fv(e1 e2) = fv(e1) ∪ fv(e2)
app

fv(e1 ◦ e2) = fv(e1) ∪ fv(e2)
◦

for all ◦ ∈ Binop ∪ { : }

fv((l1)) = fv(l1)
tuple

fv(if e1 then e2 else e3) = fv(e1) ∪ fv(e2) ∪ fv(e3)
if

fv(case e1 of cas1) = fv(e1) ∪ fv(cas1)
case

fv(\ pl1 -> e1) = fv(e1)\fv(pl1)
lambda

fv(pt1 -> e1) = fv(e1)\fv(pt1)
cases1

fv(ca1 ; cas1) = fv(ca1) ∪ fv(cas1)
cases2

fv(rc1) = ∅
closure

fv({ms1}) = fv(ms1)
match

fv(nil) = ∅
matches1

fv(pl1 :→ e1;ms1) = (fv(e1)\fv(pl1)) ∪ fv(ms1)
matches2

fv(:→ ecs1;ms1) = ∅
matches3

fv(ε) = ∅
subst1

fv({v1 7→ e1, pss1}) = fv(e1) ∪ fv({pss1})
subst2

Fig. 3.5: Definition of free variables.

Now all preparations are made to define the application of a substitution to an expression.
To be able to do this more concisely a super sort Subst{si} of SimpSubst and FixpSubst is
introduced. Figure 3.6 on the facing page contains all necessary definitions.

3.4 Semantics of Pure Haskell 17

SimpSubst,FixpSubst < Subst

· [·] : ExpList Subst → ExpList
· [·] : Cases Subst → Cases
· [·] : DefMatches Subst → DefMatches

nil[s1] = nil
explist1

(e1 , nl1)[s1] = e1[s1] , nl1[s1]
explist2

rc1[s1] = rc1
closure

ss1(v1) = e1

v1[ss1] = e1
var

ss1(v1) = ⊥
v1[ss1] = v1

var’

v1 ∈ vs1 = true

v1[〈〈ss1|vs1〉〉] = ss1 ` v1
varfix

¬(v1 ∈ vs1) = true

v1[〈〈ss1|vs1〉〉] = v1
varfix’

ct1[s1] = ct1
ctor

pr1[s1] = pr1
primitive

(l1) [s1] = (l1[s1])
tuple

(e1e2)[s1] = (e1[s1])(e2[s1])
app

(\ pl1 -> e1)[s1] = \ pl1 -> e1[s1\fv(pl1)]
lambda

{ms1}[s1] = {ms1[s1]}
match

(if e1 then e2 else e3)[s1] = if e1[s1] then e2[s1] else e3 [s1]
if

(case e1 of cas1)[s1] = case e1[s1] of (cas1[s1])
case

(e1 ◦ e2)[s1] = (e1[s1]) ◦ (e2[s1])
◦

for every ◦ ∈ BinOp ∪ { : }

nil[s1] = nil
matches1

(pl1 :→ e1;ms1)[s1] = pl1 :→ (e1[s1\fv(pl1)]);ms1[s1]
matches2

(:→ ecs1)[s1] = :→ ecs1
matches3

(pt1 -> e1)[s1] = pt1 -> e1[s1\fv(pt1)]
cases1

(ca1 ; cas1)[s1] = ca1[s1] ; cas1[s1]
cases2

Fig. 3.6: Definition of the application of substitutions to expressions.

3.4 Semantics of Pure Haskell
Before discussing the detailed semantics of Haskell there is still some work to be done. At first
some auxiliary functions are needed to be able to formulate the semantic rules appropriately. As
the left hand side of a function binding is syntactically only a cascaded expression application
there is a need for a function that transforms this into the function variable and a list of the
argument patterns and vice versa:

toList(·) : Exp → NeExpList
toExp(·) : NeExpList → Exp

toList(e1 e2) = toList(e1) , toList(e2)
toList1

otherwise
toList(e1) = e1

toList2

toExp(e1) = e1
toExp1

toExp(e1 , l1) = e1 toExp(l1)
toExp2

18 3 Functional Semantics

To define the semantics properly we also need a means to decide whether the head of an expres-
sion is a constructor. This could have been done defining an appropriate subsort of Exp, but to
avoid troubles that could destroy the preregularity of the theory, it is chosen to define a predicate
instead:

ctorApp?(·) : Exp → Bool

ctorApp?(ct1) = true
ctorApp ctor

ctorApp?(e1e2) = ctorApp?(e1)
ctorApp app

otherwise
ctorApp?(e1) = false

ctorApp fail

The same holds for the following predicate deciding whether the head of an expression is the
list constructor · : · :

topCons?(·) : Exp → Bool

topCons?(e1 : e2) = true
topCons1

otherwise
topCons?(e1) = false

topCons2

Furthermore a predicate deciding whether a pattern is trivial — i.e. any expression matches it
— will be useful:

trivPat?(·) : Pat → Bool

trivPat?(v1) = true
trivPat1

trivPat?(_) = true
trivPat1

otherwise
trivPat?(pt1) = false

trivPat2

As already mentioned there is made a distinction between mere syntactic literals (sorts
FloatConst, IntConst, etc.) and their semantic correspondents (sorts Float, Int, etc.). The
same was done for boolean expressions, so here are the necessary conversion functions:

fromBool(·) : Bool → BoolConst
toBool(·) : BoolConst → Bool

fromBool(true) = True
fromBool true

fromBool(false) = False
fromBool false

toBool(True) = true
toBool true

toBool(False) = false
toBool false

Now the semantics of Haskell expression can be given. This is done by equationally defining
the operators FJ · K transforming expressions to its weak head normal form (whnf) andM J · : ?= · K
matching an expression with a pattern by giving a simple substitution. Furthermore exceptional
behaviour has to be considered. As the order of evaluation of an expression will not be fixed, an
expression might have different exceptional behaviour depending on the evaluation order. Hence
FJ · K and M J · : ?= · K will evaluate to sets of exceptions instead of a single exception in case of
exceptional behaviour. This is the same approach as taken in [MLJ99] where the reader can
find a more detailed discussion of this approach using imprecise exceptions; as a matter of fact
the operation FJ · K is an amalgamation of the relations ↗ and ⇓ defined there. To properly
define FJ · K andM J · : ?= · K two new sorts are needed: ExpUExc{eei}, the “union” of Exp and
Exceptions as well as SimpSubstUExc{ssei}, the “union” of SimpSubst and Exceptions.
This is necessary to maintain sort-decreasingness as both symbols may evaluate also to a term
of sort Exception. Moreover additional constants are needed to denote that no matching was
possible:

Exceptions,SimpSubst < SimpSubstUExc
Exceptions,Exp < ExpUExc

3.4 Semantics of Pure Haskell 19

noMatching : [ExpUExc]
noMatching : [SimpSubstUExc]

To define the propagation of exceptions more concisely it is also useful to extend the union of
sets of exceptions to expressions as well:

· ∪ · : [ExpUExc] [ExpUExc] → [Exceptions]

ecs1 ∪ e1 = ecs1
excs∪exp

e1 ∪ ecs1 = ecs1
excs∪exp

So if EH ` ee1 ∪ ee2 : Exceptions for the MEL theory EH defined so far at least one of ee1 and
ee2 is exceptional and ee1 ∪ ee2 is the respective set of exceptions or the union of both if both of
them are exceptional.
To easily create exception terms some shortcuts are introduced where an appropriately defined

symbol toString(·) : Exp → StringConst is assumed that converts expressions into its string
representation:

typeExc(·) : Exp → Exception
patternExc(·) : Exp → Exception
divZeroExc(·) : Exp → Exception

typeExc(e1) = 〈 TypeError 〉
type

patternExc(e1) = 〈 PatternMatchFail toString(e1)〉
pat

divZeroExc(e1) = 〈 ArithException DivideByZero 〉
div

Moreover a “symmetric” union ·] · for simple substitutions is useful that evaluates to a simple
substitution only if both argument substitutions have disjoint domains. Otherwise it is supposed
to yield a set containing the appropriate exceptions:

·] · : SimpSubst SimpSubst → SimpSubstUExc
patExc(·) : Vars → Exceptions

dom(ss1) ∩ dom(ss2) = ∅
ss1] ss2 = ss1

←−∪ ss2
disj

dom(ss1) ∩ dom(ss2) = nvs1

ss1] ss2 = patVarExc(nvs1)
confl

patExc(∅) = ∅
exc1

patVarExc({v1, pvs1})
= patVarExc({pvs1}) ∪ {〈 PatternVariableException toString(v1)〉 }

exc2

It is also useful extending the operator ·] · to exceptions to easily propagate them:

·] · : SimpSubstUExc SimpSubstUExc → SimpSubstUExc

ecs1] ss2 = ecs1
left

ss1] ecs2 = ecs2
right

ecs1] ecs2 = ecs1 ∪ ecs2
both

The same is easily done for the application of a substitution to an expression:

· [·] : Exp SimpSubstUExc → ExpUExc

e1[ecs1] = ecs1

20 3 Functional Semantics

SimpSubst ::= . . . (cf. MEL signature)
DefMatches ::= . . . (cf. MEL signature)

Exp ::= . . . (cf. previous bnf definition)
|SimpSubst ` Var
| {DefMatches}

BinPrim ::= (BinOp)

CtorApp ::= Ctor |Var |CtorApp Exp
WhnfExp ::= AtExp

|BinPrim Exp
|CtorApp
| \ PatList -> Exp
| {DefMatches}
|Exp : Exp
| [ExpList]

| (ExpList)

Fig. 3.7: Syntax of Haskell expressions in whnf.

Before describing the transformation into its whnf it is or course necessary to define when a
Haskell expression is in whnf. That is done in figure 3.7. Defining a predicate · ⇓ : Exp → Bool
that decides whether an expression is in whnf is an easy translation of the given bnf grammar.
The details are left to the reader.
Now everything is prepared to describe the semantics of Haskell expressions. On the following

pages the transformation in whnf is given in figures 3.8 and 3.9 the matching in figures 3.10, 3.12
and 3.11.
For the definition of the built-in primitives only a selection is given. Though a particular

interesting case is missing: The equality operator == . Of course, one problem here is that this
operator is defined for the members of the type class Eq , and since the type calculus of Haskell is
not considered in this thesis this has to be omitted. But the goal is to give the correct semantics
for all types assuming they are all member of the Eq class. The semantics for the built-in types
is clear then. For the user defined types it is assumed that their membership in Eq is defined by
the deriving Eq statement delivering a standard implementation for the equality test.
That is, values of those types are equal if and only if they are literally equal. Unfortunately

these values are not the whnf as defined above as arguments of constructors remain unevaluated.
So an additional notion for an normal form is needed here. A constructor head normal form (chnf).
An appropriate syntax definition for expressions in chnf is given below:

ChnfExpList ::= ChnfExp |ChnfExpList , ChnfExp
ChnfExp ::= AtExp |BinPrim Exp |Ctor ChnfExp |Var ChnfExp | \ PatList -> Exp

| {DefMatches} |ChnfExp : ChnfExp | [ChnfExpList] | (ChnfExpList)

So another operator symbol along with set of equational sentences is needed to describe this
new normal form. Fortunately the chnf differs from the whnf only in the treatment of constructor
application. So most of the equational sentences for the whnf above can be reused. They do not
even need to be copied. The operator for the normal form transformation FJ · K as well as the
predicate operator · ⇓ only need to be changed to take another parameter (of sort NfType{nfi})

3.4 Semantics of Pure Haskell 21

FJ · K : [Exp] → [ExpUExc]

FJe1K = True
FJ if e1 then e2 else e3K = FJe2K

if1
FJe1K = False

FJ if e1 then e2 else e3K = FJe3K
if2

FJe1K = ecs1

FJ if e1 then e2 else e3K = ecs1
if

M Jcas1 : ?= e1K = e2

FJ case e1 of cas1K = FJe2K
case

M Jcas1 : ?= e1K = noMatching
FJ case e1 of cas1K = {patternExc(case e1 of cas1)}

case fail

M Jcas1 : ?= e1K = ecs1

FJ case e1 of cas1K = ecs1
case

FJe1K = \ pt1 , pl1 -> e3 M Jpt1 : ?= e2K = ss1

FJe1 e2K = FJ \ pl1 -> e3 [ss1]K
lambda

FJe1K = \ pt1 , pl1 -> e3 M Jpt1 : ?= e2K = noMatching
FJe1 e2K = {patternExc(e1 e2)}

lambda fail

FJe1K = \ pt1 , pl1 -> e3 M Jpt1 : ?= e2K = ecs1

FJe1 e2K = ecs1
lambda

FJe1K = {ms1} M Jms1 : ?= e2K = nms1

FJe1 e2K = FJ{nms1}K
match

FJe1K = {ms1} M Jms1 : ?= e2K = nil
FJe1 e2K = {patternExc({ms1} e1)}

match fail
FJ{:→ ecs1;ms1}K = ecs1

match

FJ (◦) e1e2K = FJe1 ◦ e2K
(◦)

for every ◦ ∈ BinOp

FJe1K = ecs1 FJe2K : Exp
FJe1 e2K = ecs1

app
FJe1K = ecs1 FJe2K = ecs2

FJe1 e2K = ecs1 ∪ ecs2
app arg

FJrc1K = FJunfold(rc1)K
closure

e1⇓ = true
FJe1K = e1

whnf
otherwise

FJe1K = typeExc(e1)
type

Fig. 3.8: Definitions describing the transformation of structural Haskell expressions in whnf.

22 3 Functional Semantics

FJe1K = bc1

FJ not e1K = fromBool(¬toBool(bc1))
not

FJe1K = ecs1

FJ not e1K = ecs1
not

FJe1K = ece1

FJ raise e1K = {〈ece1〉 }
raise

FJe1K = ecs1

FJ raise e1K = ecs1
raise

FJe1K : Exp
FJ seq e1e2K = FJe2K

seq
FJe1K ∪ FJe2K = ecs1

FJ seq e1e2K = ecs1
seq

FJe1K = fc1 FJe2K = fc2

FJe1 + e2K = fromFloat(toFloat(fc1) + toFloat(fc2))
plus

FJe1K ∪ FJe2K = ecs1

FJe1 + e2K = ecs1
plus

Fig. 3.9: Additional equational sentences describing the semantics of a selection of built-in prim-
itives of Haskell.

M J · : ?= · K : [PatList] [ExpList] → [SimpSubstUExc]

¬trivPat?(pt1) = true FJe1K = ecs1

M Jpt1 : ?= e1K = ecs1

M Jpt1 , pl1 : ?= e1 , nl1K =M Jpl1 : ?= nl1K]M Jpt1 : ?= e1K
list1

M Jnil : ?= nilK = ε
list2

M Jv1 : ?= e1K = {v1 7→ e1}
var

M J _ : ?= e1K = ε
wildcard

toList(pt1) = ct1 , pl1 toList(FJe1K) = ct1 , l1
M Jpt1 : ?= e1K =M Jpl1 : ?= l1K

ctor

FJe3K = e1 : e2

M Jpt1 : pt2 : ?= e3K =M Jpt1 : ?= e1K]M Jpt2 : ?= e2K
cons

FJe1K = (l1)
M J (pl1) : ?= e1K =M Jpl1 : ?= l1K

tuple
otherwise

M Jpt1 : ?= e1K = noMatching
fail

Fig. 3.10: Definitions describing the matching of expressions with patterns.

3.4 Semantics of Pure Haskell 23

M J · : ?= · K : [DefMatches] [ExpList] → [DefMatches]

M Jnil : ?= e1K = nil
nil

M J:→ ecs1;ms1 : ?= e1K =:→ ecs1
prop

M Jpt1 : ?= e1K = noMatching
M J(pt1 , pl1 :→ e2);ms1 : ?= e1K =M Jms1 : ?= e1K

skip

M Jpt1 : ?= e1K = ss1

M J(pt1 :→ e2);ms1 : ?= e1K = nil :→ e2[ss1]
succ

M Jpt1 : ?= e1K = ss1

M J(pt1 , npl1 :→ e2);ms1 : ?= e1K = (npl1 :→ e2[ss1]);M Jms1 : ?= e1K
part

M J(nil :→ e2);ms1 : ?= e1K = (nil :→ e2 e1);M Jms1 : ?= e1K
triv

M Jpt1 : ?= e1K = ecs1

M J(pt1 , pl1 :→ e2);ms1 : ?= e1K =:→ ecs1

Fig. 3.11: Definitions describing the matching of expressions with defined matches.

M J · : ?= · K : [Cases] [Exp] → [ExpUExc]

M Jca1 : ?= e1K = ee1

M Jca1 ; cas1 : ?= e1K = ee1
succ mult

M Jca1 : ?= e1K = noMatching
M Jca1 ; cas1 : ?= e1K =M Jcas1 : ?= e1K

skip

M Jpt1 : ?= e1K = sse1

M Jpt1 -> e2 : ?= e1K = e2[sse1]
succ

M Jpt1 : ?= e1K = noMatching
M Jpt1 -> e2 : ?= e1K = noMatching

fail

Fig. 3.12: Definitions describing the matching of expressions with cases.

24 3 Functional Semantics

stating which type of normal form has to be considered:

whnf : NfType , chnf : NfType
FJ · K · : [Exp] [NfType] → [ExpUExc]
· ⇓ · : [Exp] [NfType] → [Bool]

Hence all defining equations for · ⇓ have to be changed to use · ⇓whnf instead and appropriate
equations for · ⇓chnf have to be given by translating the bnf definition given above2. Moreover
the equational sentences defining FJ · K can be changed to use FJ · Knt1 instead — and · ⇓nt1 for
equation whnf which should be called nf then. That means those equations do also hold for the
chnf. Additionally the following equational sentences for the chnf are needed:

FJe1Kchnf = e3 ctorApp?(e3) = true FJe2Kchnf = e4

FJe1e2Kchnf = e3e4
ctor app

FJe1Kchnf = e3 ctorApp?(e3) = true FJe2Kchnf = ecs1

FJe1e2Kchnf = ecs1
ctor app

FJe1Kchnf = e2 FJ (l1) Kchnf = (l2)
FJ (e1 , l1) Kchnf = (e2 , l2)

tuple
FJe1K ∪ FJ (l1) K = ecs1

FJ (e1 , l1) Kchnf = ecs1
tuple

FJe1Kchnf = e3 FJe2Kchnf = e4

FJe1 : e2Kchnf = e3 : e4
list

FJe1K ∪ FJe2K = ecs1

FJe1 : e2Kchnf = ecs1
list

All other previous occurrences of FJ · K can be safely changed to FJ · Kwhnf , since pattern matching
only needs — for the laziness — the whnf.
Giving the equational sentences defining the equality == for both normal forms is now trivial:

FJe1Kchnf = e3 FJe2Kchnf = e4

FJe1 == e2Knt1 = fromBool(e1 = e2)
==

FJe1Kchnf ∪ FJe2Kchnf = ecs1

FJe1 == e2Knt1 = ecs1
==

Having this and the MEL definition of · ⇓ · according to the bnf definition, the following is
easy to show.

Lemma 3.1. Let EH be the MEL theory developed so far, e, e′ terms of sort Exp and n ∈
{whnf, chnf}. Then the following holds:

if EH ` FJeKn = e′ then EH ` e′⇓n = true

Proof. Straightforward induction on e.

Now that the semantics of Haskell expressions is defined, defining the semantics of a whole
Haskell program is easy. It is the fixed point of the substitution induced by the function bindings
of the program. Additionally the semantics of an Haskell expression in the context of a Haskell
program can be defined as the semantics of the program applied to the expression:

env(·) : Program → SimpSubst
HJ · K : Program → Subst

HJ · in · K : [Exp] [Program] → [Exp]

2Actually some equations can be shared by both normal form predicates by using · ⇓nt1

3.5 Executability 25

toList(fl1) = v1 , pl1
env(fl1 = e1) = {v1 7→ {pl1 :→ e1}}

bind

toList(fl1) = v1 , pl1 env(p1) = ss1 ss1(v1) = ⊥
env(fl1 = e1 ; p1) = ss1

←−∪{v1 7→ {pl1 :→ e1}}
binds1

toList(fl1) = v1 , pl1 env(p1) = ss1 ss1(v1) = e2

env(fl1 = e1 ; p1) = ss1
←−∪{v1 7→ cons(pl1 :→ e1, e2)}

binds2

HJp1K = fix(env(p1))
prog

HJe1 in p1K = FJe1[HJp1K]Kchnf
progexp

where cons(· , ·) is defined in the following way:

cons(· , ·) : [DefMatch] [Exp] → [Exp]

cons(m1, {ms1}) = {m1;ms1}

So HJe1 in p1K denotes the functional semantics — that is, the whnf — of the Haskell expression
e1 in the context of the Haskell program p1.

3.5 Executability
Well, until now nothing was said about the executability of the semantic MEL theory EH given so
far. That is preregularity, ground termination, ground confluence and ground sort-decreasingness
of the theory respectively its induced rewriting system have to be established. Checking preregu-
larity is tedious but trivial. It turns out that the given theory EH provides a smallest codomain
sort for every operator symbol. Also checking sort-decreasingness is easy. As a matter of fact
sort-decreasingness is not only essential for executability but it is also desirable for readability as
it informally just means that functions has be given the “right” sort declaration. For example the
definition of unfold(·) : RecCl → Exp . This declaration truly states that unfold “applied” to
a recursive closure yields an expression. Yet if sort-decreasingness is not required this need not
be true. For example the semantics of MEL allows unfold — only regarding its declaration — to
“evaluate” a recursive closure to, say, a term of sort Exceptions as it is in the same connected
component as Exp. But of course Exceptions is not smaller than Exp w.r.t. the sort order,
hence such behaviour would destroy sort-decreasingness.
More interesting is the property of ground termination of the induced rewriting system. This

property is of course trivially given for the inductive definitions of functions on Haskell expressions
(fv, substitution application, predicates, . . .) as well as for simple shorthand definitions(fix, unfold,
. . .). On the other hand the transformation to whnf cannot be terminating for diverging Haskell
expressions. Hence it should not be a far too big surprise that the given theory does not induce
a ground terminating rewriting system. Too bad! Nevertheless it is terminating if we restrict the
treatment to expressions that are not diverging, where an Haskell expression e should be called
diverging if EH 0 FJeKwhnf : ExpUExc, i.e. the induced rewriting system does not terminate for
FJe1Kwhnf . But before the sarcastic reader bursts into applause because of this statement saying
that the rewriting system terminates if it terminates, it should be pointed out that this notion of
diverging expressions will be shown to coincide with the coinductively defined one of [MLJ99] in
the upcoming section.
Showing confluence is quite simple as almost all equational sentences preclude every other sen-

tences. There are exceptions like the overlapping of sentences seq and seq for the case that
EH ` FJe2Kwhnf : Exceptions. But as in this case all of those overlappings are non-critical as they
produce equal results or results that are joinable.

26 3 Functional Semantics

3.6 Relation to Existing Semantics
As already mentioned the semantics given here is inspired by the big step operational semantics
given in [MLJ99]. And a question might be: Are these two semantics equal in some sense? Well,
of course both semantics cannot be equal as the latter’s syntax comprises only a small subset of
the syntax considered here. Yet on the other side it introduces a primitive — the strict let — that
is not part of the rewrite semantics given here. In the following EH is used to denote the MEL
theory of the Haskell semantics developed in this section.
But, as it will turn out, the strict let and the seq can be mutually transformed, such that

the syntax in [MLJ99] can be seen as a subset of the syntax considered in this thesis. Thus for
examining the relation of these both semantics it is appropriate to restrict the considered syntax
to this fragment:

M,N ::= |x |λx.M |M N | let! x = M in N | seq M N | raise M | e
U, V ::= |x |λx.M | e

Where x ranges over variables and e over exceptions3. M and N describe expressions whereas
U and V describe values, i.e. whnfs. We will use these meta variables, possibly indexed and/or
primed, as ranging over the given domains. The same holds true for S, which will range over finite
sets of exceptions (that is, those referred to by e).
This is the full syntax introduced in [MLJ99] plus the additional seq. To be able to examine

this primitive a defining equation has to be given:

let! x = M in N := seq M N [M/x] (slet)

Where M [N/x] denotes the usual substitution of the free occurrences of the variable x by N
in M . The notion of free variables fv(M) is the usual one of lambda terms where strict lets are
treated like

fv(let! x = M in N) = (fv(N)\{x}) ∪ fv(M).

The following fact can be easily established by induction:

Fact 3.2. Let M ,N be arbitrary and x 6∈ fv(M). Then the following holds:

M [N/x] = M

Hence the following can be easily derived from equation (slet):

seq M N = let! x = M in N x 6∈ fv(N) (slet’)

The semantics was given in a different way than it was done here so far. The relation M ⇓ V
given again in figure 3.13 on the facing page was used to describe the convergence of the expression
M to the value V . On the other hand an exceptional convergence relation M ↑ e was defined
coinductively, hence including divergence. But as the executable rewrite semantics is limited to
converging programs the focus here is rather on the relation M ↗ S of exceptional convergence
for the expression M and the set of exceptions S given here again in figure 3.14 on the next page.
As stated in theorem 3.1 and lemma 3.2 in [MLJ99] these two relations describe exactly the

semantics of converging — that is, terminating — expressions. So they can be taken as the basis
for a comparison. All other expressions not (exceptionally) converging are diverging — in symbol
M ⇑ — and vice versa. Hence M 6⇑ holds if M (exceptionally) converges.
Unfortunately this semantics additionally introduced a new symbol 0 to define the semantics of

the strict let. If this additional symbol is in fact necessary the two semantics cannot be equal — at
least in the definition for seq / let!. But as it will turn out the additional symbol 0 is dispensable.
The following trivial fact stating that the value of an expression does not introduces new free

variables can easily be proven by induction.

Fact 3.3. Let M and V be expressions such that M ⇓ V and x 6∈ fv(M), then x 6∈ fv(V).
3In this treatment exceptions and exception expressions were confused, but in the context the meaning will be
clear.

3.6 Relation to Existing Semantics 27

V ⇓ V
(Value⇓)

M ⇓ λx.M ′ M ′[N/x] ⇓ V
M N ⇓ V

(App⇓)

M ⇓ U N [U/x] ⇓ V
let! x = M in N ⇓ V

(Strict Let⇓)

Fig. 3.13: Rules defining the convergence relation ⇓. From [MLJ99].

0↗ ∅
(Stuck↗)

M ⇓ e
M N ↗ { TypeError }

(App↗0)
M ↗ S N ⇓ V

M N ↗ S
(App↗1)

M ⇓ λx.M0 M0[N/x]↗ S
M N ↗ S

(App↗2)
M ↗ S1 N ↗ S2

M N ↗ S1 ∪ S2
(App↗3)

M ⇓ λx.N
raise M ↗ { TypeError }

(Raise↗0)
M ⇓ e

raise M ↗ {e}
(Raise↗1)

M ↗ S
raise M ↗ S

(Raise↗2)

M ↗ S N [0/x] ⇓ V
let! x = M in N ↗ S

(Strict Let↗1)
M ⇓ V N [V/x]↗ S
let! x = M in N ↗ S

(Strict Let↗2)

M ↗ S1 N [0/S2]↗
let! x = M in N ↗ S1 ∪ S2

(Strict Let↗3)

Fig. 3.14: Rules defining the exceptional convergence relation ↗. From [MLJ99].

28 3 Functional Semantics

This can be used to get the following:

Corollary 3.4. Let N be a closed expression and M [N/x] ⇓ λx.M0, then

M0
[
N ′[N′′/x]/y

]
= M0[N ′/y][N ′′/x]

Proof. As x 6∈ fv(M [N/x]) also x 6∈ fv(λx.M0) by fact 3.3. Hence x 6∈ fv(M0). Now the stated
equality can be easily proven by induction on M0.

In the following lots of inductive proofs are necessary which need of course a well-founded order.
The following proof tree orders will serve very well for this purpose:

Definition 3.5. M >⇓ N holds for two converging expressions M and N iff there are U and V
such that there is a rule in figure 3.13 having M ⇓ U as its consequence and N ⇓ V in its premise.
>↗ is defined analogously for the rules of ↗.

As proof trees for ⇓ and↗ for converging expressions are finite, both >⇓ and >↗ do not induce
infinite chains. Hence, assuming the axiom of choice, both are well-founded.
Now the following lemma states a kind of replacement invariance for expressions having the

same value in the context of expressions in the (exceptional) convergence relation.

Lemma 3.6. Let N and N ′ be expressions such that N ⇓ V ′ and N ′ ⇓ V ′ holds for some value
V ′. Then the following also holds true for all M , V , x and S:

(i) M [N/x] ⇓ V iff M [N ′/x] ⇓ V

(ii) M [N/x]↗ S iff M [N ′/x]↗ S

Proof. Straightforward inductions on M by >⇓ and >↗ respectively using corollary 3.4 for (i)
and using (i) for (ii).

The next lemma simply states that convergence of expressions is independent of non-converging
subexpressions. Note that M 6⇓ means that M 6⇓ V for all V , that is, M does not converge.

Lemma 3.7. Let N be an expression such that N 6⇓ and N ′ and x arbitrary. Then the following
holds:

if M [N/x] ⇓ V then M [N ′/x] ⇓ V

Proof. Straightforward induction on M by >⇓.

The following is then an immediate corollary of lemma 3.7:

Corollary 3.8. Let M be an expression such that M ↗ S for some set of exceptions S then the
following holds:

N [0/x] ⇓ V iff N [M/x] ⇓ V

A similar result can be proven for exceptional convergence:

Lemma 3.9. Let M be an expression such that M ↗ S1 for some set of exceptions S1, then there
are some sets of exceptions S2,S3 satisfying S2 ⊆ S3 ⊆ S1 ∪ S2 such that the following holds:

N [0/x]↗ S2 iff N [M/x]↗ S3

Proof. Again this is an easy proof by induction on N using >↗. As an example the argument for
the case N = M ′ N ′ is given below:

(M ′ N ′)[0/x]↗ S2

⇐⇒ (M ′[0/x]) (N ′[0/x])↗ S2 (subst.)

Here four different cases must be considered:

3.6 Relation to Existing Semantics 29

Case 1 (App↗0) M ′[0/x] ⇓ e, S2 = { TypeError }

⇐⇒ M ′[M/x] ⇓ e︸ ︷︷ ︸
(∗)

(cor. 3.8)

⇐⇒ (M ′[M/x]) (N ′[M/x])↗ { TypeError }, (∗) (App↗0)
⇐⇒ (M ′ N ′)[M/x]↗ { TypeError }, (∗) (subst.)

Hence: { TypeError } ⊆ { TypeError } ⊆ { TypeError } ∪ S1

Case 2 (App↗1) M ′[0/x]↗ S2, N ′[0/x] ⇓ V

⇐⇒ M ′[M/x]↗ S3, N ′[M/x] ⇓ V︸ ︷︷ ︸
(∗)

(I.H., cor. 3.8)

⇐⇒ (M ′[M/x]) (N ′[M/x])↗ S3, (∗) (App↗1)
⇐⇒ (M ′ N ′)[M/x]↗ S3, (∗) (subst.)

By the step using the I.H. we have: S2 ⊆ S3 ⊆ S1 ∪ S2.

Case 3 (App↗2) M ′[0/x] ⇓ λy.M0, M0[N ′[0/x]/y]↗ S2

⇐⇒ M ′[M/x] ⇓ λy.M0, M0[N ′/y][0/x]↗ S2 (cor. 3.8, cor. 3.4)
⇐⇒ M ′[M/x] ⇓ λy.M0, M0[N ′/y][M/x]↗ S3 (I.H.)
⇐⇒ M ′[M/x] ⇓ λy.M0, M0[N ′[M/x]/y]↗ S3︸ ︷︷ ︸

(∗)

(cor. 3.4)

⇐⇒ (M ′[M/x]) (N ′[M/x])↗ S3, (∗) (App↗2)
⇐⇒ (M ′ N ′)[M/x]↗ S3, (∗) (subst.)

By the step using the I.H. we have: S2 ⊆ S3 ⊆ S1 ∪ S2.

Case 4 (App↗3) M ′[0/x]↗ S, N ′[0/x]↗ S ′, S2 = S ∪ S ′

⇐⇒ M ′[M/x]↗ S ′′, N ′[M/x]↗ S ′′′︸ ︷︷ ︸
(∗)

(I.H.)

⇐⇒ (M ′[M/x]) (N ′[M/x])↗ S3 = S ′′ ∪ S ′′′, (∗) (App↗3)
⇐⇒ (M ′ N ′)[M/x]↗ S3, (∗) (subst.)

By the step using the I.H. we have both S ′ ⊆ S ′′′ ⊆ S1 ∪ S ′ and S ⊆ S ′′ ⊆ S1 ∪ S. By
monotonicity we get S ∪ S ′︸ ︷︷ ︸

=S2

⊆ S ′′ ∪ S ′′′︸ ︷︷ ︸
=S3

⊆ S1 ∪ S ∪ S ′︸ ︷︷ ︸
=S2

.

The (∗) has to be carried through the respective argument chains since otherwise they would
be only implications rather that equivalences. Checking the respective side conditions (∗) at the
end of each argument yields that they cover all cases. Hence also the ⇐ direction is proven.

The following lemma finally states that the additional element 0 can be omitted

Lemma 3.10. The set of rules in figure 3.14 is equivalent to the set of rules that is gained by
removing the rules (Stuck↗), (Strict Let↗1) and (Strict Let↗3) and adding the following rules:

M ↗ S N [M/x] ⇓ V
let! x = M in N ↗ S

(Strict Let′↗1)
M ↗ S1 N [M/x]↗ S ′2
let! x = M in N ↗ S1 ∪ S ′2

(Strict Let′↗3)

30 3 Functional Semantics

x = x (var)
λx.M = \x ->M (lambda)
M N = M N (app)

let! x = M in N = seq M N [M/x] (seq)
seq M N = seq M N (let!)
raise M = raise M (raise)

TypeError = TypeError (exc)
= 〈 TypeError 〉 (exc’)

{e1, . . . , en} = {e1, . . . , en} (excs)

Fig. 3.15: Defining equations for the translation into MEL terms.

Proof. By corollary 3.8 the premises of the rules (Strict Let↗1) and (Strict Let′↗1
) are equivalent.

The same holds true for the rules (Strict Let↗3) and (Strict Let′↗3
) by lemma 3.9. Yet, unlike

for (Strict Let↗1) and (Strict Let′↗1
), the consequences seem to be different, as S2 and S ′2 are

in general not equal. But also by lemma 3.9 the inclusions S2 ⊆ S ′2 ⊆ S1 ∪ S2 hold, which
implies by idempotency and monotonicity of the set union S1 ∪ S2 ⊆ S1 ∪ S ′2 ⊆ S1 ∪ S2. Hence
S1 ∪ S2 = S1 ∪ S ′2, which makes the respective consequences of (Strict Let↗3) and (Strict Let′↗3

)
equivalent. Consequently the rules (Strict Let′↗1

) and (Strict Let′↗3
) compensate for (Strict

Let↗1) and (Strict Let↗3), respectively. Since 0 is not referred by the remaining rules and as it
is not part of the desired syntax, the rule (Stuck↗) is dispensable.

Before comparing both semantics there is sill a problem to be solved. Until now there is no
connection neither between the Haskell expressions referred to by the variables M and N and the
MEL terms of sort Exp nor between sets of exceptions (i.e. those described by the variable e)
and MEL terms of sort Exceptions. Therefore an overloaded meta symbol · is introduced that
describes the MEL term correspondent to a Haskell expression or a set of exceptions respectively.
That is, EH ` M : Exp and EH ` S : Exceptions. The inductive definition of · is given in
figure 3.15.
Please note that strictly speaking · is not a well-defined function, as there is no unique image

for exceptions, which can be seen in the ambiguous definition of TypeError . The reason for this
is that in this treatment there was made a distinction between exceptions as a data type in Haskell
programs and exceptions as a denotation for Haskell expressions. This distinction was not made
in the semantic treatment that is referred to here. So we take the liberty of using the implicit
distinction that was assumed there and take the corresponding definition of e that fits into the
considered context. For example the identity (excs) in figure 3.15 refers to the latter, (exc’).
The following lemma relates (the informally introduced) substitutions on Haskell expressions to

the MEL defined application of simple substitutions and the union of sets to the union of sets of
exceptions as defined in EH .

Lemma 3.11.

(i) EH `M [N/x] = M [{x 7→ N}]

(ii) EH ` S ∪ S ′ = S ∪ S ′

Proof. (i) Straightforward induction on the structure of M .

(ii) Easy equational argument; in abbreviated form:

S ∪ S ′ finite sets= {e1, . . . , en} ∪ {e′1, . . . , e′m}
union= {e1, . . . , en, e′1, . . . , e′m}

excs= {e1, . . . , en, e′1, . . . , e′m}
· ∪ ·= {e1, . . . , en} ∪ {e′1, . . . , e′m}

excs= S ∪ S ′

3.6 Relation to Existing Semantics 31

Before considering the semantics it has to be verified that both sides agree upon their notion of
normal forms (or values).

Lemma 3.12.
∃V.M ≡ V iff EH `M ⇓whnf = true

Proof. Easy induction on the structure of M .

Note that ∃V.M ≡ V truly means that M is a value.
Finally the goal theorem can be stated.

Theorem 3.13. Let EH be the semantic MEL theory for pure Haskell. Then the following equiv-
alences hold true:

(i) M ⇓ V iff EH ` F
r
M
z

whnf = V

(ii) M ↗ S iff EH ` F
r
M
z

whnf = S

Proof. Using lemma 3.12 the statement (i) can be easily established by induction on >⇓ on M .
Using this result also (ii) can be proven by induction on >↗ on M . As an example the argument
for the the case M = let! x = M ′ in N ′ is given below:

let! x = M ′ in N ′ ↗ S

Here three different cases have to be considered:

Case 1 (Strict Let′↗1
) M ′ ↗ S, N ′[M ′/x] ⇓ V

⇐⇒ EH ` F
r
M ′

z
whnf = S, EH ` F

r
N ′[M ′/x]

z
whnf = V︸ ︷︷ ︸

(∗)

(I.H., (i))

⇐⇒ EH ` F
r
seq M ′ N ′[M ′/x]

z
whnf = S ∪ V , (∗) (seq)

⇐⇒ EH ` F
r
let! x = M ′ in N ′

z
whnf = S, (∗) (let!, excs∪exp)

Case 2 (Strict Let↗2) M ′ ⇓ V, N ′[V/x]↗ S

⇐⇒ M ′ ⇓ V, N ′[M ′/x]↗ S (lem. 3.6)

⇐⇒ EH ` F
r
M ′

z
whnf = V , EH ` F

r
N ′[M ′/x]

z
whnf = S︸ ︷︷ ︸

(∗)

((i), I.H.)

⇐⇒ EH ` F
r
seq M ′ (N ′[M ′/x])

z
whnf = S, (∗) (seq/seq)

⇐⇒ EH ` F
r
let! x = M ′ in N ′

z
whnf = S, (∗) (let!)

32 3 Functional Semantics

Case 3 (Strict Let↗3) M ′ ↗ S1, N ′[M ′/x]↗ S2, S = S1 ∪ S2

⇐⇒ EH ` F
r
M ′

z
whnf = S1, EH ` F

r
N ′[M ′/x]

z
whnf = S2, EH ` S = S1 ∪ S2︸ ︷︷ ︸

(∗)

(I.H., lemma 3.11)

⇐⇒ EH ` F
r
seq M ′ (N ′[M ′/x])

z
whnf = S1 ∪ S2, (∗) (seq)

⇐⇒ EH ` F
r
let! x = M ′ in N ′

z
whnf = S, (∗) (let!)

The (∗) has to be carried through the respective argument chains since otherwise they would
be only implications rather that equivalences. Checking the respective side conditions (∗) at the
end of each argument yields that all cases are covered. Hence also the ⇐ direction is proven.

The following is now an easy consequence of the previous theorem and the results in [MLJ99]
and states how diverging expressions are characterised by our semantics.

Corollary 3.14.
M ⇑ iff EH 0 F

r
M
z

whnf : ExpUExc

Proof.

M ⇑
⇐⇒ ∃e.M ↑ e, ¬∃S.M ↗ S (lem. 3.2 in [MLJ99])
⇐⇒ ¬∃V.M ⇓ V, ¬∃S.M ↗ S (lem. 3.1 in [MLJ99])

⇐⇒ ¬∃V. EH ` F
r
M
z

whnf = V , ¬∃S. EH ` F
r
M
z

whnf = S (thm. 3.13)

⇐⇒ EH 0 F
r
M
z

whnf : Exp, EH 0 F
r
M
z

whnf : Exceptions (lem. 3.1, 3.12)

⇐⇒ EH 0 F
r
M
z

whnf : ExpUExc

Yet, as discussed in section 3.5 EH is not executable for diverging Haskell expressions, that is,
in particular for all M for which M ⇑ holds. Hence — what should not be too surprising — EH
does not enable to decide divergence of Haskell expressions.

4 Concurrency Semantics
Now that the pure functional part of the semantic rewrite theory — which is actually just a MEL
theory EH so far — is complete, the Concurrent Haskell extension can be defined. The concurrent
extension discussed here is based on [MJMR01], where it is introduced in detail; so it will not be
necessary to get into too much detail about it here. Instead the focus is set on how to translate
the operational semantics given there into a rewrite theory. For this purpose we extend the MEL
theory EH of the previous section to the theory EC which introduces additional auxiliary functions
and also extends the functional semantics to include the small layer of functional semantics of the
Concurrent Haskell extension. On top of this the GRT RC will be presented that includes EC
and defines the concurrent part of the semantics of Concurrent Haskell. But firstly, as before, the
considered syntax has to be described.

4.1 Syntax of the Concurrent Extension
The concurrent extension for Haskell introduces the IO monad. All concurrency is done inside
this monad, that is, all primitives that are introduced have their result type in this monad. So the
syntactic extension spans only the concurrent primitives plus the monad operations. To allow to
present Concurrent Haskell programs more concisely also the do notation is included as syntactic
sugar.

DoAtom ::= Exp |Pat <- Exp
DoBlock ::= DoAtom |DoBlock ; DoAtom
ExPrim ::= putChar | getChar | putMVar | takeMVar | newEmptyMVar | sleep | return

| throw | catch | throwTo | block | unblock | myThreadId | forkIO

Primitive ::= . . . |ExPrim
BinOp ::= . . . | >>= | >>

Exp ::= . . . | do { DoBlock }

Formulating the syntax extension as an extension to the existing MEL theory is now quite
simple. The sorts DoAtom{dai}, DoBlock{dbi} and ExPrim{epi} corresponding to the syntax
variables mentioned above need to be introduced and defined as follows:

Exp < DoAtom < DoBlock
ExPrim < Primitive

· <- · : Pat Exp → DoAtom
· ; · : DoBlock DoBlock → DoBlock

do { · } : DoBlock → Exp
p : ExPrim (p ∈ ExPrim)

Please note, that, since by extending the bnf syntax definition as above in particular also the
syntactic category of BinOp was extended by >>= and >> , the operator declarations and MEL
sentences (meta-)quantified over the set BinOp automatically yield the corresponding operator
declarations and MEL sentences (free variables, substitution application) for these two operators.

33

34 4 Concurrency Semantics

4.2 Semantics of the Concurrent Extension
The approach taken here to describe the concurrent semantics is nearly the same as the one intro-
duced in [MJMR01]. So the plan is to develop a equationally defined sort of program states and
to define transitions between them by rewrite sentences. Please observe the conceptual difference
of this use of MEL to the one applied for defining pure Haskell’s semantics. There, MEL was
primarily used to define functions1.
Now we will see how equality can be used to enable rewriting on a particular structure. Due to

the rule (Eq) of the GRL semantics rewriting is done modulo the equational theory. That is, we
can define structural properties by MEL and then exploit them when defining rewriting sentences.
For example if we would consider a structure that should represent a finite set of some elements,
say, natural numbers, we would define associativity, commutativity and idempotency sentences in
MEL. Furthermore let us assume that we want to rewrite such a set by choosing an element of
particular shape, say, even natural numbers to their successor. Now we can assume w.l.o.g. that
such an element is at the first position of the set, because if it were not it could be move to the
first position by using the equational sentence establishing commutativity. Hence the following
rewrite sentence would have the desired semantics:

even(n1) = true
{n1, rest1} −→ {s(n1), rest1}

By using the MEL defined equality stating the commutativity, we could derive a rewrite that is
done somewere in the middle of the set:

{1, 2, 4, 9, 10} −→ {1, 2, 5, 9, 10}

as {1, 2, 4, 9, 10} is equal to {4, 1, 2, 9, 10} which can be rewritten to {s(4), 1, 2, 9, 10} which is in
turn equal to {1, 2, 5, 9, 10}. Please observe the different kinds of referring to the MEL subtheory in
this example: Firstly, an implicit one by the (Eq) rule of GRL’s semantics, which was mentioned
above, and secondly, an explicit one by incorporating an equational condition in the rewriting
sentence, in the example that was even(n1) = true. But note that the implicit referring is not
restricted to structural equalities; it is essential when equationally defined functions are used in
the right-hand side term of the rewrite sentence like the use of s(n1) in the example2.
To describe program states a modular technique presented in [MB03] is used here. Particularly

the extensible record structures introduced there will be used in the following.
For this purpose a rewrite theory RRec outside our semantic theory RC defined so far will be

given, describing this record structures so that we can include this theory later into RC several
times. The theory RRec is given in figure 4.1 on the next page; it also assumes the presence of the
sort Bool.
So a record structure is a set containing fields each of which consists of an index describing the

kind of data it represents and a component, the actual data. As the sort of fields can be freely
extended by defining a constant of sort Index and adding a sort to its component by a simple
membership sentence, the sort Record is highly extensible. Moreover sentences that only use a
certain set of those fields keep their meaning — if properly defined — also for an extended set
of fields, such that language features can be easily added without touching the sentences already
given for the original language.

1Well, actually there were also some structural equational sentences, like those defining lists of expressions asso-
ciative, or — implicitly assumed — associativity, commutativity and idempotency for sets, or something more
differently the respective equalities of trivial lambda abstractions and trivial defined matches (i.e. those having
an empty list of argument patterns). Nevertheless those structural equalities are just introduced to make the
equational function definitions more concise. Hence there are on the same level, that is, MEL.

2In the general case this would also apply to equationally defined function symbols used in the left-hand side term.
But note that this would immediately destroy the coherence of the theory if no additional rewrite sentence is
added which covers the result of the function used on the left-hand side. But this would make the first rewrite
sentence, that contains the function symbol, redundant. Hence for executability this scenario does not occur.

4.2 Semantics of the Concurrent Extension 35

Sorts: Index{ini},Component{coi},Field,PreRecord{pri},Record

Field < PreRecord

null : PreRecord
· · : PreRecord PreRecord → PreRecord
· : · : [Index] [Component] → [Field]
{ · } : [PreRecord] → [Record]

duplicated? : PreRecord → Bool

pr1 (pr2 pr3) = (pr1 pr2) pr3
assoc

pr1 pr2 = pr2 pr1
comm

pr1 null = pr1
id

duplicated?((in1 : co1) (i1 : co2) pr1) = true
dup1

otherwise
duplicated?(pr1) = false

dup2

¬duplicated?(pr1) = true
{pr1} : Record

rec

Fig. 4.1: Definition of RRec, the theory of a record structure.

So let us switch back to our original theory RC . The program state can now be defined as a
record structure by including the theory RRec with the following renamings:

PreRecord 7→ PreState{psi},
Record 7→ State{si},

Field 7→ SField{sfi},
Component 7→ SComp{scoi},

Index 7→ SIndex{sii}
{ · } 7→ {| · |}

Now the state record structure needs to be populated with appropriate fields necessary to define
the semantics. At first two fields are needed for representing the output and input of a program.
The necessary definitions are given in figures 4.2 and 4.3 on the following page.
Note that incorporating input and output into the program state departs our notion of states

from the one used in [MJMR01] where this was considered as an external behaviour. So the states
defined here somewhat extend the notion of a program state to a state of the hole computational
environment. For both input and output there are functions hasNext respectively full to check
whether the corresponding facility can be used, i.e. whether the input is nonempty respectively
the output is not full. For the current design of the output facility this consideration is not
necessary as an unbounded output buffer is described. Yet as we aim for a general abstract
description of input and output this is included, such that for later language designs this can be
used to define different behaviour or if for example the output of one program should be connected
to the input of another program this connection could be made synchronised using an alternative
output structure.

36 4 Concurrency Semantics

Sorts: Inp{inpi}

Inp < SComp

in : SIndex
〈 · 〉I : String → Inp

hasNext(·) : Inp → Bool
getNext(·) : [Inp] → [CharConst]

skip(·) : [Inp] → [Inp]

(in : inp1) : SField
field

hasNext(〈str1〉I) = length(str1) > 0
next?

length(str1) > 0
getNext(〈varstr1〉I) = fromChar(substr(str1, 0, 1))

next

length(str1) > 0
skip(〈str1〉I) = 〈substr(str1, 0, length(str1)− 1)〉I

skip

Fig. 4.2: Definitions for the input field.

Sorts: Out{outi}

Out < SComp

out : SIndex
〈 · 〉O : String → Out
〈〉O : Out

full(·) : Out → Bool
· ← · : [Out] [CharExp] → [Out]

(out : out1) : SField
field

〈〉O = 〈””〉O
empty

〈str1〉O ← cc1 = 〈str1 + toChar(cc1)〉O
put

full(out1) = false
full

Fig. 4.3: Definitions for the output field.

4.2 Semantics of the Concurrent Extension 37

Threads, being the entities where the actual computation takes place, can be easily defined using
the record structure. It is included in the semantic theory RC under the following renamings:

PreRecord 7→ PreThread{prti},
Record 7→ Thread{ti},

Field 7→ TField{tfi},
Component 7→ TComp{tci},

Index 7→ TIndex,
{ · } 7→ (·)

A thread basically consist only of an expression that indicates the state of the computation.
The termination of a thread should be indicated by an “empty” expression. To be able to express
this a supersort Content is needed:

Exp < Content
ε : Content

Well, actually a thread is a bit more complex of course. Additionally an identifier for threads
is needed. As this is also supposed to be used as an abstract data type for Haskell programs the
sort ThreadId{tid1} of thread ids has to be made a subsort of Exp. But not directly; since the
same has to be done for MVars later, a sort ExCtor{ect1} is introduced, making the necessary
definitions shorter.
Yet aren’t we confusing syntactic entities with their semantic counterparts? In this case, no. As

thread ids are only used as abstract data types in Haskell, that is there are only accessor primitives
(like throwTo) and creator primitives (like myThreadId) that enable interacting with them, they
are merely metasyntactical entities like defined matches of the functional semantics. Hence there
is no need for an explicit discrimination between syntactic thread ids and semantic thread ids as
this was done for strings, integers etc.:

ThreadId < ExCtor
〈 · 〉Th : Nat → ThreadId

The needed additional equational sentences for substitution application and free variables are
trivial:

ect1[s1] = ect1 fv(ect1) = ∅

Moreover it is necessary to have defined a sort Flag{fli} to indicate whether a thread is stuck:

yes, no : Flag

Now the still empty thread record structure is going to be filled introducing the sort
ThreadCont{tci} as a supersort of Content. Additionally a function symbol is introduced
that constructs threads:

Content < ThreadCont < TComp
ThreadId,Flag < TComp.

tid, val, stuck : TIndex
(·) · : ThreadCont ThreadId → Thread

38 4 Concurrency Semantics

(tid : ti1) : TField
id

(val : tc1) : TField
val

(stuck : fl1) : TField
stuck

(tc1)ti1= (val : tc1 tid : ti1 stuck : no)
new

Note that (·) · is more than just a shortcut. As the record structure can be extended to contain
additional elements for later language revisions, using the explicit construction in the semantic
rules would force us to change them if the thread record structure is extended to include all newly
introduced elements. With this design only the definition of (·) · has to be changed.
Of course also MVars need an identifier. Therefore the sort MVarId{mii} is introduced. The

discussion for thread ids regarding its status in the Haskell syntax also holds true for MVar ids.
Hence:

MVarId < ExCtor
〈 · 〉MV : Nat → MVarId

For the representation of MVars pretty much the same is done as for threads. At first the record
structure is included under the following renamings:

PreRecord 7→ PreMVar{pmi},
Record 7→MVar{mi},

Field 7→MField,
Component 7→MComp,

Index 7→MIndex,
{ · } 7→ 〈 · 〉

Introducing the sort MVarCont{mci} for the its content, analogously to ThreadCont for
threads, the MVar record structure is populated:

Content < MVarCont < MComp
MVarId < MComp

mid, cont : MIndex
〈 · 〉 · : MVarCont MVarId → MVar
〈〉 · : MVarId → MVar

(mid : mi1) : MField
id

(cont : mc1) : MField
cont

〈mc1〉mi1 = 〈cont : mc1 mid : mi1〉
new1

〈〉mi1 = 〈ε〉mi1

new2

The next ingredients are the asynchronous exceptions, which are syntactically just a pair con-
sisting of an ordinary exception expression and the target thread’s id. So here are the necessary
definitions for the corresponding sort AException{aei}:

^ · · _ : ThreadId ExcExp → AException
tgt(·) : AException → ThreadId
exc(·) : AException → ExcExp

tgt(^ti1 ee1_) = ti1
tgt

exc(^ti1 ee1_) = ee1
exc

Now, almost similar to the original treatment in [MJMR01], threads, MVars and asynchronous
exceptions are taken as process like entities and are put into a pool of parallel processes. Therefore
the sorts ProcPool{ppi} and Proc{pci} are introduced:

4.2 Semantics of the Concurrent Extension 39

〈 · 〉ThGen : Nat → ThreadIdGen
〈 · 〉MVGen : Nat → MVarIdGen

newThreadIdGen : ThreadIdGen
newMVarIdGen : MVarIdGen

mainThreadId?(·) : ThreadId → Bool
mainThreadId : ThreadId

currentId · : MVarIdGen → MVarId
nextGen · : MVarIdGen → MVarIdGen

currentId · : ThreadIdGen → ThreadId
nextGen · : ThreadIdGen → ThreadIdGen

newThreadIdGen = 〈1〉ThGen
newTh

newMVarIdGen = 〈1〉MVGen
newMV

mainThreadId?(〈n1〉Th) = (n1 = 0)
main?

mainThreadId = 〈0〉Th
main

currentId〈n1〉ThGen = 〈n1〉Th
thId

currentId〈n1〉MVGen = 〈n1〉MV
mvId

currentId〈n1〉ThGen = 〈n1 + 1〉Th
thGen

currentId〈n1〉MVGen = 〈n1 + 1〉MV
mvGen

Fig. 4.4: Equational definition of id generators.

Thread,MVar,AException < Proc < ProcPool

null : ProcPool
· | · : ProcPool ProcPool → ProcPool

pp1 | (pp2 | pp3) = (pp1 | pp2) | pp3
assoc

pp1 | pp2 = pp2 | pp1
comm

pp1 | null = pp1
id

This pool of processes can now be made part of the state record structure:

ProcPool < SComp

pool : SIndex

(pool : pp1) : SField
pool

Unfortunately the original approach in [MJMR01] of producing fresh thread and MVar ids by
the use of a restriction operator can not be taken here. Though it is expressible in MEL it would
yield a non-executable theory. Hence a different approach is taken involving generators (sorts
ThreadIdGen{tgi} and MVarIdGen{mgi}) that produce fresh ids. The necessary definitions
are given in figure 4.4.
Both thread id and MVar id generator can be made fields of the state record structure now:

ThreadIdGen,MVarIdGen < SComp

tgen,mgen : SIndex

40 4 Concurrency Semantics

(tgen : tg1) : SField
tgen

(mgen : mg1) : SField
mgen

Finally the initial state being dependent on the Haskell program has to be defined:

CJ · K(·) : Program String → State
CJ · in · K(·) : Exp Program String → State

CJe1 in pr1K(str1) = {| in : 〈str1〉I out : 〈〉O tgen : newThreadIdGen
mgen : newMVarIdGen pool : (HJ unblock e1 in pr1K)mainThreadId |}

CJpr1K(str1) = CJ main in pr1K(str1)

Before translating the transitions in [MJMR01] into rewrite sentences the definition for the
normal forms of Haskell expressions must be extended to include the new primitives. That is the
small layer of functional semantics that is needed for the Concurrent Haskell extension. Therefore
we have to distinguish between the theory EH presented in section 3 and the extended theory EC
presented in this section.
Of course as for the functional primitives partially applied concurrent primitives are in normal

form. Hence the syntactic category of BinPrim has to be extended:

BinPrim ::= . . . | putMVar | catch | throwTo

Furthermore, as they cannot be further evaluated, primitives applied to arguments of the “right
type” are also considered to be in normal form:

MVarId ::= . . . (cf. MEL signature)
ThreadId ::= . . . (cf. MEL signature)

ExcExp ::= . . . (cf. MEL signature)
ExCtor ::= . . . |MVarId |ThreadId
AtExp ::= . . . |ExCtor

Whnf ,Chnf ::= . . . | return Exp | putChar Char | sleep Int | putMVar MVarId Exp
| takeMVar MVarId | forkIO Exp | throw ExcExp | catch Exp Exp
| block Exp | unblock Exp |Exp >>= Exp

Consequently corresponding equational sentences have to be added for the normal form predicate
· ⇓ · 3. But note that to keep the theory preregular one has to be carefull when trying to translate
the syntactic variable BinPrim into a MEL sort. The best way to do this is to split it up into a sort
FuncBinPrim (as a subsort of FuncPrim) and a sort ExBinPrim (as a subsort of ExPrim)
and to make those two sorts subsorts of BinPrim.
All other additional expressions being not in normal form have to be considered by FJ · K · , hence

the additional sentences given in figure 4.5 on the facing page are needed.
Yet the do notation is missing. But as already mentioned, this is considered syntactic sugar

only. Hence for their definition it suffices to give the equivalent un-sugared expression for it:

do { e1 } = e1
exp

do { e1 ; db1 } = e1 >> do { db1 }
exp’

do { pt1 <- e1 } = e1 >>= (\ pt1 -> return ())
assign

do { pt1 <- e1 ; db1 } = e1 >>= (\ pt1 -> do { db1 })
assign’

3Of course whnf and chnf share all these additional sentences.

4.2 Semantics of the Concurrent Extension 41

FJe1 >> e2Knt1 = e1 >>= _ -> e2
bind

FJe1Kwhnf = cc1

FJ putChar e1Knt1 = putChar cc1
putChar

FJe1Kwhnf = ecs1

FJ putChar e1Knt1 = ecs1
putChar

FJe1Kwhnf = mi1
FJ putMVar e1 e2Knt1 = putMVar mi1 e2

putMVar

FJe1Kwhnf = ecs1

FJ putMVar e1 e2Knt1 = ecs1
putMVar

FJe1Kwhnf = mi1
FJ takeMVar e1Knt1 = takeMVar mi1

takeMVar
FJe1Kwhnf = ecs1

FJ takeMVar e1Knt1 = ecs1
takeMVar

FJe1Kwhnf = ic1

FJ sleep e1Knt1 = sleep ic1
sleep

FJe1Kwhnf = ecs1

FJ sleep e1Knt1 = ecs1
sleep

FJe1Kwhnf = ece1

FJ throw e1Knt1 = throw ece1
throw

FJe1Kwhnf = ecs1

FJ throw e1Knt1 = ecs1
throw

FJe1Kwhnf = ti1 FJe2Kwhnf = ece1

FJ throwTo e1e2Knt1 = throwTo ti1ece1
throwTo

FJe1Kwhnf ∪ FJe2Kwhnf = ecs1

FJ throwTo e1e2Knt1 = ecs1
throwTo

Fig. 4.5: Definitions for functional semantics of concurrent primitives.

Moreover the definition of evaluation contexts both in its E and F flavour have to be translated
into MEL sentences. The original definition was:

F ::= [·] |F >>=M | catch F H

E ::= F |F [block E] |F [unblock E]

Unfortunately this cannot be translated directly into an executable theory. Yet a more opera-
tional approach is definable. That is, functions getting subexpressions from such evaluation con-
texts and respective functions that replace expressions in that context. But still there is a problem,
since the expressions considered in evaluation contexts itselves may contain >>= , catch , block
or unblock such that there is a necessity for constants describing whether and which of such
expression is considered. Therefore the sort ContPat{cpi} is introduced containing these con-
stants, where the abbreviations c , b , u , t and r are used to denote catch , block , unblock ,
throw and return , respectively:

none, r/>>= , t/>>= , c/r , c/t , b/r , b/t , u/r , u/t : ContPat

Of course it has to be defined which particular expression patterns4 each single constant that is
introduced above actually represents:

· ∈ [·] : Exp ContPat → Bool

4These expression patterns have nothing to do with the patterns used for Haskell’s pattern matching feature.

42 4 Concurrency Semantics

return e1 >>= e2 ∈ [r/>>=] = true
r/>>=

throw e1 >>= e2 ∈ [t/>>=] = true
t/>>=

catch (return e1)e2 ∈ [c/r] = true
c/r

block (return e1) ∈ [b/r] = true
b/r

block (throw e1) ∈ [b/t] = true
b/t

unblock (return e1) ∈ [u/r] = true
u/r

unblock (throw e1) ∈ [u/t] = true
u/t

otherwise
e1 ∈ [cp1] = false

fail

Where e1 ∈ [cp1] is supposed to be understood as “e1 is of the form cp1”.
Now we are able to describe the E context by the two symbols E·, for retrieving, and

E[·](· ← ·), for replacing expressions in E contexts. The necessary operator declarations and
equational sentences are given in figure 4.6.

E· : ContPat Exp → Exp
E[·](· ← ·) : ContPat Exp Exp → Exp

otherwise
E[cp1](e1) = e1

E match

e1 = block e2
e1 ∈ [cp1] = false

E[cp1](e1) = E[cp1](e2)
E block

e1 = unblock e2
e1 ∈ [cp1] = false

E[cp1](e1) = E[cp1](e2)
E unblock

e1 = e2 >>= e3
e1 ∈ [cp1] = false

E[cp1](e1) = E[cp1](e2)
E bind

e1 = catch e2 e3
e1 ∈ [cp1] = false

E[cp1](e1) = E[cp1](e2)
E catch

otherwise
E[cp1](e1 ← e2) = e2

E←match

e1 = block e3 e1 ∈ [cp1] = false
E[cp1](e1 ← e2) = block E[cp1](e3 ← e2)

E←block

e1 = unblock e3 e1 ∈ [cp1] = false
E[cp1](e1 ← e2) = unblock E[cp1](e3 ← e2)

E←unblock

e1 = e3 >>= e4 e1 ∈ [cp1] = false
E[cp1](e1 ← e2) = E[cp1](e3 ← e2) >>= e4

E←bind

e1 = catch e3 e4 e1 ∈ [cp1] = false
E[cp1](e1 ← e2) = catch E[cp1](e3 ← e2) e4

E←catch

Fig. 4.6: Operational definition of E contexts.

The following definitions merely introduce a shortcut for using the none pattern constant.

E(·) : Exp → Exp
E(· ← ·) : Exp Exp → Exp

E(e1) = E[none](e1)
E

E(e1 ← e2) = E[none](e1 ← e2)
E←

4.2 Semantics of the Concurrent Extension 43

F(·) : Exp → Exp
F(· ← ·) : Exp Exp → Exp

otherwise
F(e1) = e1

F def
F(e1 >>= e2) = F(e1)

F bind
F(catch e1 e2) = F(e1)

F catch

otherwise
F(e1 ← e2) = e2

F←def
F(e1 >>= e2 ← e3) = F(e1 ← e3) >>= e2

F←bind

F(catch e1 e2 ← e3) = catch F(e1 ← e3) e2
F←catch

Fig. 4.7: Operational definition of F contexts.

Similarly but in detail differently F contexts are defined in figure 4.7. In this particular case it
can be forbeared from considering special expression that include >>= , catch as such expressions
will not be used in these contexts by the transition system.
The definition of F contexts is merely for defining E [unblock F] contexts that will be used by

the transition system directly. Hence a MEL definition of these contexts is necessary, too. This is
also done operationally by defining an operational U context in figure 4.8 on the next page.
Apart from evaluation contexts there is a auxiliary predicate needed to determine whether an

expression has the block primitive as its head element:

blockHead? : Exp → Bool

blockHead?(block e1) = true
otherwise

blockHead?(e1) = false

Finally all preparations are made to give the rewrite sentences that describe the transition
system of the original operational semantics. They are given in figures 4.9 and 4.10 on pages 45 ff.
These are exactly those rewrite sentences RC that together with the MEL theory EC = (ΩC , EC)
constitute the desired GRT EC = (ΩC , EC , RC) of the semantics of Concurrent Haskell.
There are several differences compared to the original operational semantics. The first and

most obvious difference is that some rewrites only consider a subterm of the State term. Yet
by (Cong) of the rewriting logic semantics they still apply to a full State term. But still there
is a subtlety of this subterm rewrites that is typical for rewriting logic. The (Nested Repl) rule
enables parallel rewriting provided the individual rewrites are independent. This behaviour —
coined true concurrency — is possible for example for the sentence (Bind) in conjunction with
any other sentences including itself.
Another more obvious difference is the fact that the original operational semantics is a small

step semantics. The rewrite semantics on the other hand is by the (Trans) rule of the semantics
of rewriting logic a big step semantics. This could be avoided by using the idea of [ŞRM07, MB03]
of introducing operators that are wrapped around the state terms to make the rewrite sentences
asymmetric and hence prevent transitivity. But since this would destroy true concurrency and is
more importantly not necessary as the transition system is completely shallow5, that is transitions
are not used as a condition for another transition, this approach is not taken.

5Actually there are structural rules in the original SOS but there are compensated by equational rules and RL’s
semantics, that is the rules (Cong, Eq).

44 4 Concurrency Semantics

U(·) : [Exp] → [Exp]
U(· ← ·) : [Exp] [Exp] → [Exp]

U(e1 >>= e2) = U(e1)
U bind

U(catch e1 e2) = U(e1)
U catch

U(block e1) = U(e1)
U block

U(e1) = e2

U(unblock e1) = e2
U unblock

otherwise
U(unblock e1) = F(e1)

U match

U(e1 >>= e2 ← e3) = U(e1 ← e3) >>= e2
U←bind

U(catch e1 e2 ← e3) = catch U(e1 ← e3) e2
U←catch

U(block e1 ← e3) = block U(e1 ← e3)
U←block

U(e1 ← e2) = e3

U(unblock e1 ← e2) = unblock e3
U←unblock

otherwise
U(unblock e1 ← e2) = unblock F(e1 ← e2)

U←match

Fig. 4.8: Operational definition of E [unblock F] contexts.

4.2 Semantics of the Concurrent Extension 45

E(e1) = putChar cc1 E(e1 ← return ()) = e2 ¬full(out1) = true
pool : (val : e1 stuck : fl1 prt1) | pp1 out : out1

pool : (val : e2 stuck : no prt1) | pp1 out : out1 ← cc1
−−→

PutChar

E(e1) = getChar hasNext(inp1) = true
E(e1 ← return fromChar(getNext(inp1))) = e2

pool : (val : e1 stuck : fl1 prt1) | pp1 in : inp1

pool : (val : e2 stuck : no prt1) | pp1 in : skip(inp1)−−→
GetChar

E(e1) = sleep ic1 E(e1 ← return ()) = e2

val : e1 stuck : fl1 −→ val : e2 stuck : no
Sleep

E(e1) = putMVar mi1 e3 E(e1 ← return ()) = e2

(val : e1 stuck : fl1 prt1) | 〈cont : ε mid : mi1 pm1〉
(val : e2 stuck : no prt1) | 〈cont : e3 mid : mi1 pm1〉
−−→

PutMVar

E(e1) = takeMVar mi1 E(e1 ← return e3) = e2

(val : e1 stuck : fl1 prt1) | 〈cont : e3 mid : mi1 pm1〉

(val : e2 stuck : no prt1) | 〈cont : ε mid : mi1 pm1〉
−−→

TakeMVar

E(e1) = newEmptyMVar currentId(mg1) = mi1
E(e1 ← return mi1) = e2

pool : (val : e1 prt1) | pp1 mgen : mg1

pool : (val : e2 prt1) | 〈〉mi1 | pp1 mgen : nextGen(mg1)−−→
NewMVar

E(e1) = forkIO e3 currentId(tg1) = ti1 E(e1 ← return ti1) = e2

pool : (val : e1 prt1) | pp1 tgen : tg1

pool : (val : e2 prt1) | (unblock e3)ti1 | pp1 tgen : nextGen(tg1)−−→
Fork

E(e1) = myThreadId E(e1 ← return ti1) = e2

val : e1 tid : ti1 −→ val : e2 tid : ti1
ThreadId

E[t/>>=](e1) = (throw ece1) >>= e3 E[t/>>=](e1 ← throw ece1) = e2

val : e1 −→ val : e2
Propagate

E[c/r](e1) = catch (return e3)e4 E[c/r](e1 ← return e3) = e2

val : e1 −→ val : e2
Catch

E[c/t](e1) = catch (throw ecs1)e3 E[c/t](e1 ← e3 ecs1) = e2

val : e1 −→ val : e2
Handle

val : return e1 −→ val : ε
Return GC

val : throw ece1 −→ val : ε
Throw GC

mainThreadId?(ti1) = true
(val : ε tid : ti1 prt1) | pc1 −→ (val : ε tid : ti1 prt1)

Proc GC

Fig. 4.9: Rewrite sentences describing the concurrency semantics (1).

46 4 Concurrency Semantics

E[r/>>=](e1) = (return e3) >>= e4 E[r/>>=](e1 ← e4 e3) = e2

val : e1 −→ val : e2
Bind

E(e1) = e3 ¬e3 ⇓whnf = true FJe3Kwhnf = e4 E(e1 ← e4) = e2

val : e1 −→ val : e2
Eval

E(e1) = e3 FJe3Kwhnf = {ec1; pecs1} E(e1 ← throw exp(ec1)) = e2

val : e1 −→ val : e2
Raise

E[b/r](e1) = block (return e3) E[b/r](e1 ← return e3) = e2

val : e1 −→ val : e2
Block Return

E[u/r](e1) = unblock (return e3) E[u/r](e1 ← return e3) = e2

val : e1 −→ val : e2
Unblock Return

E[b/t](e1) = block (throw ece1) E[b/r](e1 ← throw ece1) = e2

val : e1 −→ val : e2
Block Throw

E[u/t](e1) = unblock (throw ece1) E[u/r](e1 ← throw ece1) = e2

val : e1 −→ val : e2
Unblock Throw

E(e1) = throwTo ti1 ece1 E(e1 ← return ()) = e2

(val : e1 prt1) −→ (val : e2 prt1) | ^ti1 ece1_
ThrowTo

U(e1) = e3 ¬blockHead?(e3) = true
tgt(ae1) = ti1 U(e1 ← throw exc(ae1)) = e2

(val : e1 tid : ti1 prt1) | ae1 −→ (val : e2 tid : ti1 prt1)
Receive

E(e1) = e3 tgt(ae1) = ti1 E(e1 ← throw exc(ae1)) = e2

(val : e1 stuck : yes tid : ti1 prt1) | ^ti1 ece1_

(val : e2 stuck : no tid : ti1 prt1)
−−→

Interrupt

E(e1) = putChar cc1

val : e1 stuck : no −→ val : e1 stuck : yes
Stuck PutChar

E(e1) = getChar
val : e1 stuck : no −→ val : e1 stuck : yes

Stuck GetChar

E(e1) = sleep ic1

val : e1 stuck : no −→ val : e1 stuck : yes
Stuck Sleep

E(e1) = putMVar mi1 e3

(val : e1 stuck : no prt1) | 〈cont : e2 mid : mi1 pm1〉
(val : e1 stuck : yes prt1) | 〈cont : e2 mid : mi1 pm1〉
−−−→

Stuck PutMVar

E(e1) = takeMVar mi1
(val : e1 stuck : no prt1) | 〈cont : ε mid : mi1 pm1〉
(val : e1 stuck : yes prt1) | 〈cont : ε mid : mi1 pm1〉
−−→

Stuck TakeMVar

Fig. 4.10: Rewrite sentences describing the concurrency semantics (2).

4.3 Relation to Existing Semantics 47

4.3 Relation to Existing Semantics
As the semantics given in the previous section is almost only a simple transformation of the
operational semantics in [MJMR01] it should be easy to show their equivalence. But as a matter
of fact as already mentioned the the previous section they are — in a strict sense — not equivalent.
Yet in a slightly weaker sense they are.
Now we have to consider an extended syntax including the primitives of Concurrent Haskell:

M,N ::= | . . . (cf.previousdefinition)
| ch | d |m | t
|M >>= N | return | throw | putChar | . . .

U, V ::= | . . . (cf.previousdefinition)
| ch | d |m | t
| return M |M >>= N | throw e | putChar ch | getChar | putMVar m M | takeMVar m
| newEmptyMVar | sleep d | catch M N | throwTo t e | block M | unblock | forkIO M

|myThreadId

where ch ranges over the set of characters, d over Z, m over the set of MVar ids MVar and t over
the set of thread ids Thread. We assume that both sets MVar and Thread are countably infinite.
To be able to relate both semantics the translation symbol · has to be extended to cover the

syntax extension as well:

M >>= N = M >>=M (bind)
catch M N = catch M M (catch)
block M N = block M M (block)

unblock M N = unblock M M (unblock)
. . .

For the special constants the choice for · is quite obvious: Let intConst : N→ TΣ[IntConst] be the
mapping that maps every integer to the corresponding term of sort IntConst. Moreover let both
mInd : MVar →N and tInd : Thread →N be arbitrary but fixed bĳections (which exist as MVar
and Thread are countably infinite). Then define d = intConst(d); m = 〈intConst(mInd(m))〉MV
and t = 〈intConst(tInd(t))〉Th. Furthermore let ch be defined as the corresponding term of sort
CharConst.
Of course also the operational MEL definitions of evaluation contexts, that is in particular E

and U, have to match their original inductive definition E and E [unblock F]. To prove this, some
lemmas have to be established.
The following lemma, being prototypical for the upcoming lemmas, states that E skips

F [block [·]] and F [unblock [·]] contexts:

Lemma 4.1. Let M and N be arbitrary Haskell expressions and B ∈ {block, block}. Then the
following holds:

(i) EC ` E(F [B M]) = E(M)

(ii) EC ` E(F [B M]← N) = F [B M ′] where M ′ = E(M ← N)

Proof. The proof of both statements is an easy induction on the structure of F. The proofs for
B = block and B = unblock are virtually identical. In the following the first case is treated.
Pleas note that in this as well as in the upcoming proofs (meta-)syntactical equalities for example
induced by · and MEL equalities are mixed in the argument chain for the sake of brevity of the
presentation. Nevertheless, as the equalities are justified by giving the equation that was used
both qualities of equalities are kept distinguishable.

48 4 Concurrency Semantics

(i) Case 1 F = [·]

E(block M) block= E(block M) E block= E(M)

Case 2 F = F′ >>= M ′

E(F′[block M] >>= M ′) bind= E(F′[block M] >>=M ′) E bind= E(F′[block M]) I.H.= E(M)

Case 3 F = catch F′ M ′ Analogously to case 2.

(ii) Analogously to (i).

Using this the the following essential property of the operational E contexts can be established.
Please note the restriction on the argument expression.

Lemma 4.2. Let M be an expression not having >>=, catch, block or unblock as the head
symbol (i.e. M is not of the form M ′ >>= N ′, catch M ′ N ′, block M ′ or unblock M ′ for some
expressions M ′, N ′) and N an arbitrary Haskell expression. Then the following holds:

(i) EC ` E(E [M]) = M

(ii) EC ` E(E [M]← N) = E [N]

Proof. Both statements can be easily proven by induction on the structure of E and F:

(i) Case 1 E = F induction on F

Case 1.1 F = [·] Here the restriction on the form of M is used.

E(M) E match= M

Case 1.2 F = F′ >>= N

E(F′[M] >>= N) bind= E(F′[M] >>=N) E bind= E(F′[M]) I.H.= M

Case 1.3 F = catch F′ N Analogously to case 1.2.
Case 2 E = F [B E′] for B ∈ {block, unblock}

E(F [B E′[M]]) lemma 4.1= E(E′[M]) I.H.= M

(ii) Analogously to (i).

To include >>=, catch, block or unblock in the argument expression a more specific version
using ContPat is needed. Hence there is a similar lemma for each constant of ContPat, e.g. for
r/>>= :

Lemma 4.3. Let M , M ′ and N be arbitrary Haskell expressions. Then the following holds

(i) EC ` E[r/>>=](E [return M >>= M ′]) = return M >>= M ′

(ii) EC ` E[r/>>=](E [return M >>= M ′]← N) = E [N]

Proof. Similar to the proof of lemma 4.2.

An analogous property also holds true for F contexts, which are in fact only a subset of E
contexts.

4.3 Relation to Existing Semantics 49

Lemma 4.4. Let M be a Haskell expression not having catch or >>= as the head symbol (i.e. M
is not of the form M ′ >>= N ′ or catch M ′ N ′ for some expressions M ′, N ′) and N an arbitrary
Haskell expression. Then the following holds:

(i) EC ` F(F [M]) = M

(ii) EC ` F(F [M]← N) = F [N]

Proof. Analogous to the proof lemma 4.2

Now we want to show that E [unblock F] context are represented by their operational correspon-
dent U. Therefore a few lemmas have to be established as well. But beforehand, we need an
definition for an modified version of the E context which does not contain an unblock :

G ::= F |F [block G]

Now the first lemma on U contexts states that U contexts skip G contexts:

Lemma 4.5. Let M and N be arbitrary Haskell expressions. Then the following holds:

(i) EC ` U(G [M]) = U(M)

(ii) EC ` U(G [M]← N) = G [M ′] where M ′ = U(M ← N)

Proof. Straightforward induction on the structure of G analogously to lemma 4.1.

The next lemma states that U contexts cannot be evaluated for argument terms that do not
contain unblock at some “reachable” position, where “reachable“ means inside a G context.

Lemma 4.6. Let M be a Haskell expression such that there is no Haskell expression M ′ and no
context G′ for which M ≡ G′[unblock M ′]. Then the following holds:

(i) EC 0 U(G [M]) : Exp

(ii) EC 0 U(G [M]← N) : Exp

Proof. (i) Proof by contradiction:
Assume EC ` U(G [M]) : Exp. Because of the declaration of U(·) this can only
be due to some deducible equality EC ` U(G [M]) = U(unblock M ′) since then
EC ` U(unblock M ′) : Exp by either U unblock or U match. EC ` U(G [M]) =
U(unblock M ′) is only derivable by repeated use of the sentences U bind, U catch and
U block. Thus there is some context G′ s.t. G [M] ≡ G [G′[unblock M ′]] and consequently
M ≡ G′[unblock M ′]] which contradicts the assumption on the form of M . Hence the initial
assumption was wrong. Therefore EC 0 U(G [M]) : Exp.

(ii) Analogously.

The next lemma finally states the aspired qualified equivalence of E [unblock F] and U in the
style of lemma 4.2.

Lemma 4.7. LetM be an expression not having >>=, catch, block or unblock as the head symbol.
Then the following holds

(i) EC ` U(E [unblock F [M]]) = M

(ii) EC ` U(E [unblock F [M]]← N) = E [unblock F [N]]

Proof. Both statements can be proven by induction on the structure of E and F:

(i) Case 1 E = F′

50 4 Concurrency Semantics

Case 1.1 F′ = [·]

U(unblock F [M]) unblock= U(unblock F [M])
lem. 4.6

U match= F(F [M]) lem. 4.4= M

Note that lemma 4.6 is applicable to U(F [M]) since F is also a G context and because
of the restriction of the shape of M there is also no expression M ′ and no context G′ s.t.
M ≡ G′[unblock M ′] (Suppose there are such M ′ and G. Consider the case G′ = [·]. Then
M ≡ unblock M ′ would have unblock as head symbol. The other case G′ 6= [·] clearly implies
that M has >>=, catch or block as head symbol).

Case 1.2 F′ = F′′ >>= N

U(F′′[unblock F [M]] >>= N) bind= U(F′′[unblock F [M]] >>=N) U bind= U(F′′[unblock F [M]]) I.H.= M

Case 1.3 F′ = catch F′′ N Analogously to case 1.2
Case 2 E = F′[block E′]
Case 2.1 F′ = [·]

U(block E′[unblock F [M]]) block= U(block E′[unblock F [M]]) U block= U(E′[unblock F [M]]) I.H.= M

Case 2.2 F′ = F′′ >>= N Observe that F′′[block [·]] >>= N is a G context.

U(F′′[block E′[unblock F [M]]] >>= N) lem. 4.5= U(E′[unblock F [M]]) I.H.= M

Case 2.3 F′ = catch F′′ N Analogously to case 2.2
Case 3 E = F′[unblock E′]
Case 3.1 F′ = [·]

U(unblock E′[unblock F [M]])
unblock

U unblock= U(E′[unblock F [M]]) I.H.= M

Case 3.2 F′ = F′′ >>= N Observe that F′′ >>= N is a G context.

U(F′′[unblock E′[unblock F [M]]] >>= N) lem. 4.5= U(unblock E′[unblock F [M]])
unblock

U unblock= U(E′[unblock F [M]]) I.H.= M

Case 3.3 F′ = catch F′′ N Analogously to case 3.2

(ii) Analogously to (i).

Now program states can be considered. Therefore the definition of the symbol · has to be
extended — at first to cover threads, MVars and asynchronous exceptions as well.

◦ = no; • = yes (stuck)

(M)bt = (val : M tid : t stuck : b) (thread)
0t = (val : ε tid : t stuck : no) (empty thread)

〈M〉m = 〈M〉m (MVar)

〈〉m = 〈〉m (empty MVar)

^t e_ = ^t e_ (asynch exc)

P |Q = P |Q (P,Q contain no ν) (parallel)

4.3 Relation to Existing Semantics 51

Unfortunately the corresponding definition for program states is a bit cumbersome. Instead of
a term of sort State the correspondent of a program state is a set of those terms. To be able
to describe this more concisely a relation ≈ between program states and terms of sort State is
introduced.

P contains no ν
EC ` sl : StringConst, l = 1, 2

d > max{tInd(ti)|1 ≤ i ≤ n} d′ > max{mInd(mj)|1 ≤ j ≤ k}
νt1. . . . νtn.νm1. . . . νmk.P

≈ {|pool : P in : 〈s1〉I out : 〈s2〉O tgen : 〈d〉ThGen mgen : 〈d′〉MVGen|}

(approx)

For the sake of convenience ≈ will be used symmetrically in the following. So s ≈ P means
P ≈ s.
Based on this the definition of the corresponding set of State terms for a program state can be

defined like this:

P = {s | ∃Q, s′.P ≡ Q ∧Q ≈ s′ ∧ EC ` s′ = s} (state)

It is easy to see that every program state P is ≡-equal to a program state of the form
νt1. . . . νtn.νm1. . . . νmk.P

′ where P ′ does not contain any ν; it is a simple matter of repeatedly
applying (Alpha) and (Extrude) of the definition of ≡ (cf. [MJMR01]). Hence P is a nonempty
set for every P . So such a set contains all terms that only differ in thread and MVar ids and id
generator respectively and the input and the output field.
The equivalence of the original operational semantics and the rewrite semantics is now the

following:

Theorem 4.8. Let P and Q be program states and RC the rewrite theory of the Haskell semantics
given so far. Then, excluding functional nontermination, the following holds:

P →∗ Q iff ∃s ∈ P , s′ ∈ Q. RC ` s −→ s′

Proof. (i) The “only if” direction can be proven by induction on the transition length. The case
P →0 Q is trivial (by (Refl) of GRL’s semantics). Let us assume a transition of length n+1,
hence:

P →n R→ Q for some R

By induction we have RC ` s1 −→ s2 with s1 ∈ P and s2 ∈ R. It now suffices to show
that RC ` s2 −→ s3 for some s3 ∈ Q since by rule (Trans) of GRL’s semantics we get
the aspired RC ` s1 −→ s3. Therefore the transition R → Q has to be analysed by case
distinction, examining every transition rule (excluding structural rules). It may suffice for
this purpose to restrict the case analysis to the rule (Bind). The argument for the remaining
rules is analogous to this example.
As (Bind) is assumed the following holds by the structural congruence ≡ and structural
transition rules of →:

R ≡

R′︷ ︸︸ ︷
νt1. . . . νmk.P

′ | (E [return N >>= M])bt
Q ≡ νt1. . . . νmk.P ′ | (E [M N])bt︸ ︷︷ ︸

Q′

52 4 Concurrency Semantics

Now it has to be shown that there is some s3 s.t. Q′ ≈ s3 and RC ` s2 −→ s3. To do this
s2 has to be examined:

R′ ≈ s2
(approx)= {|pool : P ′ | (E [return N >>= M])bt in : . . . out : . . . tgen : . . . mgen : . . . |}
(thread)= {|pool : P ′ | (val : E [return N >>= M] stuck : b tid : 〈t〉Th) . . . |} =: s′2

and E[r/>>=](E [return N >>= M]) lem.4.3= return N >>= M

(bind)
(return)= return N >>= M

Hence by the rewrite sentence Bind we get RC ` s′2 −→ s′3 where

s′3 ={|pool : P ′ | (val : E[r/>>=](E [return N >>= M]←M N) stuck : b tid : 〈t〉Th) . . . |}
lem.4.3
app= {|pool : P ′ | (val : E [M N] stuck : b tid : 〈t〉Th) . . . |} =: s3

By EC ` s2 = s′2, s3 = s′3 and (Eq) of GRL’s semantics we truly have RC ` s2 −→ s3.
Furthermore Q′ ≈ s3 holds. As R′ ≈ s2 we have s2 ∈ R and s3 ∈ Q.

(ii) The “if” direction is a bit more involved. It can be proven by induction on the size of the
proof tree of RC ` s −→ s′ assuming that we have fixed a particular one for each
such statement. To make things a bit easier we assume a certain shape of the proof trees.
They are assumed to not use true concurrency, that is the deduction rule (Nested Repl)
is only used to instantiate rewrite sentences. True concurrency can then be mimicked by
interleaving, i.e., using the rule (Trans). Also (Cong) is assumed to be used linearly, that is
all argument rewrites except one are assumed to be reflexive. Every other usage of (Cong)
can be mimicked by interleaving as well. Thus these assumptions can be made without loss
of generality. Then we have the following cases:
Case 1 (Refl) RC ` s −→ s

Let P be s.t. s ∈ P . Then P →0 P .
Case 2 (Trans)

RC ` s1 −→ s2 RC ` s2 −→ s3

RC ` s1 −→ s3
(Trans)

By induction hypothesis P1 →∗ P2 and P2 →∗ P3 for Pi 3 si, i = 1, 2, 3 holds. By transitivity
we get P1 →∗ P3.
Case 3 (Eq)

EC ` s1 = s′1 RC ` s′1 −→ s′2 EC ` s′2 = s2

RC ` s1 −→ s2
(Eq)

By induction hypothesis P ′1 →∗ P ′2 for P ′i 3 s′i, i = 1, 2 holds. But since EC ` si = s′i also
si ∈ P ′i holds.

4.3 Relation to Existing Semantics 53

Case 4 (Cong, Nested Repl) Due to the assumption that is made on the shape of the
proof tree, only the following constellation is possible:

(Refl)
. . .

. . .
· · ·

(Refl)
. . .

. . .
· · ·

r : t0 −→ t′0 ⇐
∧
i∈I

ui = vi ∈ RH ∧
∧
j∈J

wj : sj

θ(t0) = t1, θ(t′0) = t′1 EC ` θ(wj) : sj j ∈ J
EC ` θ(ui) = θ(vi) i ∈ I

RC ` t1 −→ t′1
(Nested Repl)

...
RC ` tn −→ t′n

(Cong)

RC ` s −→ s′
(Cong)

where n ≥ 0 and s = t(n+1) and s′ = t′(n+1). By writing

(Refl)
. . .

. . .
· · ·

is meant the justification for all other direct subterms of ti+1 different from ti.
Due to our assumption on the shape of proof trees only one of the direct sub-
terms of ti+1 — namely ti — is non-reflexively rewritten. That is, assum-
ing ti+1 = f(ti+1,1, . . . , ti+1,j−1, ti, ti+1,j+1, . . . , ti+1,k) and consequently t′i+1 =
f(ti+1,1, . . . , ti+1,j−1, t

′
i, ti+1,j+1, . . . , ti+1,k) the above statement is a shorthand for the

k − 1 statements

(Refl)
ti+1,l ∈ TΣ(X)

RC ` ti+1,l −→ ti+1,l
for every l ∈ {1, . . . ,k}\{j}

Note that the restriction to ground substitutions in the application of the rule (Nested Repl)
above is w.l.o.g. as the considered terms s and s′ are ground. Therefore all respective
subterms ti and t′i for n ≤ i ≤ 1 are ground too.
Now a case distinction has to be made for the rewrite sentence that is chosen. As an example
the case for the sentence Bind is analysed. All other cases can be treated similarly6.
By (Cong) and (Nested Repl) using sentence Bind we get:

EC ` s =

s0︷ ︸︸ ︷
{|pool : P | (val : M stuck : b tid : 〈t〉Th) . . . |}

EC ` s′ = {|pool : P | (val : N stuck : b tid : 〈t〉Th) . . . |}︸ ︷︷ ︸
s′0

where
EC ` E[r/>>=](M) = return N ′ >>=M ′

EC ` E[r/>>=](M ←M ′ N ′) = N

By (bind),(return), (app) and lemma 4.3 we get:

M = E [return N ′ >>= M ′]
N = E [M ′ N ′]

6Note that for the sentences Eval and Raise the theorems proven in section 3.6 have to be used but in the more
general context of the extended MEL theory EC and on the other hand the extended definitions of expressions
(i.e. M,N) and values (i.e. U, V). As this small extension to the syntax and the functional semantics is of
course not considered in [MLJ99] it would have to be added in an obvious way. Just look at the corresponding
definitions of values U, V and define the transformation of expressions M,N to these values, which is only an
transformation of those arguments of primitives that the respective primitive is strict in to whnf. Consequently
exceptional behaviour of those arguments must be propagated appropriately. Establishing the theorems for EC
is then trivial as this is exactly the way how EC was conceived.

54 4 Concurrency Semantics

Hence:

s0 ≈ Q = νt1. . . . νmk.P | (E [return N ′ >>= M ′])bt
s′0 ≈ R = νt1. . . . νmk.P | (E [M ′ N ′])bt

By (Bind) and structural rules we have Q→ R. Moreover s ∈ Q and s′ ∈ P .

4.4 Executability and beyond
Now it has to be checked whether the developed GRT RC of the Concurrent Haskell semantics
is in fact executable. The necessary properties for the MEL theory EH were already discussed in
section 3.5. The argument for the respective properties of the extended theory EC is analogous.
What is still missing is a discussion concerning the required property of coherence for the rewrite

sentences w.r.t. the MEL subtheory. But showing this also turns out to be rather trivial, as
there are no equational sentences on State terms except associativity, commutativity and identity
axioms which do not destroy coherence. Well, due to (Cong) of MEL also equational sentences on
Exp have to be considered. But as the rewrite sentences of RC only consider Exp terms being
in nf w.r.t. rewriting system induced by the MEL theory, this does not affect coherence either.
Still there is a shortcoming of the semantics. It does not cover functional nontermination, that

is expressions e for which we have EC 0 FJeKwhnf : ExpUExc. But the problem can be solved
by adding the following equational respectively rewrite sentences that use a new symbol · ⇑ to
denote divergence:

· ⇑: Exp → Bool

FJe1Kwhnf : ExpUExc
e1⇑ = false

div1
otherwise

e1⇑ = true
div2

E(e1) = e3 e3 ⇑ = true E(e1 ← throw exp(ec1)) = e2

val : e1 −→ val : e2
Raise div

This extension to RC will be denoted R′C . But of course reintroducing diverging expressions
destroys executability. So these sentences are only mentioned to show that diverging is definable
in GRL. With this extension the following can then be easily proven:

Theorem 4.9. Let P and Q be program states Then the following holds:

P →∗ Q iff ∃s ∈ P , s′ ∈ Q. R′C ` s −→ s′

This is the same statement as in theorem 4.8 but without the restriction to non-diverging
expressions.

5 Conclusion
The rewrite theory of the semantics of Haskell and its concurrency extension was thoroughly
presented and legitimated by showing equalities to existing semantics. Due to its properties this
theory can be translated into an equivalent Maude specification very easily. Thereby a hole set
of powerful tools for analysing the object language is produced. A survey of the possibilities a
Maude specification offers is given in [MR07]. On account of its modular style it is well suited
to analyse modifications of the semantics of the language or possible extensions by new features.
Moreover the existence of rewrite semantics for a large set of other languages (cf. [MR07]) may
serve as an inspiration on how to include new language features.
The presented semantics covers a large number of aspects of the Haskell language including

laziness, pattern matching, mutual recursion, imprecise (a)synchronous exceptions, I/O and con-
currency. Thereby rewriting logic has proved to be a well suited framework for an amalgamation of
these different computational aspects. The deterministic parts were formulated in the equational
sublogic whereas the nondeterministic parts were mostly defined using rewrite sentences. But it
could be observed that this distinction is not always that rigid: For example the imprecise defini-
tion of exceptional behaviour is truly a kind of nondeterminism. But nevertheless it was chosen
to define this equationally and to resolve this nondeterminism by a set construction. However
the inherent nondeterminism is only deferred. It re-emerges in the Concurrent Haskell semantics
where the set of possible exceptions induces a different rewrite for every exception in the set.
Hence the rewrite sentences of the semantics only constitute a small layer on top of the functional
semantics that aside from introducing the concurrent part of the semantics of the concurrency
primitives also surfaces the deferred concurrency of the functional semantics.
Nevertheless a large part of the semantics of Concurrent Haskell was not treated — the static

semantics. Hence future work on this subject is ought to be anxious for particularly formulating
the type calculus of Haskell as a rewrite theory. This could also help to formulate the dynamic
rewrite semantics of Haskell far more gracefully. Furthermore an amalgamation of both dynamic
and static semantics inside the very same framework is certainly of notably interest as both are
exceptionally interwoven e.g. in the case of ad-hoc polymorphism.

55

Bibliography
[Ben04] Andrew Douglas Bennett. Haskell-RL - an equational specification of haskell in maude.

Master’s thesis, University of Illinois at Urbana-Champaign, 2004.

[Bir84] R. S. Bird. The promotion and accumulation strategies in transformational program-
ming. ACM Trans. Program. Lang. Syst., 6(4):487–504, 1984.

[BM03] R. Bruni and J. Meseguer. Generalized rewrite theories, 2003.

[BN99] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

[BR00] Adam Bakewell and Colin Runciman. A space semantics for core haskell. Electr. Notes
Theor. Comput. Sci., 41(1), 2000.

[BT80] Jan A. Bergstra and J. V. Tucker. A characterisation of computable data types by
means of a finite equational specification method. In ICALP, pages 76–90, 1980.

[CDE+] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet,
José Meseguer, and Carolyn Talcott. Maude Manual (Version 2.3).

[HH92] Kevin Hammond and Cordelia Hall. A dynamic semantics for haskell (draft), 1992.

[HM07] Joe Hendrix and José Meseguer. On the completeness of context-sensitive order-sorted
specifications. In RTA, pages 229–245, 2007.

[JGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In
Conference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 295–308, St. Petersburg Beach, Florida,
21–24 1996.

[Jon03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

[JRH+99] Simon Peyton Jones, Alastair Reid, Fergus Henderson, Tony Hoare, and Simon Mar-
low. A semantics for imprecise exceptions. In PLDI ’99: Proceedings of the ACM SIG-
PLAN 1999 conference on Programming language design and implementation, pages
25–36, New York, NY, USA, 1999. ACM Press.

[JW92] Simon L. Peyton Jones and Philip Wadler. A static semantics for haskell. Technical
report, 1992.

[JW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In
POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 71–84, New York, NY, USA, 1993. ACM.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 144–154, Charleston, South Carolina, 1993.

[MB03] José Meseguer and Christiano O. Braga. Modular rewriting semantics of programming
languages. Submitted for publication, 2003.

[Mes97] José Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In WADT ’97: Selected papers from the 12th International Workshop on
Recent Trends in Algebraic Development Techniques, pages 18–61, London, UK, 1997.
Springer-Verlag.

56

Bibliography 57

[MJMR01] Simon Marlow, Simon L. Peyton Jones, Andrew Moran, and John H. Reppy. Asyn-
chronous exceptions in haskell. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 274–285, 2001.

[MJT04] Simon Marlow, Simon Peyton Jones, and Wolfgang Thaller. Extending the haskell
foreign function interface with concurrency. In Haskell ’04: Proceedings of the 2004
ACM SIGPLAN workshop on Haskell, pages 22–32, New York, NY, USA, 2004. ACM
Press.

[MLJ99] Andrew Moran, Søren B. Lassen, and Simon Peyton Jones. Imprecise exceptions,
co-inductively. In HOOTS ’99, Higher Order Operational Techniques in Semantics,
ENTCS 26, pages 122–141, 1999.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[MR07] José Meseguer and Grigore Rou. The rewriting logic semantics project. Theor. Comput.
Sci., 373(3):213–237, 2007.

[ŞRM07] Traian Florin Şerbănuţă, Grigore Roşu, and José Meseguer. A rewriting logic approach
to operational semantics – extended abstract. In SOS’07, number to appear in ENTCS,
2007.

[Wec92] Wolfgang Wechler. Universal Algebra for Computer Scientists (EATCS Monographs
in Theoretical Computer Science). Springer-Verlag Berlin and Heidelberg GmbH &
Co. K, 1992.

	Introduction
	Preliminaries
	Rewriting Logic
	Syntax and Semantics of Generalised Rewriting Logic
	Notation

	Executable Theories

	Functional Semantics
	Syntax of Pure Haskell
	Formulating the Syntax as a MEL Theory
	Semantic Expressions
	Semantics of Pure Haskell
	Executability
	Relation to Existing Semantics

	Concurrency Semantics
	Syntax of the Concurrent Extension
	Semantics of the Concurrent Extension
	Relation to Existing Semantics
	Executability and beyond

	Conclusion
	Bibliography

