
Introduction
Rewriting Logic Semantics of Haskell

Conclusion

An Executable Rewriting Logic Semantics for
Concurrent Haskell

Patrick Bahr
s0404888@inf.tu-dresden.de

Technische Universität Dresden

January 11, 2008

Patrick Bahr An Executable Rewriting Logic Semantics for Concurrent Haskell



Introduction
Rewriting Logic Semantics of Haskell

Conclusion

Outline

1 Introduction
Motivation
Preliminaries

2 Rewriting Logic Semantics of Haskell
Pure Haskell
Concurrent Haskell
Properties of the Semantic Theory

3 Conclusion
Summary
Future Work

Patrick Bahr An Executable Rewriting Logic Semantics for Concurrent Haskell



Introduction
Rewriting Logic Semantics of Haskell

Conclusion
Motivation
Preliminaries

Outline

1 Introduction
Motivation
Preliminaries

2 Rewriting Logic Semantics of Haskell
Pure Haskell
Concurrent Haskell
Properties of the Semantic Theory

3 Conclusion
Summary
Future Work

Patrick Bahr An Executable Rewriting Logic Semantics for Concurrent Haskell



Introduction
Rewriting Logic Semantics of Haskell

Conclusion
Motivation
Preliminaries

Why Haskell?

declarative reading
use as specification language
program transformation to obtain efficient
implementation

need for exact semantics to justify program
transformations!
yet: semantics of Haskell is well-studied
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Why yet another semantics?

collect different aspects of the semantics in one semantic framework
view the semantics from a different perspective
use the semantics as input for tools to analyse the language
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Why Rewriting Logic?

mature well-studied semantic framework
there are rewrite semantics for many other languages
implementation for rewriting logic is available
remote goal: study relationship between Concurrent Haskell and
Rewriting Logic
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Rewriting Logic

atomic formulae: t −→ t ′ where t, t ′ ∈ TΣ(X )

in our context:
t and t ′ encode program states
t −→ t ′ reads: “During the computation the program state
changes from t to t ′.”

term are not taken as pure syntax: reasoning modulo an equational
subtheory

 Membership Equational Logic (MEL):
many-kinded term language
atomic formulae:

t = t ′
t : s “t has sort s”
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Membership Equational Signature

Definition
A membership equational signature (or MEL signature) is a triple
Ω = (Σ,S, <), where

S is a finite set of sorts,
< is a strict order on S,
Σ = {Σw ,k}(w ,k)∈K∗×K is a K∗ × K -indexed family of

function symbols and
K := S/≡< is the set of kinds induced by the equivalence

closure of <.
[s] will denote the equivalence class of s w.r.t ≡<, i.e. its kind.
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Sorts and Kinds — Example

Example
S = {s1, s2, s3, s4, s5} — the set of sorts and
< is s.t.

s2 < s1,
s3 < s1,
s5 < s4.

 s1

 s2 s3
 s5

 s4 s1

 K = {[s1], [s4]}, where [s1] = {s1, s2, s3} and [s4] = {s4, s5}.
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MEL Sentences, MEL Theories

Definition
The following are membership equational sentences (or MEL sentences):

(∀X ) t = t ′ ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj (Equation)

(∀X ) t ′′ : s ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj (Membership)

Definition
A membership equational theory (or MEL theory) E is a pair (Ω,E )
where Ω is a MEL signature and E a is set of MEL sentences.
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MEL Semantics in a Nutshell

if t = t ′ ⇐
∧

i∈I ui = vi ∧
∧

j∈J wj : sj ∈ E and E ` ui = vi and
E ` wj : sj hold then also E ` t = t ′.
if t : s ⇐

∧
i∈I ui = vi ∧

∧
j∈J wj : sj ∈ E and E ` ui = vi and

E ` wj : sj hold then also E ` t : s.
= is a congruence,
sort membership is preserved by =,
i.e if E ` t = t ′ and E ` t : s then also E ` t ′ : s
< means “sort” inclusion,
i.e if s < s ′ and E ` t : s then also E ` t : s ′
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GRL Sentences, Generalised Rewrite Theories

Definition
The following is a generalised rewrite sentence (or GRL sentence):

(∀X ) t −→ t ′ ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj ∧
∧
l∈L

tl −→ t ′l (Rewrite)

Definition
A generalised rewrite theory (or GRT) is a triple R = (Ω,E ,R) where
E = (Ω,E ) is a MEL theory and R is a set of GRT sentences of signature
Ω .
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GRL Semantics in a Nutshell

if (∀X ) t −→ t ′ ⇐
∧
i∈I

ui = vi ∧
∧
j∈J

wj : sj ∧
∧
l∈L

tl −→ t ′l ∈ R and

E ` ui = vi , E ` wj : sj , R ` tl −→ t ′l then R ` t −→ t ′
plus “nested replacement”!
−→ is reflexive, transitive and congruent,
reasoning about −→ is done modulo the MEL subtheory,
i.e. if E ` t = u and E ` t ′ = u′ then R ` u −→ u′ implies
R ` t −→ t ′.
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Notation

s0 < s1 < . . . < sn

operator declaration:
f : k1 · · · kn → k or c : k  f ∈ Σk1···kn,k or c ∈ Σε,k

operator declaration on sorts:
f : s1 · · · sn → s or c : s  as above plus membership sentence
mixfix operators:
e.g. ( \ · -> · ) : Var Term → LambdaAbstraction
implicit universal quantification of variables
kind/sort of variables given when sort is introduced:
e.g. Exp{ei} ∈ S : ei range over sort Exp; [e]i range over kind [Exp]

variables ranging over sort  additional membership condition
where variable is used
“otherwise” condition
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Coverage of the Semantics

The semantics includes
laziness,
pattern matching,
mutual recursion (function binding),
imprecise exceptions (synchronous and asynchronous),
I/O and
concurrency.

The semantics does not include
recursive pattern bindings,
full static semantics, i.e. context sensitive syntax and
particularly the type system.
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Semantics in Rewriting Logic

How can the semantics of a (programming) language be described in
RL/MEL?

Approach taken for Pure Haskell
define signature Ω s.t. a program of the considered language is a
term of MEL (hence, the need for mixfix operators).
define operators that transform programs (and fragments of them)
into its denotation by giving equational sentences

Approach taken for Concurrent Haskell
programs are also terms
include function symbols that construct program states
give rewrite sentences that describe the execution of a program by
rewriting a program state to some successor state
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Considered Syntax Fragment: Basic Syntax

BinOp ::= + | - | * | / | <= | >= | < | >

| /= | == | !! | && | || | ** | ++ | $ | $!

BoolConst ::= True | False

PDCtor ::= BoolConst |Float | Int |Char |String | () | []

CustCtor ::= < data constructor >
Ctor ::= CustCtor |PDCtor

Primitive ::= seq | not | raise | (BinOp )

AtExp ::= Ctor |Var |Primitive
AtPat ::= Var | _ |Ctor

Case ::= Pat ->Exp
Cases ::= Case |Cases ;Case
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Considered Syntax Fragment: Expressions

Exp ::= AtExp
|Exp Exp
| \NePatList ->Exp
| caseExp of {Cases }

| ifExp thenExp elseExp
|Exp :Exp
|Exp BinOp Exp
| [ExpList ]

| (ExpList )

ExpList ::= Exp |ExpList ,Exp
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Considered Syntax Fragment: Patterns, Programs

Pat ::= AtPat
|Pat Pat
|Pat :Pat
| [PatList ]

| (PatList )

PatList ::= Pat |PatList ,Pat

FuncBindLhs ::= Var |FuncBindLhs Pat
FuncBind ::= FuncBindLhs =Exp
Program ::= FuncBind |Program ;FuncBind
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Formulate Haskell Syntax as a MEL Theory: Examples

BNF definition

Pat ::= AtPat
|Pat Pat
|Pat :Pat
| [PatList ]

| (PatList )

Primitive ::= seq | not

| raise | . . .

MEL definition

AtPat < Pat
· · : Pat Pat → Pat
· : · : Pat Pat → Pat

[ · ] : PatList → Pat
( · ) : PatList → Pat

seq : Primitive
not : Primitive

raise : Primitive
...
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Haskell Semantics

What is the semantics of a Haskell expression?

— Its normal form.
Since Haskell is lazy (two) different other normal forms are considered:

Weak head normal form (WHNF) — for pattern matching semantics
Constructor applied to several expressions
e.g.: (1, 2+3, digitToInt ’3’) or Node (3*5) (1+2)

function expression (lambda expression, built-in function, function
representation, . . . ) applied to too few arguments
e.g.: (+) 2 ; (\x -> x + 1) .

Constructor head normal form (CHNF) — for equality semantics
same as weak head normal form but constructors must be applied to
CHNFs e.g. Node (3*5) (1+2) is not in CHNF; Node 15 3 is
the “equivalent” CHNF

The overall semantics of a Haskell expression is then its CHNF.
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Exceptions
Hence, expressions must be transformed to their CHNF/WHNF.

Problem — order of evaluation
the order of evaluation of Haskell expressions will not be defined
(thanks to referential transparency this is possible):
e.g. the “result” of (1+2) * (3+4) does not depend on whether
1+2 or 3+4 is evaluated first.
the order of evaluation is significant if exceptions are raised!
e.g. the expression (2 / 0) + (raise SomeException) either
raises ArithException DivideByZero or SomeException
depending on the order of evaluation

Solution
the semantics of a Haskell expression is either its CHNF or a set of
exceptions.
the set of exceptions contains all exceptions that are raised with
some order of evaluation.
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Transformation to Normal Form

constants to identify normal form type:
whnf : NfType , chnf : NfType
predicate to characterise normal form:
· ⇓ · : Exp NfType → Bool
expressions can have multiple (imprecise) exceptional behaviour
result of transformation is either the normal form or a set of
exceptions
sort ExpUExc as “union” of Exp and Exceptions
transformation function FJ · K · : [Exp] [NfType] → [ExpUExc]

Note: As both normal forms share some properties and the resp.
operators are parametric w.r.t. the normal form type, some sentences can
be shared by both normal forms.
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Semantics of Haskell Programs

Programs induce substitutions
each Haskell program induces a substitution
every function defines by which expression the function name can be
replaced

Example
Haskell function

foo 1 y = y ;

foo 2 y = 4 * y

 

MEL representation

foo 7→
{ 1 , y :→ y ;

2 , y :→ 4 * y }

Semantics of a program
The semantics of a Haskell program is the “least fixed point” of the
substitution induced by the program.
Taking the least fixed point enables mutual recursion!
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Program Semantics

Symbols

env( · ) : Program → SimpSubst
HJ · K : Program → Subst

HJ · in · K : [Exp] [Program] → [ExpUExc]

Sentences

HJp1K = fix(env(p1))
program

s1 = HJp1K
HJe1 in p1K = F

q
e1[s1]

y
chnf

expression
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What is Concurrent Haskell

New concepts
Thread
MVar: shared memory, synchronisation

New primitives in the IO monad
forkIO :: IO a -> IO ThreadId — spawns a thread
newEmptyMVar :: IO (MVar a) — creates new empty MVar
putMVar :: MVar a -> a -> IO () — stores value into an
empty MVar
takeMVar :: MVar a -> IO a — reads MVar’s content
throw :: Exception -> IO () — raises an exception

Patrick Bahr An Executable Rewriting Logic Semantics for Concurrent Haskell
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What is Concurrent Haskell

New concepts
Thread
MVar: shared memory, synchronisation

New primitives in the IO monad (cont.)
catch :: IO a -> (Exception -> IO a) -> IO a — handles
an exception
throwTo :: ThreadId -> Exception -> IO () — forces a
thread to raise an (asynchronous) exception
block / unblock :: IO a -> IO a —disallows / allows
asynchronous exceptions
sleep , myThreadId

Patrick Bahr An Executable Rewriting Logic Semantics for Concurrent Haskell



Introduction
Rewriting Logic Semantics of Haskell

Conclusion

Pure Haskell
Concurrent Haskell
Properties of the Semantic Theory

Peyton Jones’ Semantics — Program States

Program States
P,Q,R ::= (M)t thread of computation named t

| 0t finished thread named t
| 〈〉m empty MVar named m
| 〈M〉m full MVar named m, holding M
| ^t e_ pending asynchronous exception e for thread t
| νx .P restriction
| P |Q parallel composition
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Structural Congruence
Defines which program states are considered equal.

Commutativity and associativity

P |Q ≡ Q |P (Comm) P | (Q |R) ≡ (P |Q) |R (Assoc)

 Straightforward translation into equational sentences.

Restrictions

νx .νy .P ≡ νy .νx .P (Swap)
(νx .P) |Q ≡ νx .(P |Q) x 6∈ fn(Q) (Extrude)

νx .P ≡ νy .P[y/x] y 6∈ fn(P) (Alpha)

 Cannot be translated into an executable MEL theory.

Skip details on MEL-representation
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Program States as MEL Terms — Modularity

Extensibility: Record structure technique!
instead of using only a single function symbol as a constructor
(where each argument position defines some component)
use a record structure, whose components are indexed by a name.

Example
Function symbol approach:
definition: ( · , · , · ): ThreadId ThreadCont Flag → Thread
example term: (〈1〉Th, ε, no).
Record structure approach:
definition: a bit more complicated
example term: (tid : 〈1〉Th val : ε stuck : no)
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Program States

The record structure of a program state contains
input
output
thread id generator
MVar id generator
process pool (contains threads, MVars, asynchronous exceptions)
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Process Pool

Thread,MVar,AException < Proc < ProcPool

null : ProcPool
· | · : ProcPool ProcPool → ProcPool

Plus some sentences making | associative and commutative and make
null its identity.

pp1 | (pp2 | pp3) = (pp1 | pp2) | pp3
assoc

pp1 | pp2 = pp2 | pp1
comm

pp1 | null = pp1
id
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Thread as a Record Structure

Components
tid: the thread’s id
val: the thread’s value
stuck: flag indicating whether the thread is stuck

Example
finished thread:
0◦t  (tid : 〈1〉Th val : ε stuck : no)
stuck thread:
( MVarm 0)•t  (tid : 〈0〉Th val : putMVar 〈1〉MV 0 stuck : yes)
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MVar as a Record Structure

Components
mid: the MVar’s id
cont: the MVar’s content

Example
empty MVar: 〈〉m  〈mid : 〈1〉MV cont : ε〉
full MVar holding 1 : 〈 1 〉m  〈mid : 〈0〉MV cont : 1 〉
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Asynchronous Exception as a Function Symbol

^ · · _ : ThreadId ExcExp → AException
tgt( · ) : AException → ThreadId
exc( · ) : AException → ExcExp

tgt(^ti1 ee1_) = ti1
tgt

exc(^ti1 ee1_) = ee1
exc
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Initial Program States

Initial state of a program w.r.t an expression

CJ · in · K( · ) : Exp Program String → State (1)

CJe1 in pr1K(str1) = {| in : 〈str1〉I out : 〈〉O
tgen : newThreadIdGen mgen : newMVarIdGen

pool : (HJ unblock e1 in pr1K)mainThreadId |}

Initial state of a program

CJ · K( · ) : Program String → State

CJpr1K(str1) = CJ main in pr1K(str1)
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Rules of Peyton Jones’ Semantics

Structural rules

P α→ Q
P |R α→ Q |R

(Par)
P α→ Q

νx .P α→ νx .Q
(Nu)

P ≡ P ′ P ′ α→ Q′ Q ≡ Q′

P α→ Q
(Equiv)

These rules are covered by the semantics of rewriting logic, i.e.
deduction rules (Cong) and (Eq).
For each primitive there is at least one axiom.
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Axioms of the Concurrency Semantics — An Example

Original axiom for throwTo

(E [ throwTo t e] )u → (E [ return () ] )u | ^t e_

Rewrite sentence formulation

E(e1) = throwTo ti1 ece1 E(e1 ← return () ) = e2

(val : e1 prt1) −→ (val : e2 prt1) | ^ti1 ece1_
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Axioms of the Concurrency Semantics — Another Example

Original axiom for forkIO

(E [ forkIO M] )t → νu.((E [ return u] )t | ( unblock M)u)

where u 6∈ fn(E,M)

Rewrite sentence formulation

E(e1) = forkIO e3
currentId(tg1) = ti1 E(e1 ← return ti1) = e2

pool : (val : e1 prt1) | pp1 tgen : tg1

pool : (val : e2 prt1) | ( unblock e3)ti1 | pp1 tgen : nextGen(tg1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Executability

Executability subsumes the following properties
preregularity: terms have a smallest sort if any
equations are applied from left to right
 order-sorted term rewriting system →E
→E must be:

ground terminating
ground confluent
ground sort decreasing

but: associativity and commutativity sentences can be disregarded
for this properties
the TRS →R induced by the rewrite sentences must be coherent
w.r.t. →E

Skip executability
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Coherence

That is, the following diagramm has to commute:

t
R - t ′

u

E
!

-

s

E !

? R - s ′

E !

-
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Properties Providing Executability

Properties of the semantic theory of Concurrent Haskell
Preregularity

4

Confluence

4

Sort-decreasingness

4

Coherence

4

Termination

8

Termination issue
Problem: FJtKchnf does not have a normal form if the Haskell
expression represented by t diverges.
Hence: The semantic theory is only executable for converging
expressions.
Nevertheless: Divergence is exactly described by the theory:

The Haskell expression represented by t converges iff
EC ` FJtKchnf : ExpUExc.
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Relation to Moran’s Coinductive Semantics of Imprecise
Exceptions

Theorem

Let EH be the semantic MEL theory for pure Haskell. Then the following
equivalences hold true:

(i) M ⇓ V iff EH ` F
r
M
z

whnf = V

(ii) M ↗ S iff EH ` F
r
M
z

whnf = S

Corollary

M ⇑ iff EH 0 F
r
M
z

whnf : ExpUExc
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Relation to Peyton Jones’ SOS of Concurrent Haskell

Theorem

Let P and Q be program states and RC the rewrite theory of the
Concurrent Haskell semantics. Then, excluding functional
nontermination, the following holds:

P →∗ Q iff ∃s ∈ P, s ′ ∈ Q. RC ` s −→ s ′
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Relation to Peyton Jones’ SOS of Concurrent Haskell

Non-executable extension of RC to R′C

· ⇑: Exp → Bool

FJe1Kwhnf : ExpUExc
e1⇑ = false

div1
otherwise
e1⇑ = true

div2

E(e1) = e3 e3 ⇑ = true E(e1 ← throw ece1) = e2

val : e1 −→ val : e2
Raise div

Theorem

Let P and Q be program states Then the following holds:

P →∗ Q iff ∃s ∈ P, s ′ ∈ Q. R′C ` s −→ s ′
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Summary

Dynamic semantics for Concurrent Haskell including most of the
language features:

laziness
pattern matching
mutual recursion
imprecise (a)synchronous exceptions
I/O
concurrency

Proofs for equivalence to different existing semantics.
The given theory is executable in the Maude system, i.e.:

interpreter
semi-automated inductive proofs
model checking

...
Modularity ensures extendibility of the semantics to include further
features as well as flexibility to change the semantics.
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Future Work

Minor features of the dynamic semantics are missing (in particular
recursive pattern bindings).
How can rewrite sentences be used to describe imprecise exceptions
more naturally?
A formulation of the static semantics in rewriting logic is still
missing!
Particularly the type calculus of Haskell is interesting.
Amalgamation of the dynamic and static semantics in one framework
is desirable, as both are interwoven (ad-hoc polymorphism)!
Use of free theorems derived from the type information in
semi-automated proofs.
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