
205

Asynchronous Modal FRP
PATRICK BAHR, IT University of Copenhagen, Denmark

RASMUS EJLERS MØGELBERG, IT University of Copenhagen, Denmark

Over the past decade, a number of languages for functional reactive programming (FRP) have been suggested,

which use modal types to ensure properties like causality, productivity and lack of space leaks. So far, almost

all of these languages have included a modal operator for delay on a global clock. For some applications,

however, a global clock is unnatural and leads to leaky abstractions as well as inefficient implementations.

While modal languages without a global clock have been proposed, no operational properties have been

proved about them, yet.

This paper proposes Async RaTT, a newmodal language for asynchronous FRP, equippedwith an operational

semantics mapping complete programs to machines that take asynchronous input signals and produce output

signals. The main novelty of Async RaTT is a new modality for asynchronous delay, allowing each output

channel to be associated at runtime with the set of input channels it depends on, thus causing the machine to

only compute new output when necessary. We prove a series of operational properties including causality,

productivity and lack of space leaks. We also show that, although the set of input channels associated with an

output channel can change during execution, upper bounds on these can be determined statically by the type

system.

CCS Concepts: • Software and its engineering→ Functional languages; Data flow languages; Recursion;
• Theory of computation→ Operational semantics.

Additional Key Words and Phrases: Functional Reactive Programming, Modal Types, Linear Temporal Logic,

Synchronous Data Flow Languages, Type Systems

ACM Reference Format:
Patrick Bahr and Rasmus Ejlers Møgelberg. 2023. Asynchronous Modal FRP. Proc. ACM Program. Lang. 7, ICFP,
Article 205 (August 2023), 35 pages. https://doi.org/10.1145/3607847

1 INTRODUCTION
Reactive programs are programs that engage in a dialogue with their environment, receiving input

and producing output, often without ever terminating. Examples include much of the most safety

critical software in use today, such as control software and servers, as well as GUIs. Most reactive

software is written in imperative languages using a combination of complex features such as

callbacks and shared memory, and for this reason it is error-prone and hard to reason about.

The idea of functional reactive programming (FRP) [Elliott and Hudak 1997] is to provide the

programmer with the right abstractions to write reactive programs in functional style, allowing for

short modular programs, as well as modular reasoning about these. For such abstractions to be

useful it is important that they are designed to allow for efficient low-level implementations to be

automatically generated from programs.

The main abstraction of FRP is that of signals, which are time-dependent values. In the case of

discrete time given by a global clock, a signal can be thought of as a stream of data. A reactive

Authors’ addresses: Patrick Bahr, IT University of Copenhagen, Denmark, paba@itu.dk; Rasmus Ejlers Møgelberg, IT

University of Copenhagen, Denmark, mogel@itu.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART205

https://doi.org/10.1145/3607847

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

https://doi.org/10.1145/3607847
https://doi.org/10.1145/3607847

205:2 Patrick Bahr and Rasmus Ejlers Møgelberg

program is essentially just a function taking input signals and producing output signals. For this to

be implementable, however, it needs to be causal: The current output must only depend on current

and past input. Moreover, the low-level implementations generated from high-level programs

should also be free of (implicit) space- and time-leaks. This means that reactive programs should

not store data indefinitely causing the program to eventually run out of space, nor should they

repeat computations in such a way that the execution of each step becomes increasingly slower.

These requirements have led to the development of modal FRP [Bahr 2022; Bahr et al. 2019;

Jeffrey 2012, 2014; Jeltsch 2012; Krishnaswami 2013; Krishnaswami and Benton 2011; Krishnaswami

et al. 2012], a family of languages using modal types to ensure that all programs can be implemented

efficiently. The most important modal type constructor is ⃝, used to classify data available in the

next time step on some global discrete clock. For example, the type of signals should satisfy the

type isomorphism Sig𝐴 � 𝐴 × ⃝(Sig𝐴) stating that the current value of the signal is available

now, but its future values are only available after the next time step. Using this encoding of signals,

one can ensure that all reactive programs are causal. Many modal FRP languages also include a

variant of the Nakano [2000] guarded fixed point operator of type (⃝𝐴 → 𝐴) → 𝐴. The type

ensures that recursive calls are only performed in future steps, thus ensuring termination of each

step of computation, a property called productivity. Often these languages also include a □modality

used to classify data that is stable, in the sense that it can be kept until the next time step without

causing space leaks. Other modal constructors, such as ^ (eventually) can be encoded, suggesting a

Curry-Howard correspondence between linear temporal logic [Pnueli 1977] and modal FRP [Bahr

et al. 2021; Cave et al. 2014; Jeffrey 2012; Jeltsch 2012].

However, for many applications, the notion of a global clock associated with the ⃝ modal

operator may not be natural and can also lead to inefficient implementations. Consider, for example,

a GUI which takes an input signal of user keystrokes, as well as other signals that are updated

more frequently, like the mouse pointer coordinates. The global clock would have to tick at least as

fast as the updates to the fastest signal, and updates on the keystroke signal will only happen on

very few ticks on the global clock. Perhaps the most natural way to model the keystroke signal is

therefore using a signal of typeMaybe(Char). In the modal FRP languages of Bahr et al. [2019];

Krishnaswami [2013], the processor for this signal will have to wake up for each tick on the global

clock, check for input, and often also transport some local state to the next time step by calling

itself recursively. Perhaps more problematic, however, is that an important abstraction barrier is

broken when a processor for an input signal is given access to the global clock. Instead, we would

like to write the GUI as a collection of processors for asynchronous input signals that are only

activated upon updates to the signals on which they depend.

1.1 Async RaTT
This paper presents Async RaTT, a modal FRP language in the RaTT family [Bahr 2022; Bahr et al.

2019, 2021], designed for processing asynchronous input. A reactive program in Async RaTT reads

signals from a set of input channels and in response sends signals to a set of output channels. In a

GUI application, typical input channels would include the mouse position and keystroke events,

while output channels could for example include the content of a text field or the colour of a text

field.

For each output channel 𝑜 , the reactive program keeps track of the set \ of input channels on

which 𝑜 depends (cf. Figure 1a). We refer to such a set \ of input channels as a clock. When the

signal on an input channel ^ is updated, only those output channels whose clock \ contains ^ will

be updated. For example, the keystroke input channel might be in the clock for the text field content

but not the text field colour. Since the program can dynamically change its internal dataflow graph,

the clock associated with an output channel may change during execution (cf. Figure 1b) and so is

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:3

^1 ^2 ^3

𝑜1
clock {^1}

𝑜2
clock {^2, ^3}

(a) Dataflow graph with its computed clocks.

^1 ^2 ^3

𝑜1
clock {^1, ^2}

𝑜2
clock {^2, ^3}

(b) Clocks are updated as dependencies change.

Fig. 1. Dynamically changing dataflow graph of an Async RaTT program with input channels ^1, ^2, ^3 and
output channels 𝑜1, 𝑜2.

not known at compile time. For example, the text field might fall out of focus and thus not react to

keystrokes any longer. We refer to the arrival of new data on an input channel in the clock \ as a

tick on clock \ .

Async RaTT has a modal operator □ used to classify stable data, as well as two new modalities:

∃⃝ for asynchronous delays and ∀⃝ for a delay on the global clock. A value of type ∃⃝𝐴 is a pair

consisting of a clock \ and a computation that can be executed to return data of type 𝐴 on the first

tick on \ . The type ∃⃝𝐴 can therefore be thought of as an existential type. The clocks of output

channels, as illustrated in Figure 1, are stored in the first component of this existential type. Our

notion of signal is encoded in types as a recursive type Sig𝐴 � 𝐴 × ∃⃝Sig𝐴. That means, the clock

associated with the tail of a signal may change from one step to the next, allowing for dynamic

updates of clocks associated with output channels as in Figure 1.

Unlike the synchronous ⃝, the asynchronous ∃⃝ does not have an applicative action of type

∃⃝(𝐴 → 𝐵) → ∃⃝𝐴 → ∃⃝𝐵 because the delayed function and the delayed input may not arrive at

the same time, and to avoid space leaks, Async RaTT does not allow the first input to be stored

until the second input arrives. Instead, Async RaTT synchronises delayed data using an operator

sync : ∃⃝𝐴1 → ∃⃝𝐴2 → ∃⃝((𝐴1 × ∃⃝𝐴2) + (∃⃝𝐴1 ×𝐴2) + (𝐴1 ×𝐴2))
Given two delayed computations associated with clocks \1 and \2, respectively, sync returns the
delayed computation associated with the union clock \1 ⊔ \2. This delayed computation waits

for an input on any input channel ^ ∈ \1 ⊔ \2, and then evaluates the computations that can be

evaluated depending on whether ^ ∈ \1, ^ ∈ \2, or both. For example, if the input arrives on

channel ^ ∈ \1 \ \2, only the first delayed computation is evaluated. The sync operator can be used

to implement operators like

switch : Sig𝐴 → ∃⃝(Sig𝐴) → Sig𝐴

which dynamically update the dataflow graph of a program.

Note that sync can be read as a linear time axiom: Given two clocks, either one ticks before the

other, or they tick simultaneously. Async RaTT programs are therefore dependent on the run-time

environment to schedule the order in which inputs are processed. What we mean by asynchronicity

is that output channels are updated asynchronously. This is reflected in the type system by ∃⃝ not

being an applicative functor as explained above.

The modal type ∀⃝𝐴 classifies computations that can be run at any time in the future, but not

now. It is used in the guarded fixed point operator, which in Async RaTT has type

□(∀⃝𝐴 → 𝐴) → 𝐴

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:4 Patrick Bahr and Rasmus Ejlers Møgelberg

The input to the fixed point operator must be a stable function (as classified by □), because it will
be used in unfoldings at any time in the future. The use of ∀⃝ restricts fixed points to only unfold

in the future, ensuring termination of each step of computation.

1.2 Operational Semantics and Results
We present an operational semantics mapping each complete Async RaTT program to a machine

that transforms a sequence of inputs received on its input channels to a sequence of outputs on its

output channels. The transformation is done in steps, processing one input at a time, producing

new outputs on the affected output channels.

The operational semantics consists of two parts. The first is the evaluation semantics describing

the evaluation of a term in each step of the evaluation. This takes a term and a store and returns a

value and an updated store in the context of current values on input signals. The store contains de-

layed computations, and the evaluation semantics may run previously stored delayed computations

as well as store new ones to be evaluated at a later step. The reactive semantics on the other hand,

describes the machine which, at each step, locates the output signals to be updated and executes

the corresponding delayed computations to produce output.

The transformation of input to output described by the operational semantics is causal by

construction. We show that it is also deterministic and productive (in the sense that each step

terminates and never gets stuck). We also show that the execution of an Async RaTT program is

free of (implicit) space leaks. This is achieved following a technique originally due to Krishnaswami

[2013]: At the end of each step of execution, the machine deletes all delayed computations that

in principle could have been run in the current step – regardless of whether they actually were

run. All inputs are also deleted, either at the end of the step or when the next input from the

same signal arrives, depending on the kind of the specific input signal. Our results show that this

aggressive garbage collection strategy is safe. Of course, the programmer can still write programs

that accumulate space, but such leaks will be explicit in the source program, not implicitly introduced

by the implementation of the language. (See Krishnaswami [2013] for a further discussion of implicit

vs explicit space leaks.)

Finally, we show that an upper bound on the dynamic clocks associated with an output signal can

be computed statically. More precisely, given an Async RaTT program consisting of a number of

output signals in a given context Δ of input channels, if one of the output signals can be typed in a

smaller context Δ′ ⊆ Δ, then that signal will never need to update on input arriving on channels in

Δ \ Δ′
. Note that this result holds despite the existence of operators like switch, which dynamically

change the dataflow graph of a program.

1.3 Overview
The paper is organised as follows: Async RaTT is presented along with its typing rules in section 2,

and section 3 illustrates the expressivity of Async RaTT by developing a small library of signal

combinators, along with examples that use the library for GUI programming and computing

integrals and derivatives of signals. The operational semantics is defined in section 4, which also

illustrates it with an example, and presents the main results. Section 5 sketches the proofs of

the main results, and in particular defines the Kripke logical relation used for the proofs. Finally,

section 6 and section 7 discuss related work, conclusions and future work. In addition, Appendix A

gives a detailed account of the proof of the fundamental property of the Kripke logical relation.

2 ASYNC RATT
This section gives an overview of Async RaTT, referring to Figures 2 and 3 for the full specification

of its syntax and typing rules.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:5

Locations 𝑙 ∈ Loc
Input Channels ^ ∈ Chan
Clock Expr. \ ::= cl (𝑣) | \ ⊔ \ ′

Types 𝐴, 𝐵 ::= 𝛼 | 1 | Nat | 𝐴 × 𝐵 | 𝐴 + 𝐵 | 𝐴 → 𝐵 | ∃⃝𝐴 | ∀⃝𝐴 | Fix 𝛼.𝐴 | □𝐴
Stable Types 𝑆, 𝑆 ′ ::= 1 | Nat | 𝑆 × 𝑆 ′ | 𝑆 + 𝑆 ′ | ∀⃝𝐴 | □𝐴
Value Types 𝑇,𝑇 ′

::= 1 | Nat | 𝑇 ×𝑇 ′ | 𝑇 +𝑇 ′

Values 𝑣,𝑤 ::= 𝑥 | ⟨⟩ | 0 | suc 𝑣 | _𝑥.𝑡 | (𝑣,𝑤) | in𝑖 𝑣 | 𝑙 | wait^ | box 𝑡 | dfix𝑥 .𝑡 | into 𝑣
Terms 𝑠, 𝑡 ::= 𝑣 | suc 𝑡 | recNat (𝑠, 𝑥 𝑦.𝑡,𝑢) | (𝑠, 𝑡) | in𝑖 𝑡 | 𝜋𝑖 𝑡 | 𝑡1𝑡2 | let𝑥 = 𝑠 in 𝑡

| case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2 | delay\ 𝑡 | adv 𝑡 | select 𝑣1 𝑣2 | unbox 𝑡
| fix𝑥 .𝑡 | never | into 𝑡 | out 𝑡 | read^

Fig. 2. Syntax.

An Async RaTT program has access to a set of input channels, each of which receive updates

asynchronously from each other. To account for this, typing judgements are relative to an input

channel context Δ or input context for short. An example of such a context is

keyPressed :p Nat,mouseCoord :bp Nat × Nat, time :b Float

There are three classes of input channels, each corresponding to one of the subscripts p, b, and
bp as in the example above. Push-only input channels, indicated by p, are input channels whose
updates are pushed through the program, possibly causing output channels to be updated. In the

example context above, the programmer will want to react to user keypresses immediately, and

so updates to this should be pushed. On the other hand, we may wish to have access to a time

input channel, which we can read from at any time, but we may not want the program to wake up

whenever the time changes. Time is therefore treated as a buffered-only input channel, indicated by

b, whose most recent value is buffered, but whose changes will not trigger the program to update

any output channel. Finally, input channels may be both buffered and pushed, indicated by bp,
which means that updates are pushed, but we also keep the value around in a buffer, so that the

latest value can always be read by the program. This is unlike the push-only input channels whose

values are deleted for space efficiency reasons, once an update push has been treated. For example,

we might want to be informed when the mouse coordinates are updated, but also keep these around

so that we can read the mouse coordinates when a key is pressed, even if the mouse has not moved.

We refer to input channels that are either push-only or buffered-push (p or bp) as push channels
and similarly to input channels that are either buffered-only or buffered-push as buffered channels.
All signals are assumed to have value types, i.e., any declaration ^ :𝑐 𝐴 in Δ must have a value

type 𝐴. The grammar for value types is given in Figure 2.

2.1 Clocks and ∃⃝
A clock is intuitively a set of push channels (p or bp), that the program may have to react to.

For instance, ∅, {keyPressed} and {keyPressed,mouseCoord} are all examples of clocks for the

example input context mentioned earlier. The type ∃⃝𝐴 is a type of delayed computation on an

existentially quantified clock. In other words, a value of type ∃⃝𝐴 is a pair of a clock \ and a

computation that will produce a value of type 𝐴 once an update on one of the input channels in

\ is received. We refer to such an update as a tick on the clock \ . For example, if the associated

clock is {keyPressed,mouseCoord}, then the data of type 𝐴 can be computed once keyPressed or

mouseCoord receive new input.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:6 Patrick Bahr and Rasmus Ejlers Møgelberg

· ⊢Δ
Γ ⊢Δ 𝑥 ∉ dom (Γ)

Γ, 𝑥 : 𝐴 ⊢Δ
Γ ⊢Δ Γ ⊢Δ \ : Clock Γ tick-free

Γ,✓\ ⊢Δ

Γ ⊢Δ \ : Clock Γ ⊢Δ \ ′ : Clock

Γ ⊢Δ \ ⊔ \ ′ : Clock

Γ ⊢Δ 𝑣 : ∃⃝𝐴

Γ ⊢Δ cl (𝑣) : Clock

Γ′ tick-free or 𝐴 stable Γ, 𝑥 : 𝐴, Γ′ ⊢Δ
Γ, 𝑥 : 𝐴, Γ′ ⊢Δ 𝑥 : 𝐴 Γ ⊢Δ ⟨⟩ : 1

Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵

Γ ⊢Δ let𝑥 = 𝑠 in 𝑡 : 𝐵

Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵 Γ tick-free

Γ ⊢Δ _𝑥 .𝑡 : 𝐴 → 𝐵

Γ ⊢Δ 𝑡 : 𝐴 → 𝐵 Γ ⊢Δ 𝑡 ′ : 𝐴

Γ ⊢Δ 𝑡 𝑡 ′ : 𝐵

Γ ⊢Δ 𝑡 : 𝐴𝑖 𝑖 ∈ {1, 2}
Γ ⊢Δ in𝑖 𝑡 : 𝐴1 +𝐴2

Γ, 𝑥 : 𝐴𝑖 ⊢Δ 𝑡𝑖 : 𝐵 Γ ⊢Δ 𝑡 : 𝐴1 +𝐴2 𝑖 ∈ {1, 2}
Γ ⊢Δ case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2 : 𝐵

Γ ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑡 ′ : 𝐵

Γ ⊢Δ (𝑡, 𝑡 ′) : 𝐴 × 𝐵

Γ ⊢Δ 𝑡 : 𝐴1 ×𝐴2 𝑖 ∈ {1, 2}
Γ ⊢Δ 𝜋𝑖 𝑡 : 𝐴𝑖

Γ,✓\ ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ \ : Clock

Γ ⊢Δ delay\ 𝑡 : ∃⃝𝐴 Γ ⊢Δ never : ∃⃝𝐴

^ :𝑐 𝐴 ∈ Δ 𝑐 ∈ {p, bp}
Γ ⊢Δ wait^ : ∃⃝𝐴

^ :𝑐 𝐴 ∈ Δ 𝑐 ∈ {b, bp}
Γ ⊢Δ read^ : 𝐴

Γ ⊢Δ 𝑣 : ∃⃝𝐴 Γ,✓cl(𝑣) , Γ
′ ⊢Δ

Γ,✓cl(𝑣) , Γ
′ ⊢Δ adv 𝑣 : 𝐴

Γ ⊢Δ 𝑣1 : ∃⃝𝐴1 Γ ⊢Δ 𝑣2 : ∃⃝𝐴2 ⊢ \1 ⊔ \2 = cl (𝑣1) ⊔ cl (𝑣2) Γ,✓\1⊔\2 , Γ
′ ⊢Δ

Γ,✓\1⊔\2 , Γ
′ ⊢Δ select 𝑣1 𝑣2 : ((𝐴1 × ∃⃝𝐴2) + (∃⃝𝐴1 ×𝐴2)) + (𝐴1 ×𝐴2)

Γ ⊢Δ 0 : Nat

Γ ⊢Δ 𝑡 : Nat

Γ ⊢Δ suc 𝑡 : Nat

Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : Nat, 𝑦 : 𝐴 ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑛 : Nat

Γ ⊢Δ recNat (𝑠, 𝑥 𝑦.𝑡, 𝑛) : 𝐴

Γ□, 𝑥 : ∀⃝𝐴 ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ fix𝑥 .𝑡 : 𝐴

Γ ⊢Δ 𝑥 : ∀⃝𝐴 Γ,✓\ , Γ
′ ⊢Δ

Γ,✓\ , Γ
′ ⊢Δ adv𝑥 : 𝐴

Γ□ ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ box 𝑡 : □𝐴

Γ ⊢Δ 𝑡 : □𝐴

Γ ⊢Δ unbox 𝑡 : 𝐴

Γ ⊢Δ 𝑡 : Fix 𝛼.𝐴

Γ ⊢Δ out 𝑡 : 𝐴[∃⃝(Fix 𝛼.𝐴)/𝛼]
Γ ⊢Δ 𝑡 : 𝐴[∃⃝(Fix𝛼.𝐴)/𝛼]

Γ ⊢Δ into 𝑡 : Fix𝛼.𝐴

·□ = · (Γ,✓\)□ = Γ□ (Γ, 𝑥 : 𝐴)□ =
{
Γ□, 𝑥 : 𝐴 if 𝐴 stable

Γ□ otherwise

Fig. 3. Typing rules.

Since ∃⃝𝐴 are existential types, one can obtain the clock cl (𝑣) for any value of these types. The
values of type ∃⃝𝐴 are variables and wait^ where ^ is one of the push channels. The latter acts as

a reference to the next value pushed on ^, and so intuitively cl (wait^) = {^}. Clocks can also be

combined using a union operator ⊔. We also include an element never which is associated with the

empty clock.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:7

We use Fitch-style [Clouston 2018], rather than the more traditional dual context style [Davies

and Pfenning 2001] for programming with the modal type constructors of Async RaTT. In the

case of ∃⃝, this means that introduction and elimination rules use a special symbol ✓\ , referred
to as a tick, in the context. One can think of a tick ✓\ as representing ticks of the clock \ , and it

divides the judgement into variables (to the left of ✓\) received before the tick, and everything

else, which happens after the tick. For example, the elimination rule should be read as: If 𝑣 has

type ∃⃝𝐴 now, then after a tick on the clock cl (𝑣), adv(𝑣) has type 𝐴. Similarly, the introduction

rule for ∃⃝ should be read as: If 𝑡 has type 𝐴 after a tick on clock \ then delay\ 𝑡 has type ∃⃝𝐴 now.

Note that there can be at most one tick in a context. This is a restriction that is required for the

proof of the productivity theorem (Theorem 4.1), and also appears in other languages in the RaTT

family [Bahr et al. 2019, 2021]. However, Bahr [2022] shows that this restriction can be lifted by a

program transformation that transforms a program typable with multiple ticks into one with only

one tick and where adv is only applied to variables.

Operationally, the term delay\ 𝑡 creates a delayed computation which is stored in a heap until

the input data necessary for evaluating it is available. It is therefore not considered a value, rather

delay\ 𝑡 evaluates to a heap reference 𝑙 to the delayed computation. Although heap references are

part of Async RaTT, and even considered values (Figure 2), programmers are not allowed to use

these directly, and there are therefore no typing rules for them.

Two delayed values 𝑣1 : ∃⃝𝐴1 and 𝑣2 : ∃⃝𝐴2 can be synchronised using select once a tick on the

union clock cl (𝑣1) ⊔ cl (𝑣2) has been received. The type of select 𝑣1 𝑣2 reflects the three possible
cases for such a tick: It could be in one cl (𝑣𝑖), but not the other, or it could be in both. For example,

if the input is in cl (𝑣1), but not cl (𝑣2), then data of type 𝐴1 × ∃⃝𝐴2 can be computed. The sync
operator shown in section 1.1 can be defined using select. The idea of using a term like select to
distinguish between these cases is due to Graulund et al. [2021], who only require two cases to be

defined, resorting to non-deterministic choice in the case where the tick is in the intersection of the

clocks. In Async RaTT, providing all three cases is crucial for the operational results of section 4.

Note that the rules for select and adv restrict the application of these constructions to values.

One reason for this is that it simplifies the metatheory by preventing arbitrary terms occurring in

contexts through clocks. It also means that clock expressions always are values that do not need

to be evaluated. For example, evaluating delaycl(𝑡) (adv(𝑡)) requires evaluating 𝑡 twice: first for

evaluating the clock, and then to evaluate the term itself. Elimination of ∃⃝ can be done for more

general terms 𝑡 using a combination of let-binding and adv.

2.2 Stable Types and Fixed Points
General values in Async RaTT can contain references to time-dependent data, such as delayed

computations stored in the heap. One of the main purposes of the type system is to prevent such

references to be dereferenced at times in the future when a delayed computation has been deleted

from the heap. For this reason, arbitrary data should not be kept across time steps, and this is

reflected in the type system in the variable introduction rule which prevents general variables to

be introduced across ticks.

For some types, however, values can not contain such references. We refer to these as stable types
and the grammar for these is given in Figure 2. Stable types include all those of the form □𝐴, which
classify computations that produce values of type 𝐴 without any access to delayed computations.

The introduction rule for □ constructs a delayed computation box(𝑡) that can be evaluated at any

time in the future. This requires 𝑡 to be typed in a stable context, and so the hypothesis of the

typing rule removes all ticks and all variables not of stable type from the context. The □ modality

has a counit and a comultiplication □ → □□. Note that wait^ and read^ are stable in the sense

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:8 Patrick Bahr and Rasmus Ejlers Møgelberg

that ⊢Δ box(wait^) : □(∃⃝𝐴) for any ^ :𝑐 𝐴 ∈ Δ where 𝑐 ∈ {p, bp} and ⊢Δ box(read^) : □𝐴 for any

^ :𝑐 𝐴 ∈ Δ where 𝑐 ∈ {b, bp}.
Async RaTT is a terminating calculus in the sense that each step of computation terminates. It

does, however, still allow recursive definitions through a fixed point operator, whose type ensures

that recursive calls are only done in later time steps. More precisely, the recursion variable 𝑥 in

fix𝑥 .𝑡 has type ∀⃝𝐴, which means that the recursive definition can be unfolded to produce a term

of type 𝐴 any time in the future, but not now. This is ensured through the elimination rule for ∀⃝
which allows it to be advanced using a tick on any clock typable in the current context. Since fixed

points can be called recursively at any time in the future, these must be stable, and so 𝑡 is required

to be typable in a stable context.

The types Fix𝛼.𝐴 are guarded recursive types that unfold to 𝐴[∃⃝(Fix𝛼.𝐴)/𝛼] via the terms

into and out. The most important of these types is Sig𝐴 defined as Fix𝛼.(𝐴 × 𝛼), which unfolds to

𝐴 × ∃⃝(Sig𝐴). A signal consists of a current value and a delayed tail, which at some time in the

future may return a new signal. Any push channel ^ :𝑐 𝐴 ∈ Δ, where 𝑐 ∈ {p, bp}, induces a stable
signal:

box
(
fix𝑥 .delaycl(wait^) (into (adv(wait^), adv(𝑥)))

)
: □(∃⃝(Sig𝐴))

where the recursion variable 𝑥 has type ∀⃝(∃⃝𝐴). These signals, of course, operate on a fixed clock

{^}, but in general, the clock associated with the tail of a signal may change from one step to the

next, which we shall see examples of in section 3.

Besides all these constructions, Async RaTT also has a number of standard constructions from

functional programming: sum types, product types, natural numbers and function types. The

typing rules for these are completely standard, with the exception that function types can only be

constructed in contexts with no ticks. Similar restrictions are known from other calculi in the RaTT

family [Bahr et al. 2019, 2021], and are necessary for the results of section 4. The aforementioned

program transformation by Bahr [2022] also removes this restriction. Note that function types are

not stable, since time-dependent references can be stored in closures.

3 PROGRAMMING IN ASYNC RATT
In this section, we demonstrate the expressiveness of Async RaTT with a number of examples. To

this end, we assume a surface language that extends Async RaTT with syntactic sugar for pattern

matching, recursion, and top-level definitions. These can be easily elaborated into the Async RaTT

calculus as described in section 3.5.

3.1 Simple Signal Combinators
We start by implementing a small set of simple combinators to manipulate signals, i.e., elements

of the guarded recursive type Sig𝐴 defined as Fix𝛼.(𝐴 × 𝛼). For readability we use the shorthand

𝑠 :: 𝑡 for into (𝑠, 𝑡), such that, given 𝑠 : 𝐴 and 𝑡 : ∃⃝(Sig𝐴), we have that 𝑠 :: 𝑡 : Sig𝐴.
We start with perhaps the simplest signal combinator:

map : □ (A → B) → Sig A → Sig B
map f (x :: xs) = unbox f x :: delay (map f (adv xs))
The map combinator takes a stable function 𝑓 and applies it pointwise to a given signal. The fact

that 𝑓 is of type □(𝐴 → 𝐵) rather than just 𝐴 → 𝐵 is crucial: Since 𝐴 → 𝐵 is not a stable type, 𝑓

would otherwise not be in scope under the delay, where we need 𝑓 for the recursive call. It also

has an intuitive justification: The function will be applied to values of the input signal arbitrarily

far into the future, but a closure of type 𝐴 → 𝐵 may contain references to delayed computations

that may have been garbage collected in the future.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:9

The map combinator is stateless in the sense that the current value of the output signal only

depends on the current value of the input signal. We can generalise this combinator to scan, which
produces an output signal that in addition may depend on the previous value of the output signal:

scan : stable B ⇒ □ (B → A → B) → B → Sig A → Sig B
scan f acc (a :: as) = acc′ :: delay (scan f acc′ (adv as))
where acc′ = unbox f acc a

Every time the input signal updates, the output signal produces a new value based on the current

value of the input signal and the previous value of the output signal. Since the previous value of

the output signal is accessed, 𝐵 must be a stable type. We use the ⇒ notation to delineate such

constraints from the type signature.

For example, we can use scan to produce the sum of an input signal of numbers:

sum : Sig Nat → Sig Nat
sum = scan (box (_m n → m + n)) 0
Often we only have access to a delayed signal. For instance, for each push channel ^ :𝑐 𝐴 ∈ Δ,

𝑐 ∈ {p, bp} we have the signal
sigAwait^ : ∃⃝ (Sig A)
sigAwait^ = delay (adv wait^ :: sigAwait^)
For example, we might have the push-only channels mouseClick :p 1 or keyPress :p KeyCode
available. We can derive a version of scan for such signals:

scanAwait : stable B ⇒ □ (B → A → B) → B → ∃⃝ (Sig A) → Sig B
scanAwait f acc as = acc :: delay (scan f acc (adv as))
A simple use case of scanAwait is a combinator that counts the updates of a given delayed signal,

e.g., the number of key presses:

count : ∃⃝ (Sig A) → Nat → Sig Nat
count s n = scanAwait (box (_ m → m + 1)) n s

Finally, we have the most simple combinator that simply produces a constant signal:

const : A → Sig A
const x = x :: never

In isolation this combinator may appear to be of little use. Its utility becomes apparent once we

also have the switching combinators introduced in the next section.

3.2 Concurrent Signal Combinators
The combinators we looked at so far only consumed a single signal, and thus had no need to account

for the concurrent behaviour of two or more clocks. For example, we may have two input signals

produced by two redundant sensors that independently provide a reading we are interested in. To

combine these two signals, we can interleave them using the following combinator:

interleave : □ (A → A → A) → ∃⃝ (Sig A) → ∃⃝ (Sig A) → ∃⃝ (Sig A)
interleave f xs ys = delay (case select xs ys of

Left (x :: xs′) ys′ .x :: interleave f xs′ ys′

Right xs′ (y :: ys′).y :: interleave f xs′ ys′

Both (x :: xs′) (y :: ys′).unbox f x y :: interleave f xs′ xs′)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:10 Patrick Bahr and Rasmus Ejlers Møgelberg

In this and subsequent definitions, we use the shorthands Left, Right, and Both, in the expected

way. For example, Left 𝑠 𝑡 is short for in1 (in1 (𝑠, 𝑡)), i.e., the case that the left clock ticked first.

The interleave combinator uses select in order to wait until at least one of the input signals ticks,

and then updates the output signal accordingly. In case that both signals tick simultaneously, the

provided merging function 𝑓 is applied. For example, 𝑓 could just always use the value of the first

signal or take the average. Note that the produced signal combines the clocks of the input signals,

i.e., it ticks whenever either of the input signals ticks.

We might also be interested in the values of both input signals simultaneously, in which case we

would use zip:

zip : stable A, B ⇒ Sig A → Sig B → Sig (A × B)
zip (x :: xs) (y :: ys) = (x, y) :: delay (case select xs ys of

Left xs′ ys′ .zip xs′ (y :: ys′)
Right xs′ ys′ .zip (x :: xs′) ys′
Both xs′ ys′ .zip xs′ ys′)

Similarly to interleave, the output signal produced by zip ticks whenever either of the input signals

does. However, note that in the Left and Right cases, we copy the previously observed value from

the signal that did not tick into the future. Hence, we need both types, 𝐴 and 𝐵, to be stable.

Finally, we consider the switching of signals. We wish to produce a signal that behaves initially

like a given input signal, but switches to a different signal as soon as some event happens. This

idea is implemented in the switch function:

switch : Sig A → ∃⃝ (Sig A) → Sig A
switch (x :: xs) d = x :: delay (case select xs d of

Left xs′ d′ .switch xs′ d′

Right d′ .d′

Both d′ .d′)

The event that represents the future change of the signal is represented as a delayed signal, and

as soon as this delayed signal ticks, as in the Right and Both cases, it takes over. With the help of

switch we can construct dynamic dataflow graphs since we replace a given signal with an entirely

new signal, which may depend on different input channels and intermediate signals compared to

the original signal.

We will demonstrate an example of this dynamic behaviour in the next section. In preparation

for that we devise a variant of switch, where the new signal depends on the value of the previous

signal:

switchf : stable A ⇒ Sig A → ∃⃝ (A → Sig A) → Sig A
switchf (x :: xs) d = x :: delay (case select xs d of

Left xs′ d′ .switchf xs′ d′

Right d′ .d′ x
Both (x′ :: xs′) d′ .d′ x′)

Instead of a new signal, this combinator waits for a function that produces the new signal, and we

feed this function the last value of the first signal.

3.3 A Simple GUI Example
To demonstrate how to use our signal combinators, we consider a very simple example of a GUI

application: Our goal is to write a reactive program with two output channels that describe the

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:11

contents of two text fields. To this end, the two output channels are given the type SigNat. The
number displayed in text fields should be incremented each time the user clicks a button, which

is available as an input channel up :p 1 ∈ Δ. However, there is only one ‘up’ button and the user

can change which text field should be changed by the ‘up’ button using a ‘toggle’ button, which is

available as an input channel toggle :p 1 ∈ Δ.
That means, the contents of the first text field can be described by the count combinator, but then

switches to the signal described by the const combinator when ‘toggle’ is pressed. The behaviour of

the other text field is reversed: first const, then count. This continuous toggling between behaviours

can be concisely described by the following combinator:

toggleSig : stable A ⇒ □ (∃⃝ 1) → □ (A → Sig A) → □ (A → Sig A) → A → Sig A
toggleSig tog f g x = switchf (unbox f x) (delay (adv tick; toggleSig tog g f))
where tick = unbox tog

The first argument provides the events that determine when to toggle between the two behaviours,

which in turn are given as the next two arguments. In the implementation we use the notation 𝑠 ; 𝑡

as a shorthand for let ⟨⟩ = 𝑠 in 𝑡 . The toggleSig combinator uses switchf to start with the first signal

provided by 𝑓 , but then switches to 𝑔 as soon as the toggle tog ticks by using a recursive call that

swaps the order of the two arguments 𝑓 and 𝑔.

The output channels that describe the two text fields can now be implemented by providing the

appropriate input signals to toggleSig:

field1, field2 : Sig Nat
field1 = toggleSig (box waittoggle) (box (count sigAwaitup)) (box const) 0

field2 = toggleSig (box waittoggle) (box const) (box (count sigAwaitup)) 0
Note that the dataflow graph changes during the execution of the program and how that change

is reflected in the clock associated with the output channels: the output channel for the first text

field first has the clock {up, toggle} as it must both count the number of times the ‘up’ button is

clicked and change its behaviour in reaction to the ‘toggle’ button being clicked. Once the ‘toggle’

button has been clicked, the clock for output channel for the text field changes to {toggle} as it
now ignores the ‘up’ button. We will examine the run-time behaviour of this example in more

detail in section 4.3.

3.4 Integral and Derivative
Buffered input channels can be used to represent input signals that change at discrete points in

time, but whose current value can be accessed at any time. For example, given a buffered push

channel ^ :bp 𝐴 ∈ Δ, we can construct the following signal (using sigAwait^ from section 3.1):

sig^ : Sig A
sig^ = read^ :: sigAwait^
To illustrate what we can do with such input signals, we assume that Async RaTT has a stable type

Float together with typical operations on floating-point numbers. Figure 4 gives the definition of

two signal combinators that each take a floating-point-valued signal and produce the integral and

the derivative of that signal. To this end, we assume a buffered push channel sample :bp Float ∈ Δ
that produces a new floating-point number 𝑠 at some fixed interval (e.g., 10 times per second). This

number 𝑠 is the number of seconds since the last update on the channel, e.g., 𝑠 = 0.1 if sample ticks
10 times per second.

The integral combinator produces the integral of a given signal starting from a given constant

that is provided as the first argument. Its implementation uses a simple approximation that samples

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:12 Patrick Bahr and Rasmus Ejlers Møgelberg

integral : Float → Sig Float → Sig Float
integral cur (0 :: xs) = cur :: delay (integral cur (adv xs))
integral cur (x :: xs) = cur :: delay (case select xs waitsample of

Left xs′ . integral cur xs′

Right xs′ dt . integral (cur + x × dt) (x :: xs′)
Both (x′ :: xs′) dt .integral (cur + x′ × dt) (x′ :: xs′))

derivative : Sig Float → Sig Float
derivative xs = der 0 (head xs) xs where
der : Float → Float → Sig Float → Sig Float
der 0 last (x :: xs) = 0 :: delay (let x′ :: xs′ = adv xs

in der ((x′ − x) / readsample) x (x′ :: xs′))
der d last (x :: xs) = d :: delay (case select xs waitsample of

Left xs′ . der d last xs′

Right xs′ dt . der ((x − last) / dt) x (x :: xs′)
Both (x′ :: xs′) dt .der ((x′ − last) / dt) x′ (x′ :: xs′))

Fig. 4. Integral and derivative signal combinators.

the value of the underlying signal each time the sample channel produces a value and adds the

area of the rectangle formed by the value of the signal and the time that has passed since the last

sampling.

The first equation of the definition is an optimisation and could be omitted. It says that if the

current value of the underlying signal is 0, we simply wait until the underlying signal is updated,

since the value of the integral won’t change until the underlying signal has a non-zero value. Hence,

we don’t have to sample every time the sample channel ticks.
Similarly to integral, we can implement a function derivative that, given a floating-point-valued

signal, produces its derivative. Like the integral function, also derivative samples the underlying

signal every time sample ticks. To do so it uses the auxiliary function der , which takes two additional
arguments: the current value of the derivative and the value of the underlying signal at the time

of the most recent input from of the sample channel. Similarly to integral, the first line of der
performs an optimisation: If the computed value of the derivative is 0, the sampling will pause until

the underlying signal is updated. As soon as it does, we pretend that sample ticked to provide a

timely update of the derivative.

These two combinators can be easily generalised from floating-point values to any vector space.

This can then be used to describe complex behaviours in reaction to multidimensional sensor data.

3.5 Elaboration of Surface Syntax into Core Calculus
To illustrate how the surface language elaborates into the Async RaTT core calculus, reconsider

the definition of map

map : □ (A → B) → Sig A → Sig B
map f (x :: xs) = unbox f x :: delay (map f (adv xs))

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:13

which elaborates to the following term in plain Async RaTT:

map = fix 𝑟 ._𝑓 ._𝑠.let𝑥 = 𝜋1 (out 𝑠) in let xs = 𝜋2 (out 𝑠)

in into
(
𝑢𝑛𝑏𝑜𝑥 𝑓 𝑥, delaycl(xs) (adv 𝑟 𝑓 (adv xs))

)
Recall that 𝑠 :: 𝑡 is a shorthand for into (𝑠, 𝑡). Pattern matching is translated into the corresponding

elimination forms, out for recursive types, 𝜋𝑖 for product types, and case for sum types. The

recursion syntax – map occurs in the body of its definition – is translated to a fixed point fix 𝑟 .𝑡 so
that the recursive occurrence of map is replaced by adv 𝑟 . Hence, recursive calls must always occur

in the scope of a ✓, which is the case in the definition of map as it appears in the scope of a delay.
Moreover, we elide the subscript cl (xs) of delay since it can be uniquely inferred from the fact that

we have the term adv xs in the scope of the delay.
In addition, we make use of top-level definitions like map and scan, which may be used in any

context later on. For example, scan is used in the definition of scanAwait in the scope of a ✓. We

can think these top-level definitions to be implicitly boxed when defined and unboxed when used

later on. That is, these definitions are translated as follows to the core calculus:

let scan = box(. . .) in
let scanAwait = box(. . . (unbox 𝑠𝑐𝑎𝑛) . . .)) in
. . .

4 OPERATIONAL SEMANTICS AND OPERATIONAL GUARANTEES
We describe the operational semantics of Async RaTT in two stages: We begin in section 4.1 with

the evaluation semantics that describes how Async RaTT terms are evaluated at a particular point

in time. Among other things, the evaluation semantics describes the computation that must happen

to make updates in reaction to the arrival of new input on a push channel. We then describe in

section 4.2 the reactive semantics that captures the dynamic behaviour of Async RaTT programs

over time. The reactive semantics is a machine that waits for new input to arrive, and then computes

new values for output channels that depend on the newly arrived input. For the latter, the reactive

semantics invokes the evaluation semantics to perform the necessary updating computations.

Finally, after demonstrating the operational semantics on an example in section 4.3, we con-

clude the discussion of the operational semantics in section 4.4 with a precise account of our

main technical results about the properties of the operational semantics: productivity, causality,

signal independence, and the absence of implicit space leaks. To prove the latter, the evaluation

semantics uses a store in which both external inputs and delayed computations are stored. Delayed

computations are garbage collected as soon as the data on which they depend has arrived. In this

fashion, Async RaTT avoids implicit space leaks by construction, provided we can prove that the

operational semantics never gets stuck.

4.1 Evaluation Semantics
Figure 5 defines the evaluation semantics as a deterministic big-step operational semantics. We

write ⟨𝑡 ;𝜎⟩ ⇓] ⟨𝑣 ;𝜏⟩ to denote that when given a term 𝑡 , a store 𝜎 , and an input buffer], the machine

computes a value 𝑣 and a new store 𝜏 . During the computation, the machine may defer computations

into the future by storing unevaluated terms in the store 𝜎 to be retrieved and evaluated later.

Conversely, the machine may also retrieve terms whose evaluation have been deferred at an earlier

time and evaluate them now. In addition, the machine may read the new value of the most recently

updated push channel from the store 𝜎 and read the current value of any buffered channel from

the input buffer].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:14 Patrick Bahr and Rasmus Ejlers Møgelberg

⟨𝑣 ;𝜎⟩ ⇓] ⟨𝑣 ;𝜎⟩
⟨𝑡 ;𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉 〈
𝑡 ′;𝜎′

〉
⇓]

〈
𝑣 ′;𝜎′′

〉〈(
𝑡, 𝑡 ′

)
;𝜎
〉
⇓]

〈(
𝑣, 𝑣 ′

)
;𝜎′′

〉 ⟨𝑡 ;𝜎⟩ ⇓]
〈
(𝑣1, 𝑣2) ;𝜎′

〉
𝑖 ∈ {1, 2}

⟨𝜋𝑖 (𝑡);𝜎⟩ ⇓]
〈
𝑣𝑖 ;𝜎

′〉
⟨𝑡 ;𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉
𝑖 ∈ {1, 2}

⟨in𝑖 (𝑡);𝜎⟩ ⇓]
〈
in𝑖 (𝑣);𝜎′

〉 ⟨𝑡 ;𝜎⟩ ⇓]
〈
in𝑖 (𝑣);𝜎′

〉 〈
𝑡𝑖 [𝑣/𝑥];𝜎′

〉
⇓]

〈
𝑣𝑖 ;𝜎

′′〉 𝑖 ∈ {1, 2}
⟨case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2;𝜎⟩ ⇓]

〈
𝑣𝑖 ;𝜎

′′〉
⟨𝑡 ;𝜎⟩ ⇓]

〈
_𝑥 .𝑠;𝜎′

〉 〈
𝑡 ′;𝜎′

〉
⇓]

〈
𝑣 ;𝜎′′

〉 〈
𝑠 [𝑣/𝑥];𝜎′′

〉
⇓]

〈
𝑣 ′;𝜎′′′

〉〈
𝑡 𝑡 ′;𝜎

〉
⇓]

〈
𝑣 ′;𝜎′′′

〉
⟨𝑠;𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉 〈
𝑡 [𝑣/𝑥];𝜎′

〉
⇓]

〈
𝑤 ;𝜎′′

〉
⟨let𝑥 = 𝑠 in 𝑡 ;𝜎⟩ ⇓]

〈
𝑤 ;𝜎′′

〉 ^ ∈ dom (])
⟨read^ ;𝜎⟩ ⇓] ⟨] (^);𝜎⟩

𝑙 = alloc |\ | (𝜎)〈
delay\ 𝑡 ;𝜎

〉
⇓] ⟨𝑙 ; (𝜎, 𝑙 ↦→ 𝑡)⟩

𝑙 = alloc∅ (𝜎)
⟨never;𝜎⟩ ⇓] ⟨𝑙 ;𝜎⟩

⟨advwait^ ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿⟩ ⇓] ⟨𝑣 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿⟩
⟨[𝑁 (𝑙);[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿⟩ ⇓] ⟨𝑤 ;𝜎⟩
⟨adv 𝑙 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿⟩ ⇓] ⟨𝑤 ;𝜎⟩

^ ∈ |cl (𝑣𝑖) | \ |cl (𝑣3−𝑖) | ⟨adv 𝑣𝑖 ;[𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿⟩ ⇓] ⟨𝑢𝑖 ;𝜎⟩ 𝑢3−𝑖 = 𝑣3−𝑖

⟨select 𝑣1 𝑣2;[𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿⟩ ⇓] ⟨in1 (in𝑖 (𝑢1, 𝑢2));𝜎⟩

^ ∈ |cl (𝑣1) | ∩ |cl (𝑣2) | ⟨adv 𝑣1;[𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿⟩ ⇓] ⟨𝑢1;𝜎⟩ ⟨adv 𝑣2;𝜎⟩ ⇓]
〈
𝑢2;𝜎

′〉
⟨select 𝑣1 𝑣2;[𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿⟩ ⇓]

〈
in2 (𝑢1, 𝑢2) ;𝜎′

〉
⟨𝑡 ;𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉
⟨suc 𝑡 ;𝜎⟩ ⇓]

〈
suc 𝑣 ;𝜎′

〉 ⟨𝑛;𝜎⟩ ⇓]
〈
0;𝜎′

〉 〈
𝑠;𝜎′

〉
⇓]

〈
𝑣 ;𝜎′′

〉
⟨recNat (𝑠, 𝑥 𝑦.𝑡, 𝑛);𝜎⟩ ⇓]

〈
𝑣 ;𝜎′′

〉
⟨𝑛;𝜎⟩ ⇓]

〈
suc 𝑣 ;𝜎′

〉 〈
recNat (𝑠, 𝑥 𝑦.𝑡, 𝑣);𝜎′

〉
⇓]

〈
𝑣 ′;𝜎′′

〉 〈
𝑡 [𝑣/𝑥, 𝑣 ′/𝑦];𝜎′′

〉
⇓]

〈
𝑤 ;𝜎′′′

〉
⟨recNat (𝑠, 𝑥 𝑦.𝑡, 𝑛);𝜎⟩ ⇓]

〈
𝑤 ;𝜎′′′

〉
⟨𝑡 [dfix𝑥 .𝑡/𝑥];𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉
⟨adv (dfix𝑥 .𝑡);𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉 ⟨𝑡 [dfix𝑥 .𝑡/𝑥];𝜎⟩ ⇓]
〈
𝑣 ;𝜎′

〉
⟨fix𝑥 .𝑡 ;𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉
⟨𝑡 ;𝜎⟩ ⇓]

〈
box 𝑡 ′;𝜎′

〉 〈
𝑡 ′;𝜎′

〉
⇓]

〈
𝑣 ;𝜎′′

〉
⟨unbox 𝑡 ;𝜎⟩ ⇓]

〈
𝑣 ;𝜎′′

〉 ⟨𝑡 ;𝜎⟩ ⇓]
〈
𝑣 ;𝜎′

〉
⟨into 𝑡 ;𝜎⟩ ⇓]

〈
into 𝑣 ;𝜎′

〉 ⟨𝑡 ;𝜎⟩ ⇓]
〈
into 𝑣 ;𝜎′

〉
⟨out 𝑡 ;𝜎⟩ ⇓]

〈
𝑣 ;𝜎′

〉
Fig. 5. Operational semantics.

To facilitate the delay of computations, the syntax of the language features heap locations 𝑙 ,

which are not typable in the calculus but may be introduced by the machine during evaluation.

A heap location represents a delayed computation that can be resumed once a particular clock

has ticked, which indicates that the data the delayed computation is waiting for has arrived. To

this end, each heap location 𝑙 is associated with a clock, denoted cl (𝑙). As soon as the clock cl (𝑙)
ticks, the delayed computation represented by 𝑙 can be resumed by retrieving the unevaluated term

stored at heap location 𝑙 and evaluating it. We write Loc for the set of all heap locations and assume

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:15

that for each clock Θ, there are countably infinitely many locations 𝑙 with cl (𝑙) = Θ. A clock Θ is a

finite set of push channels drawn from dom (Δ), and it ticks any time any of its channels ^ ∈ Θ is

updated. For example, assuming an input context Δ for a GUI, the clock {keyPressed,mouseCoord}
ticks whenever the user presses a key or moves the mouse. Note that we are now more precise in

distinguishing clock expressions, typically denoted \ , and clocks, typically denoted Θ. A closed clock

expression \ evaluates to a clock |\ | as follows:

|cl (𝑙) | = cl (𝑙) |cl (wait^) | = {^} |\ ⊔ \ ′ | = |\ | ∪ |\ ′ |

Delayed computations reside in a heap, which is simply a finite mapping [from heap locations

to terms. Of particular interest are heaps [whose locations, denoted dom ([), each have a clock

that contains a given input channel ^:

Heap^ = {[∈ Heap | ∀𝑙 ∈ dom ([) . ^ ∈ cl (𝑙) }

It is safe to evaluate terms stored in a heap [∈ Heap^ as soon as a new value on the input channel

^ has arrived. This intuition is reflected in the representation of stores 𝜎 , which can be in one of two

forms: a single-heap store [𝐿 or a two-heap store [𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 with [𝑁 ∈ Heap^ . We typically

refer to [𝐿 as the later heap, which is used to store delayed computations for later, and to [𝑁 as the

now heap, whose stored terms are safe to be evaluated now. The ⟨^ ↦→ 𝑣⟩ component of a two-heap

store indicates that the input channel ^ has been updated to the new value 𝑣 . The machine can

thus safely resume computations from [𝑁 since the data that the delayed computations in [𝑁 were

waiting for has arrived.

Let’s first consider the semantics for delay: To allocate fresh locations in the store, we assume a

function allocΘ (·), which, if given a store [𝐿 or [𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 , produces a location 𝑙 ∉ dom ([𝐿)
with cl (𝑙) = Θ. This results in a store [𝐿, 𝑙 ↦→ 𝑡 or [𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿, 𝑙 ↦→ 𝑡 , respectively, where

[𝐿, 𝑙 ↦→ 𝑡 denotes the heap [𝐿 extended with the mapping 𝑙 ↦→ 𝑡 .

Conversely, adv 𝑙 retrieves a previously delayed computation. The typing discipline ensures that

adv 𝑙 will only be evaluated in the context of a store of the form [𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 with 𝑙 ∈ dom ([𝑁)
and therefore also ^ ∈ cl (𝑙). In addition, adv may be applied to wait^ which simply looks up the

new value 𝑣 from the channel ^.

The select combinator allows us to interact with two delayed computations simultaneously. Its

semantics checks for the three possible contingencies, namely which non-empty subset of the two

delayed computations has been triggered. Each of the two argument values 𝑣1 or 𝑣2 is either a heap

location or wait^ and thus the machine can simply check whether the current input channel ^ is in

the clocks associated with 𝑣1, 𝑣2, or both. Depending on the outcome, the machine advances the

corresponding value(s).

Finally, the fixed point combinator fix is evaluated with the help of the combinator dfix, which
similarly to heap locations is not typable in the calculus but is introduced by the machine. Intuitively

speaking, we can think of a value of the form dfix𝑥 .𝑡 as shorthand for Λ\ .(delay\ (fix𝑥 .𝑡)). That
is, dfix𝑥 .𝑡 is a thunk that, when given a clock \ , produces a delayed computation on \ , which

in turn evaluates a fixed point once \ ticks. The action of the adv combinator for ∀⃝ can thus

also be interpreted as first providing the clock \ and then advancing the delayed computation

delay\ (fix𝑥 .𝑡), which means evaluating fix𝑥 .𝑡 .

4.2 Reactive Semantics
An Async RaTT program interacts with its environment by receiving input from a set of input

channels and in return sends output to a set of output channels. The input context Δ describes

the available input channels. In addition, we also have an output context Γout, that only contains

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:16 Patrick Bahr and Rasmus Ejlers Møgelberg

init

⟨⟨𝑡⟩ ; ∅⟩ ⇓] ⟨⟨𝑣1 :: 𝑙1, . . . , 𝑣𝑚 :: 𝑙𝑚⟩ ;[⟩

⟨𝑡 ;]⟩
𝑥1 ↦→𝑣1,...,𝑥𝑚 ↦→𝑣𝑚

=⇒ ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑚 ↦→ 𝑙𝑚 ;[;]⟩

input

]′ =] [^ ↦→ 𝑣] if ^ ∈ dom (]) otherwise]′ =]

⟨𝑁 ;[;]⟩ ^ ↦→𝑣
=⇒

〈
𝑁 ; [[]^∈ ⟨^ ↦→ 𝑣⟩ [[]^∉ ;]′

〉
output-end

⟨·;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]⟩
·

=⇒ ⟨·;[𝐿 ;]⟩

output-skip

^ ∉ cl (𝑙) ⟨𝑁 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]⟩
𝑂
=⇒ ⟨𝑁 ′

;[;]⟩

⟨𝑥 ↦→ 𝑙, 𝑁 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]⟩
𝑂
=⇒ ⟨𝑥 ↦→ 𝑙, 𝑁 ′

;[;]⟩

output-compute

^ ∈ cl (𝑙) ⟨adv 𝑙 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿⟩ ⇓] ⟨𝑣 ′ :: 𝑙 ′;𝜎⟩ ⟨𝑁 ;𝜎 ;]⟩ 𝑂
=⇒ ⟨𝑁 ′

;[;]⟩

⟨𝑥 ↦→ 𝑙, 𝑁 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]⟩
𝑥 ↦→𝑣′,𝑂
=⇒ ⟨𝑥 ↦→ 𝑙 ′, 𝑁 ′

;[;]⟩

Fig. 6. Reactive semantics.

variables 𝑥 : 𝐴, where 𝐴 is a value type. We refer to the variables in Γout as output channels. Taken
together, we call the pair consisting of Δ and Γout a reactive interface, written Δ ⇒ Γout.

Given an output interface Γout = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 , we define the type Prod (Γout) as the product
of all types in Γout, i.e., Prod (Γout) = Sig𝐴1 × · · · × Sig𝐴𝑛 . The 𝑛-ary product type used here can

be encoded using the binary product type and the unit type in the standard way. An Async RaTT

term 𝑡 is said to be a reactive program implementing the reactive interface Δ ⇒ Γout, denoted
𝑡 : Δ ⇒ Γout, if ⊢Δ 𝑡 : Prod (Γout).

The operational semantics of a reactive program is described by the machine in Figure 6. The

state of the machine can be of two different forms: Initially, the machine is in a state of the form

⟨𝑡 ;]⟩, where 𝑡 : Δ ⇒ Γout is the reactive program and] is the initial input buffer, which contains the

initial values of all buffered input channels. Subsequently, the machine state is a pair ⟨𝑁 ;𝜎 ;]⟩, where
𝑁 is a sequence of the form 𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑛 ↦→ 𝑙𝑛 that maps output channels 𝑥𝑖 ∈ dom (Γout) to
heap locations. That is, 𝑁 records for each output channel the location of the delayed computation

that will produce the next value of the output channel as soon as it needs updating.

The machine can make three kinds of transitions:

an initialisation transition ⟨𝑡 ;]⟩ 𝑂
=⇒ ⟨𝑁 ;[;]⟩

an input transition ⟨𝑁 ;[;]⟩ ^ ↦→𝑣
=⇒ ⟨𝑁 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]′⟩

an output transition ⟨𝑁 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]⟩
𝑂
=⇒ ⟨𝑁 ′

;[𝐿 ;]⟩

where 𝑂 is a sequence 𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛 that maps output channels to values. After the initial

transition, which initialises the values of all output channels, the machine alternates between input

transitions, each of which updates the value of an input channel and possibly the input buffer (if

the new input is on a buffered channel), and output transitions, each of which provides new values

for all those output channels triggered by the immediately preceding input transition.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:17

The initialisation transition evaluates the reactive program 𝑡 in the context of the initial input

buffer] and thereby produces a tuple ⟨𝑣1 :: 𝑙1, . . . , 𝑣𝑚 :: 𝑙𝑚⟩ whose components 𝑣𝑖 :: 𝑙𝑖 correspond to

the output channels 𝑥𝑖 : 𝐴𝑖 ∈ Γout. Each 𝑣𝑖 is the initial value of the output channel 𝑥𝑖 and each 𝑙𝑖
points to a delayed computation in the heap [that computes future values of 𝑥𝑖 .

An input transition receives an updated value 𝑣 on the input channel ^ and reacts by updating

the input buffer (if it already had a value for ^) and transitioning the store [to the new store

[[]^∈ ⟨^ ↦→ 𝑣⟩ [[]^∉. This splits the heap [into a part that contains ^ and a part that does not:

[[]^∈ (𝑙) = [(𝑙) if ^ ∈ cl (𝑙) [[]^∉ (𝑙) = [(𝑙) if ^ ∉ cl (𝑙)

That is, in the subsequent output transition, the machine can read from [[]^∈ , i.e., exactly those

heap locations from [that were waiting for input from ^, and access the new value 𝑣 from ^.

Finally, the output transition checks for each element 𝑥 ↦→ 𝑙 in 𝑁 , whether it should be advanced

because it depends on ^ (output-compute) or should remain untouched because it does not depend

on ^ (output-skip). Only in the output-compute case, a new output value for 𝑥 is produced.

In the end, the output transition performs the desired garbage collection that deletes both the

now heap [𝑁 and the input value 𝑣 (output-end). This also means that the updates performed by

output-compute, are not only possible (because the required data arrived), but also necessary

(because both the input data and the delayed computations they depend on will be gone after this

output transition of the machine).

4.3 Example
To see the operational semantics in action, we revisit the simple GUI program from section 3.3 and

run it on the machine. To this end, we first elaborate the definition of toggleSig into an explicit

fixed point term of the core calculus as described in section 3.5:

toggleSig = fix 𝑟 ._tog._𝑓 ._𝑔._𝑥 .

let tick = unbox tog in switchf (unbox 𝑓 𝑥) (delaycl(tick) (𝑎𝑑𝑣 tick; adv 𝑟 tog 𝑔 𝑓))

During the execution, the machine turns fixed points like toggleSig into delayed fixed points that

use dfix instead of fix. We write toggleSig′ for this delayed fixed point, i.e., toggleSig′ is obtained
from toggleSig by replacing fix with dfix. We will use the same notational convention for other

fixed point definitions and write sigAwait′^ and scan′ for the dfix versions of sigAwait^ and scan
from section 3.1.

We consider the program field1 : Δ ⇒ Γout with Δ =
{
up :p 1, toggle :p 1

}
, Γout = 𝑥 : Nat, and

field1 = toggleSig 𝑡 𝑠1 𝑠2 0 where 𝑡 = boxwaittoggle
𝑠1 = box (count sigAwaitup)
𝑠2 = box const

That is, this program describes the behaviour of the text field that initially is in focus and thus

reacts to the ‘up’ button.

For better clarity of the transition steps of the machine, we write the machine’s store as just the

list of its heap locations, and write the contents of the locations along with their clocks separately

underneath. The first step of the machine performs the initialisation that provides the initial value

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:18 Patrick Bahr and Rasmus Ejlers Møgelberg

of the output signal:

⟨field1; ∅⟩ 𝑥 ↦→0

=⇒ ⟨𝑥 ↦→ 𝑙1; 𝑙1, 𝑙2, 𝑙3, 𝑙4; ∅⟩
where 𝑙1 ↦→ case select 𝑙3 𝑙4 of . . . cl (𝑙1) = {toggle, up}

𝑙2 ↦→ advwaitup :: adv sigAwait′ cl (𝑙2) = {up}
𝑙3 ↦→ scan (box _𝑛._𝑚.𝑚 + 1) 0 (adv 𝑙2) cl (𝑙3) = {up}
𝑙4 ↦→ advwaittoggle; adv toggleSig′ 𝑡 𝑠2 𝑠1 cl (𝑙4) = {toggle}

We can see that the next value for the output channel 𝑥 is provided by the delayed computation at

location 𝑙1, and since cl (𝑙1) = {toggle, up} we know that 𝑥 will produce a new value as soon as the

user clicks either of the two buttons. If the user clicks the ‘up’ button, we see the following:

⟨𝑥 ↦→ 𝑙1; 𝑙1, 𝑙2, 𝑙3, 𝑙4; ∅⟩
up↦→⟨⟩
=⇒ ⟨𝑥 ↦→ 𝑙1; 𝑙1, 𝑙2, 𝑙3 ⟨up ↦→ ⟨⟩⟩ 𝑙4; ∅⟩

𝑥 ↦→1

=⇒ ⟨𝑥 ↦→ 𝑙5; 𝑙4, 𝑙5, 𝑙6, 𝑙7; ∅⟩
where 𝑙5 ↦→ case select 𝑙7 𝑙4 of . . . cl (𝑙5) = {toggle, up}

𝑙6 ↦→ advwaitup :: adv sigAwait′ cl (𝑙6) = {up}
𝑙7 ↦→ adv scan′ (box _𝑛._𝑚.𝑚 + 1) 0 (adv 𝑙6) cl (𝑙7) = {up}

The heap locations 𝑙1, 𝑙2, 𝑙3 are garbage collected and only 𝑙4 survives since only the clock of 𝑙4 does

not contain up. If the user now clicks the ‘toggle‘ button, we see the following:

⟨𝑥 ↦→ 𝑙5; 𝑙4, 𝑙5, 𝑙6, 𝑙7; ∅⟩
toggle↦→⟨⟩
=⇒ ⟨𝑥 ↦→ 𝑙5; 𝑙4, 𝑙5 ⟨toggle ↦→ ⟨⟩⟩ 𝑙6, 𝑙7; ∅⟩

𝑥 ↦→1

=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙6, 𝑙7, 𝑙8, 𝑙9; ∅⟩
where cl (𝑙0) = ∅ 𝑙8 ↦→ case select 𝑙0 𝑙9 of . . . cl (𝑙8) = {toggle}

𝑙9 ↦→ advwaittoggle :: adv sigAwait′ 𝑡 𝑠1 𝑠2 cl (𝑙9) = {toggle}

The heap location 𝑙0 is allocated by never and thus does not appear on the heap. Now the output

channel 𝑥 only depends on the input channel toggle. If the user now repeatedly clicks the ‘up’

button, no output is produced:

⟨𝑥 ↦→ 𝑙8; 𝑙6, 𝑙7, 𝑙8, 𝑙9; ∅⟩
up↦→⟨⟩
=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙6, 𝑙7 ⟨up ↦→ ⟨⟩⟩ 𝑙8, 𝑙9; ∅⟩

·
=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙8, 𝑙9; ∅⟩

up↦→⟨⟩
=⇒ ⟨𝑥 ↦→ 𝑙8; ⟨up ↦→ ⟨⟩⟩ 𝑙8, 𝑙9; ∅⟩

·
=⇒ ⟨𝑥 ↦→ 𝑙8; 𝑙8, 𝑙9; ∅⟩

Finally, note that since the input context Δ contains no buffered input channels the input buffer

remains empty during the entire run of the program.

4.4 Main Results
The operational semantics presented above allows us to precisely state the operational guarantees

provided by Async RaTT, namely productivity, the absence of implicit space leaks, causality, and

signal independence. We address each of them in turn.

4.4.1 Productivity. Reactive programs 𝑡 : Δ ⇒ Γout are productive in the sense that if we feed 𝑡

with a well-typed initial input buffer and an infinite sequence of well-typed inputs on its input

channels, then it will produce an infinite sequence of well-typed outputs on its output channels.

Before we can state the productivity property formally, we need to make precise what we mean by

well-typed:

• An input buffer] is well-typed , denoted ⊢] : Δ, if ⊢] (^) : 𝐴 for each ^ such that ^ :b 𝐴 ∈ Δ
or ^ :bp 𝐴 ∈ Δ.

• An input value ^ ↦→ 𝑣 is well-typed, written ⊢ ^ ↦→ 𝑣 : Δ, if ^ :𝑐 𝐴 ∈ Δ and ⊢ 𝑣 : 𝐴.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:19

• A set of output values 𝑂 is well-typed, written ⊢ 𝑂 : Γout, if for all 𝑥 ↦→ 𝑣 ∈ 𝑂 , we have that

𝑥 : 𝐴 ∈ Γout and ⊢ 𝑣 : 𝐴.

We can now formally state the productivity property as follows:

Theorem 4.1 (productivity). Given a reactive program 𝑡 : Δ ⇒ Γout, well-typed input values

⊢ ^𝑖 ↦→ 𝑣𝑖 : Δ for all 𝑖 ∈ N, and a well-typed initial input buffer ⊢]0 : Δ, there is an infinite transition

sequence

⟨𝑡 ;]0⟩
𝑂0

=⇒ ⟨𝑁0;[0;]0⟩
^0 ↦→𝑣0
=⇒ ⟨𝑁0;𝜎0;]1⟩

𝑂1

=⇒ ⟨𝑁1;[1;]1⟩
^1 ↦→𝑣1
=⇒ . . .

with ⊢ 𝑂𝑖 : Γout for all 𝑖 ∈ N.

While a reactive program will always produce a set of output values𝑂𝑖+1 for each incoming input

value ^𝑖 ↦→ 𝑣𝑖 , this set may be empty. This happens if none of the heap locations in 𝑁𝑖 depends

on the input ^𝑖 , i.e., if ^𝑖 ∉ cl (𝑙) for all 𝑥 ↦→ 𝑙 ∈ 𝑁𝑖 . As we will see in Proposition 4.4, this will

necessarily be the case for inputs ^ :b 𝐴 ∈ Δ that are buffered-only. Note that all output channels

are initialised in the initialisation transition. An empty set of output values therefore only means

that no output channels need to be updated.

4.4.2 Implicit Space Leaks. The absence of implicit space leaks is a direct consequence of the

productivity property (Theorem 4.1). More precisely, the operational semantics of Async RaTT is

formulated in such a way that after each pair of input/output transitions

⟨𝑁 ;[;]⟩ ^ ↦→𝑣
=⇒ ⟨𝑁 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]′⟩

𝑂
=⇒ ⟨𝑁 ′

;[𝐿 ;]
′⟩

all heap locations 𝑙 in [that depend on ^ , i.e., those with ^ ∈ cl (𝑙), are garbage collected and thus

do not appear in [𝐿 . That is, a delayed computation at location 𝑙 is only kept in memory until its

clock cl (𝑙) ticks. By Theorem 4.1, this aggressive garbage collection strategy is safe: The machine

never gets stuck attempting to dereference a garbage collected heap location.

4.4.3 Causality. In the following we refer to the transition sequences for a reactive program 𝑡

obtained by Theorem 4.1 simply as well-typed transition sequences for 𝑡 .

A reactive program 𝑡 is causal, if for any of its well-typed transition sequences

⟨𝑡 ;]0⟩
𝑂0

=⇒ ⟨𝑁0;[0;]0⟩
^0 ↦→𝑣0
=⇒ ⟨𝑁0;𝜎0;]1⟩

𝑂1

=⇒ ⟨𝑁1;[1;]1⟩
^1 ↦→𝑣1
=⇒ . . . (1)

each set of output values 𝑂𝑛 only depends on the initial input buffer]0 and previously received

input values ^𝑖 ↦→ 𝑣𝑖 with 𝑖 < 𝑛. To see that this is always the case, we first note that the operational

semantics is deterministic in the following sense:

Lemma 4.2 (deterministic semantics).
(i) ⟨𝑡 ;𝜎⟩ ⇓] ⟨𝑣1;𝜎1⟩ and ⟨𝑡 ;𝜎⟩ ⇓] ⟨𝑣2;𝜎2⟩ implies that 𝑣1 = 𝑣2 and that 𝜎1 = 𝜎2.
(ii) 𝑐

^ ↦→𝑣
=⇒ 𝑐1 and 𝑐

^ ↦→𝑣
=⇒ 𝑐2 implies 𝑐1 = 𝑐2.

(iii) 𝑐
𝑂1

=⇒ 𝑐1 and 𝑐
𝑂2

=⇒ 𝑐2 implies 𝑂1 = 𝑂2 and 𝑐1 = 𝑐2.

Causality now follows from Theorem 4.1 and Lemma 4.2.

Corollary 4.3 (causality). Suppose (1) as well as the following are well-typed transition sequences

⟨𝑡 ;]0⟩
𝑂 ′

0

=⇒
〈
𝑁 ′
0
;[′

0
;]′
0

〉 ^′
0
↦→𝑣′

0

=⇒
〈
𝑁 ′
0
;𝜎 ′

0
;]′
1

〉 𝑂 ′
1

=⇒
〈
𝑁 ′
1
;[′

1
;]′
1

〉 ^′
1
↦→𝑣′

1

=⇒ . . .

Let 𝑛 ∈ N and suppose ^′𝑖 = ^𝑖 and 𝑣 ′𝑖 = 𝑣𝑖 for all 𝑖 < 𝑛. Then 𝑂 ′
𝑛 = 𝑂𝑛 .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:20 Patrick Bahr and Rasmus Ejlers Møgelberg

4.4.4 Signal Independence. From the definition of the reactive semantics we can see that the

machine only updates an output channel 𝑥 : 𝐴 ∈ Γout if it depends on the input value ^ ↦→ 𝑣 that

has just arrived, i.e., if the machine is in a state ⟨𝑁 ;[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ;]⟩ with ^ ∈ cl (𝑁 (𝑥)). However,
the typing system allows us to give two useful static criteria for when ^ ∉ cl (𝑁 (𝑥)) is guaranteed
and thus the output signal 𝑥 need not (and indeed cannot) be updated.

As alluded to earlier, values received on buffered-only channels will never produce an output:

Proposition 4.4 (buffered signal independence). Suppose 𝑡 : Δ ⇒ Γout is a reactive program and

⟨𝑡 ;]0⟩
𝑂0

=⇒ ⟨𝑁0;[0;]0⟩
^0 ↦→𝑣0
=⇒ ⟨𝑁0;𝜎0;]1⟩

𝑂1

=⇒ ⟨𝑁1;[1;]1⟩
^1 ↦→𝑣1
=⇒ . . .

is a well-typed transition sequence for 𝑡 . Then 𝑂𝑖+1 is empty whenever ^𝑖 :b 𝐴 ∈ Δ for some 𝐴.

Secondly, the input context Δ for a given output signal implementation gives us an upper bound

on the push channels that will trigger an update:

Theorem 4.5 (push signal independence). Suppose (𝑡, 𝑠) : Δ ⇒ Γout is a reactive program with

Γout = Γ, 𝑧 : 𝐶 such that also 𝑠 : Δ′ ⇒ (𝑧 : 𝐶) is a reactive program for some Δ′ ⊂ Δ and

⟨(𝑡, 𝑠) ;]0⟩
𝑂0

=⇒ ⟨𝑁0;[0;]0⟩
^0 ↦→𝑣0
=⇒ ⟨𝑁0;𝜎0;]1⟩

𝑂1

=⇒ ⟨𝑁1;[1;]1⟩
^1 ↦→𝑣1
=⇒ . . .

is a well-typed transition sequence for (𝑡, 𝑠). Then 𝑧 ↦→ 𝑣 ∈ 𝑂𝑖+1 implies that ^𝑖 ∈ dom (Δ′). In
other words, the output channel 𝑧 is only updated when inputs in Δ′

are updated.

5 METATHEORY
In this section, we sketch the proof of the operational properties presented in section 4.4, namely

Theorem 4.1, Proposition 4.4, and Theorem 4.5. All three follow from a more general semantic

soundness property. To prove this property, we first devise a semantic model of the Async RaTT

calculus in the form of a Kripke logical relation. That is, the model consists of a family J𝐴K(𝑤) of
sets of closed terms that satisfy the soundness properties we are interested in. This family of sets is

indexed by a world and is defined by induction on the structure of the type 𝐴 and world𝑤 . The

soundness proof is thus reduced to a proof that ⊢Δ 𝑡 : 𝐴 implies 𝑡 ∈ J𝐴K(𝑤), which is also known

as the fundamental property of the logical relation.

5.1 Kripke Logical Relation
The worlds𝑤 for our logical relation consist of two components: a natural number 𝑛 and a store 𝜎 .

The number 𝑛 allows us to model guarded recursive types via step-indexing [Appel and McAllester

2001]. This is achieved by defining J ∃⃝𝐴K(𝑛 + 1, 𝜎) in terms of J𝐴K(𝑛, 𝜎 ′) for some suitable 𝜎 ′
. Since

recursive types Fix𝛼.𝐴 unfold to 𝐴[∃⃝(Fix𝛼.𝐴)/𝛼], we can define JFix𝛼.𝐴K(𝑛 + 1, 𝜎) in terms of

J𝐴K(𝑛 + 1, 𝜎) and JFix𝛼.𝐴K(𝑛, 𝜎 ′), which is well-founded since in the former we refer to the smaller

type 𝐴 and in the latter we refer to a smaller step index 𝑛.

A key aspect of the operational semantics of Async RaTT is that it stores delayed computations

in a store 𝜎 . Hence, in order to capture the semantics of a term 𝑡 , we have to account for the fact

that 𝑡 may contain heap locations that point into some suitable store 𝜎 . Intuitively speaking, the

set J𝐴K(𝑛, 𝜎) contains those terms that, starting with the store 𝜎 , can be executed safely to produce

a value of type 𝐴. Ultimately, the index 𝜎 enables us to prove that the garbage collection performed

by the reactive semantics is indeed sound.

What makes J𝐴K(𝑛, 𝜎) a Kripke logical relation is the fact that we have a preorder ≲ on worlds

such that (𝑛, 𝜎) ≲ (𝑛′, 𝜎 ′) implies J𝐴K(𝑛, 𝜎) ⊆ J𝐴K(𝑛′, 𝜎 ′). We can think of (𝑛′, 𝜎 ′) as a future

world reachable from (𝑛, 𝜎), i.e., it describes how the surrounding context changes as the machine

performs computations. There are four different kinds of changes, which we address in turn below:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:21

Firstly, time may pass, which means that we have fewer time steps left, i.e., 𝑛 > 𝑛′. Secondly, the
machine performs garbage collection on the store 𝜎 . The following garbage collection function

describes this:

gc([𝐿) = [𝐿 gc([𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿) = [𝐿

Third, the machine may store delayed computation in 𝜎 , which we account for by the order ⊑ on

heaps and stores:

[(𝑙) = [′ (𝑙) for all 𝑙 ∈ dom ([)
[⊑ [′

[𝑁 ⊑ [′𝑁 [𝐿 ⊑ [′𝐿

[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿 ⊑ [′𝑁 ⟨^ ↦→ 𝑣⟩ [′𝐿
That is, 𝜎 ⊑ 𝜎 ′

iff 𝜎 ′
is obtained from 𝜎 by storing additional terms.

Finally, the machine may receive an input value ^ ↦→ 𝑣 , which is captured by the following order

⊑Δ
✓
on stores:

𝜎 ⊑ 𝜎 ′

𝜎 ⊑Δ
✓ 𝜎

′
[𝐿 ⊑ [′𝐿 ^ :𝑐 𝐴 ∈ Δ ⊢ 𝑣 : 𝐴

[𝐿 ⊑Δ
✓ [𝑁 ⟨^ ↦→ 𝑣⟩ [′𝐿

That is, in addition to the allocations captured by ⊑, the order may also introduce an input value

^ ↦→ 𝑣 .

Taken together, we can define the Kripke preorder ≲ on worlds as follows:

(𝑛, 𝜎) ≲ (𝑛′, 𝜎 ′) iff 𝑛 ≥ 𝑛′ and 𝜎 ⊑Δ
✓ 𝜎

′

This does not include garbage collection, as it is restricted to certain circumstances. Indeed, the

machine performs garbage collection only at certain points of the execution, namely at the end of

an output transition.

Finally, before we can give the definition of the Kripke logical relation, we need to semantically

capture the notion of input independence that is needed both for the operational semantics of

select and the signal independence properties (Proposition 4.4 and Theorem 4.5). In essence, we

need that a heap location 𝑙 in the world (𝑛 + 1, 𝜎) should still be present in the future world (𝑛, 𝜎 ′)
in which we received an input on a channel ^ ∉ 𝑙 . We achieve this by making the logical relation

J ∃⃝𝐴K(𝑛, 𝜎) satisfy the following clock independence property:

If 𝑙 ∈ J ∃⃝𝐴K(𝑛, 𝜎), then 𝑙 ∈ J ∃⃝𝐴K(𝑛, [𝜎]cl(𝑙))
where [𝜎]Θ restricts 𝜎 to heap locations whose clocks are subclocks of Θ:

[[]Θ (𝑙) = [(𝑙) if cl (𝑙) ⊆ Θ

[[𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿]Θ =

{
[[𝑁]Θ ⟨^ ↦→ 𝑣⟩ [[𝐿]Θ if ^ ∈ Θ

[[𝐿]Θ if ^ ∉ Θ

The full definition of the Kripke logical relation is given in Figure 7. In addition to the aspects

discussed above, it is parameterised by the context Δ and distinguishes between the value relation

VΔJ𝐴K(𝑤) and the term relation TΔJ𝐴K(𝑤). The two relations are defined by well-founded recursion
by the lexicographic ordering on the tuple (𝑛, |𝐴| , 𝑒), where |𝐴| is the size of 𝐴 defined below, and

𝑒 = 1 for the term relation and 𝑒 = 0 for the value relation.

|𝛼 | = | ∃⃝𝐴| = | ∀⃝𝐴| = |1| = |Nat| = 1

|𝐴 × 𝐵 | = |𝐴 + 𝐵 | = |𝐴 → 𝐵 | = 1 + |𝐴| + |𝐵 |
|□𝐴| = |Fix𝛼.𝐴| = 1 + |𝐴|

Note that in the definition for VΔJ ∃⃝𝐴K(𝑤) in Figure 7, we use the shorthand 𝜎 (𝑙) for [𝐿 (𝑙), where
[𝐿 is the later heap of 𝜎 .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:22 Patrick Bahr and Rasmus Ejlers Møgelberg

VΔJ1K(𝑤) = {⟨⟩} ,
VΔJNatK(𝑤) =

{
suc𝑛 0

��𝑛 ∈ N
}
,

VΔJ𝐴 × 𝐵K(𝑤) =
{
(𝑣1, 𝑣2)

�� 𝑣1 ∈ VΔJ𝐴K(𝑤) ∧ 𝑣2 ∈ VΔJ𝐵K(𝑤)
}
,

VΔJ𝐴 + 𝐵K(𝑤) =
{
in1 𝑣

�� 𝑣 ∈ VΔJ𝐴K(𝑤)
}
∪
{
in2 𝑣

�� 𝑣 ∈ VΔJ𝐵K(𝑤)
}

VΔJ𝐴 → 𝐵K(𝑛, 𝜎) =
{
_𝑥 .𝑡

���∀𝜎′ ⊒Δ
✓ gc(𝜎), 𝑛′ ≤ 𝑛, 𝑣 ∈ VΔJ𝐴K(𝑛′, 𝜎′) .𝑡 [𝑣/𝑥] ∈ TΔJ𝐵K(𝑛′, 𝜎′)

}
VΔJ□𝐴K(𝑛, 𝜎) =

{
box 𝑡

�� 𝑡 ∈ TΔJ𝐴K(𝑛, ∅)
}

VΔJ ∀⃝𝐴K(0, 𝜎) = {dfix𝑥 .𝑡 | dfix𝑥 .𝑡 a closed term }
VΔJ ∀⃝𝐴K(𝑛 + 1, 𝜎) =

{
dfix𝑥 .𝑡

�� 𝑡 [dfix𝑥 .𝑡/𝑥] ∈ TΔJ𝐴K(𝑛, ∅)
}

VΔJ ∃⃝𝐴K(0, 𝜎) = LocΔ ∪ {wait^ | ^ :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {p, bp} }

VΔJ ∃⃝𝐴K(𝑛 + 1, 𝜎) =
{
𝑙 ∈ LocΔ

���∀^ ∈ cl (𝑙) , ⊢ 𝑣 : Δ(^).𝜎 (𝑙) ∈ TΔJ𝐴K(𝑛,
[
[gc(𝜎)]^∈⟨^ ↦→ 𝑣⟩[gc(𝜎)]^∉

]
cl(𝑙))

}
∪ {wait^ | ^ :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {p, bp} }

VΔJFix𝛼.𝐴K(𝑤) =
{
into 𝑣

�� 𝑣 ∈ VΔJ𝐴[∃⃝(Fix𝛼.𝐴)/𝛼]K(𝑤)
}

TΔJ𝐴K(𝑛, 𝜎) =
{
𝑡

��� 𝑡 closed, ∀] : Δ.∀𝜎′ ⊒Δ
✓ 𝜎.∃𝜎

′′, 𝑣 .
〈
𝑡 ;𝜎′

〉
⇓]

〈
𝑣 ;𝜎′′

〉
∧ 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎′′)

}
CΔJ·K(𝑤) = {∗}

CΔJΓ, 𝑥 : 𝐴K(𝑤) =
{
𝛾 [𝑥 ↦→ 𝑣]

��𝛾 ∈ CΔJΓK(𝑤), 𝑣 ∈ VΔJ𝐴K(𝑤)
}

CΔJΓ,✓\ K(𝑛, [𝑁 ⟨^ ↦→ 𝑣⟩ [𝐿) =

𝛾 ∈ CΔJΓK(𝑛 + 1, ([′𝑁 ,
[
[′𝐿

]
^∉
))

�������
[[𝐿]Θ =

[
[′𝐿

]
Θ , [[𝑁]Θ =

[
[′𝑁

]
Θ ,

[′𝑁 ∈ Heap^ , ⊢ 𝑣 : Δ(^), ^ ∈ Θ, and

Θ ⊆ domp (Δ) , where Θ = |\𝛾 |

Using

domp (Δ) = {^ | ∃𝐴, 𝑐 ∈ {p, bp}.𝑥 :𝑐 𝐴 ∈ Δ } LocΔ =
{
𝑙 ∈ Loc

�� cl (𝑙) ⊆ domp (Δ)
}

Fig. 7. Logical relation.

Our goal is to prove the fundamental property, i.e., that ⊢Δ 𝑡 : 𝐴 implies 𝑡 ∈ TΔJ𝐴K(𝑛, 𝜎), by
induction on the typing derivation. Therefore, we need to generalise the fundamental property

to open terms as well. That means we also need a corresponding logical relation for contexts,

which is given at the bottom of Figure 7. The interpretation of ✓\ in a context is quite technical,

but is essentially determined by the interpretation of ∃⃝ due to the requirement of being left

adjoint [Birkedal et al. 2020].

The three logical relations indeed satisfy the preservation under the Kripke preorder ≲.

Lemma 5.1. Let 𝑛 ≥ 𝑛′ and 𝜎 ⊑Δ
✓
𝜎 ′.

(i) VΔJ𝐴K(𝑛, 𝜎) ⊆ VΔJ𝐴K(𝑛′, 𝜎 ′).
(ii) TΔJ𝐴K(𝑛, 𝜎) ⊆ TΔJ𝐴K(𝑛′, 𝜎 ′).
(iii) CΔJΓK(𝑛, 𝜎) ⊆ CΔJΓK(𝑛′, 𝜎 ′).
Preservation under garbage collection, however, only holds for values and tick-free contexts:

Lemma 5.2. (garbage collection)
(i) VΔJ𝐴K(𝑛, 𝜎) ⊆ VΔJ𝐴K(𝑛, gc(𝜎)).
(ii) CΔJΓK(𝑛, 𝜎) ⊆ CΔJΓK(𝑛, gc(𝜎)) if Γ is tick-free.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:23

Moreover, the clock independence property holds for both the value and context relations:

Lemma 5.3.

(i) If 𝑣 ∈ VΔJ ∃⃝𝐴K(𝑛, 𝜎), then 𝑣 ∈ VΔJ ∃⃝𝐴K(𝑛, 𝜎 ′), for any 𝜎 ′ with [𝜎]cl(𝑣) = [𝜎 ′]cl(𝑣) .
(ii) If 𝛾 ∈ CΔJΓ,✓\ K(𝑛, 𝜎), then 𝛾 ∈ CΔJΓ,✓\ K(𝑛, [𝜎] |\𝛾 |)

Finally, we obtain the soundness of the language by the following fundamental property of the

logical relation:

Theorem 5.4. Given Γ ⊢Δ, Γ ⊢Δ 𝑡 : 𝐴, and 𝛾 ∈ CΔJΓK(𝑛, 𝜎), then 𝑡𝛾 ∈ TΔJ𝐴K(𝑛, 𝜎).

The proof is a standard induction on the typing relation Γ ⊢Δ 𝑡 : 𝐴 that makes use of the

aforementioned closure properties of the logical relations and is included in Appendix A.

5.2 Operational Properties
We close this section by showing how we can use the fundamental property to prove the opera-

tional properties presented in section 4.4. To this end, we will sketch the proofs of Theorem 4.1,

Proposition 4.4, and Theorem 4.5.

5.2.1 Productivity. In the following we assume a fixed reactive interface Δ ⇒ Γout, for which we

define the following sets of machine states 𝐼𝑛 and 𝑆𝑛 for the reactive semantics:

𝐼𝑛 =
{
⟨𝑡 ;]⟩

��] : Δ ∧ 𝑡 ∈ TΔJProd (Γout)K(𝑛, ∅)
}

𝑆𝑛 =
{
⟨𝑁 ;[;]⟩

��] : Δ ∧ ∀𝑥 ↦→ 𝑙 ∈ 𝑁 .∃𝑥 : 𝐴 ∈ Γout.𝑙 ∈ VΔJ ∃⃝(Sig𝐴)K(𝑛, [)
}

The following lemma proves that the machine stays inside the sets of states defined above and

will only produce well-typed outputs. For the latter, we make use of the fact that 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎)
iff ⊢ 𝑣 : 𝐴 for every value type 𝐴.

Lemma 5.5 (productivity).

(i) If 𝑡 : Δ ⇒ Γout and] : Δ, then ⟨𝑡 ;]⟩ ∈ 𝐼𝑛 for all 𝑛 ∈ N.
(ii) If ⟨𝑡 ;]⟩ ∈ 𝐼𝑛 , then there is a transition ⟨𝑡 ;]⟩ 𝑂

=⇒ ⟨𝑁 ;[;]⟩ such that ⟨𝑁 ;[;]⟩ ∈ 𝑆𝑛 and ⊢ 𝑂 : Γout.
(iii) If ⟨𝑁 ;[;]⟩ ∈ 𝑆𝑛+1 and ⊢ ^ ↦→ 𝑣 : Δ, then there is a sequence of two transitions

⟨𝑁 ;[;]⟩ ^ ↦→𝑣
=⇒ ⟨𝑁 ;𝜎 ;]′⟩ 𝑂

=⇒ ⟨𝑁 ′
;[′;]′⟩

such that ⟨𝑁 ′
;[′;]′⟩ ∈ 𝑆𝑛 and ⊢ 𝑂 : Γout.

Proof.

(i) We need to show that 𝑡 ∈ TΔJProd (Γout)K(𝑛, ∅). Since 𝑡 : Δ ⇒ Γout, we know that ⊢Δ 𝑡 :

Prod (Γout). Hence, by Theorem 5.4, we have that 𝑡 ∈ TΔJProd (Γout)K(𝑛, ∅).
(ii) Let ⟨𝑡 ;]⟩ ∈ 𝐼𝑛 . We thus have 𝑡 ∈ TΔJProd (Γout)K(𝑛, ∅). Therefore, by definition, we have

⟨𝑡 ; ∅⟩ ⇓] ⟨⟨𝑣1 :: 𝑤1, . . . , 𝑣𝑘 :: 𝑤𝑘⟩ ;[⟩ with 𝑣𝑖 ∈ VΔJ𝐴𝑖K(𝑛, [) and 𝑤𝑖 ∈ VΔJ ∃⃝(Sig𝐴𝑖)K(𝑛, [).
Since Sig𝐴𝑖 is not a value type, we know that each 𝑤𝑖 must be a heap location, so we

can write 𝑙𝑖 for 𝑤𝑖 . Hence, by definition, ⟨𝑡 ;]⟩
𝑥1 ↦→𝑣1,...,𝑥𝑘 ↦→𝑣𝑘

=⇒ ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑘 ↦→ 𝑙𝑘 ;[;]⟩ and
⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑘 ↦→ 𝑙𝑘 ;[;]⟩ ∈ 𝑆𝑛 . Since each𝐴𝑖 is a value type, we know that 𝑣𝑖 ∈ VΔJ𝐴𝑖K(𝑛, [)
implies ⊢ 𝑣𝑖 : 𝐴𝑖 and thus ⊢ 𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑘 ↦→ 𝑣𝑘 : Γout.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:24 Patrick Bahr and Rasmus Ejlers Møgelberg

(iii) By definition ⟨𝑁 ;[;]⟩ ^ ↦→𝑣
=⇒ ⟨𝑁 ;𝜎 ;]′⟩, where 𝜎 = [[]^∈ ⟨^ ↦→ 𝑣⟩ [[]^∉. We claim the following

three statements:

If 𝑦 : 𝐵 ∈ Γout, 𝑁 (𝑦) = 𝑙, ^ ∈ cl (𝑙) , then adv 𝑙 ∈ TΔJSig𝐵K(𝑛, 𝜎) (2)

If 𝑦 : 𝐵 ∈ Γout, 𝑁 (𝑦) = 𝑙, ^ ∉ cl (𝑙) , then 𝑙 ∈ VΔJ ∃⃝(Sig𝐵)K(𝑛, 𝜎) (3)

If 𝜎 ′ ⊒ 𝜎, 𝑁1 ⊆ 𝑁, then ⟨𝑁1;𝜎
′
;]′⟩ 𝑂

=⇒ ⟨𝑁2;[
′
;]′⟩ , ⟨𝑁2;[

′
;]′⟩ ∈ 𝑆𝑛, gc(𝜎 ′) ⊑ [′, ⊢ 𝑂 : Γout (4)

From (4), we then obtain that ⟨𝑁 ;𝜎 ;]′⟩ 𝑂
=⇒ ⟨𝑁 ′

;[′;]′⟩, with ⟨𝑁 ′
;[′;]′⟩ ∈ 𝑆𝑛 and ⊢ 𝑂 : Γout.

We conclude this proof by proving the above three claims:

• Proof of (2). Since ⟨𝑁 ;[;]⟩ ∈ 𝑆𝑛+1, we know that 𝑙 ∈ VΔJ ∃⃝(Sig𝐵)K(𝑛 + 1, [) and thus

adv 𝑙 ∈ TΔJSig𝐵K(𝑛, 𝜎).
• Proof of (3). Since ⟨𝑁 ;[;]⟩ ∈ 𝑆𝑛+1, we know that 𝑙 ∈ VΔJ ∃⃝(Sig𝐵)K(𝑛 + 1, [). Since
^ ∉ cl (𝑙), we can conclude that [[]cl(𝑙) =

[
[[]^∉

]
cl(𝑙) . In turn, by Lemma 5.3, this means that

𝑙 ∈ VΔJ ∃⃝(Sig𝐵)K(𝑛 + 1, [[]^∉), which by Lemma 5.1 implies that 𝑙 ∈ VΔJ ∃⃝(Sig𝐵)K(𝑛, 𝜎).
• Proof of (4). We proceed by induction on 𝑁1. The case 𝑁1 = · is trivial. For the case

𝑁1 = 𝑦 ↦→ 𝑤, 𝑁 ′
1
, we distinguish between the case where ^ ∈ cl (𝑤) and the case where

^ ∉ cl (𝑤). Then we can apply (2) or (3), respectively, and use the induction hypothesis for

𝑁 ′
1
and some 𝜎 ′′ ⊒ 𝜎 ′

. If ^ ∉ cl (𝑤), then 𝜎 ′′
is just 𝜎 ′

. If ^ ∈ cl (𝑤), then 𝜎 ′′
arises from

the evaluation ⟨adv𝑤 ;𝜎 ′⟩ ⇓]′ ⟨𝑣 :: 𝑤 ′
;𝜎 ′′⟩ we obtained from (2). In either case, we make

use of Lemma 5.1 and Lemma 5.2 to conclude ⟨𝑁2;[
′
;]′⟩ ∈ 𝑆𝑛 . □

The productivity property is now a straightforward consequence of the above lemma:

proof of Theorem 4.1 (productivity). For each 𝑛 ∈ N we can we can construct the following

finite transition sequence 𝑠𝑛 using Lemma 5.5:

⟨𝑡 ;]0⟩
𝑂0

=⇒ ⟨𝑁0;[0;]0⟩
^0 ↦→𝑣0
=⇒ ⟨𝑁0;𝜎0;]1⟩

𝑂1

=⇒ ⟨𝑁1;[1;]1⟩
^1 ↦→𝑣1
=⇒ . . .

𝑂𝑛

=⇒ ⟨𝑁𝑛 ;[𝑛 ;]𝑛⟩

with ⊢ 𝑂𝑖 : Γout for all 0 ≤ 𝑖 ≤ 𝑛. By Lemma 4.2, 𝑠𝑛 is a prefix of 𝑠𝑚 for all𝑚 > 𝑛. We thus obtain

the desired infinite transition sequence as the limit of all 𝑠𝑛 . □

5.2.2 Signal Independence. Proposition 4.4 is a straightforward consequence of Lemma 5.5:

Proof of Proposition 4.4 (buffered signal independence). By Lemma 5.5, for any pair of

transitions ⟨𝑁𝑖 ;[𝑖 ;]
′⟩

^𝑖 ↦→𝑣𝑖
=⇒ ⟨𝑁𝑖 ;𝜎𝑖 ;]𝑖+1⟩

𝑂𝑖+1
=⇒ ⟨𝑁𝑖+1;[𝑖+1;]𝑖+1⟩ in a sequence starting from ⟨𝑡 ;]𝑖⟩, we

have that ⟨𝑁𝑖 ;[𝑖 ;]
′⟩ ∈ 𝑆1. In particular, this means that 𝑙 ∈ VΔJ ∃⃝(Sig𝐴)K(1, [𝑖) for any 𝑥 ↦→ 𝑙 ∈ 𝑁𝑖

with 𝑥 : 𝐴 ∈ Γout, which in turn means that 𝑙 ∈ LocΔ. Hence, ^𝑖 ∉ cl (𝑙), and so 𝑂𝑖+1 is empty. □

For the proof of Theorem 4.5, we first define the following sets of machine states in the context

of a partial map Δ′
that maps variables 𝑥 to input contexts Δ′

𝑥 :

𝑇 Δ′
𝑛 =

{
⟨𝑁 ;[;]⟩

��] : Δ ∧ ∀𝑥 ↦→ 𝑤 ∈ 𝑁 .Δ′
𝑥 ⊆ Δ ∧ ∃𝑥 : 𝐴 ∈ Γout.𝑤 ∈ VΔ′

𝑥
J ∃⃝(Sig𝐴)K(𝑛, [)

}
Machine states in 𝑇 Δ′

𝑛 are maintained during the execution of the machine:

Lemma 5.6. If ⟨𝑁 ;[;]⟩ ∈ 𝑇 Δ′
𝑛+1 and ⟨𝑁 ;[;]⟩ ^ ↦→𝑣

=⇒ ⟨𝑁 ;𝜎 ;]′⟩ 𝑂
=⇒ ⟨𝑁 ′

;[′;]′⟩, then ⟨𝑁 ′
;[′;]′⟩ ∈ 𝑇 Δ′

𝑛 .

Proof. Note that 𝜎 = [[]^∈ ⟨^ ↦→ 𝑣⟩ [[]^∉ and that [[]^∉ ⊆ [′. Suppose (𝑥 ↦→ 𝑤) ∈ 𝑁 , and

note that𝑤 must be a location, since Sig𝐴 is not a value type. We will write 𝑙 for𝑤 to emphasise

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:25

this. Then there is an 𝑙 ′ such that (𝑥 ↦→ 𝑙 ′) ∈ 𝑁 ′
and we must show that 𝑙 ′ ∈ VΔ′

𝑥
J ∃⃝(Sig𝐴)K(𝑛, [′)

using the hypothesis 𝑙 ∈ VΔ′
𝑥
J ∃⃝(Sig𝐴)K(𝑛 + 1, [). Suppose first that ^ ∉ cl (𝑙). Then 𝑙 ′ = 𝑙 and thus

𝑙 ′ ∈ VΔ′
𝑥
J ∃⃝(Sig𝐴)K(𝑛, [[]cl(𝑙)) ⊆ VΔ′

𝑥
J ∃⃝(Sig𝐴)K(𝑛, [[]^∉) ⊆ VΔ′

𝑥
J ∃⃝(Sig𝐴)K(𝑛, [′)

Suppose now^ ∈ cl (𝑙). In that case, 𝑙 ′ must have occurred by evaluating ⟨𝜎 ′ (𝑙);𝜎 ′⟩ ⇓] ⟨𝑤 :: 𝑙 ′;𝜎 ′′⟩
for some 𝜎 ′, 𝜎 ′′

such that 𝜎 ⊆ 𝜎 ′
, and gc(𝜎 ′′) ⊆ [′. The hypothesis tells us that

[(𝑙) ∈ TΔ′
𝑥
J ∃⃝(Sig𝐴)K(𝑛, [[]^∈ ⟨^ ↦→ 𝑣⟩ [[]^∉)

Since [[]^∈ ⟨^ ↦→ 𝑣⟩ [[]^∉ ⊆ 𝜎 ′
, thismeans that ⟨[(𝑙);𝜎 ′⟩ ⇓] ⟨𝑤 ′

:: 𝑙 ′′;𝜎 ′′′⟩. Since[(𝑙) = [[]^∈ (𝑙) =
𝜎 ′ (𝑙), by the determinism of the operational semantics (Lemma 4.2), 𝜎 ′′′ = 𝜎 ′′

and 𝑙 ′′ = 𝑙 ′. From
this we conclude that

𝑙 ′ ∈ VΔ′
𝑥
J ∃⃝(Sig𝐴)K(𝑛, 𝜎 ′′) = VΔ′

𝑥
J ∃⃝(Sig𝐴)K(𝑛, gc(𝜎 ′′)) ⊆ VΔ′

𝑥
J ∃⃝(Sig𝐴)K(𝑛, [′) □

Proof of Theorem 4.5 (push signal independence). Let Γout = 𝑥1 : 𝐵1, . . . , 𝑥𝑚 : 𝐵𝑚, 𝑧 : 𝐶 . The

initialisation transition

⟨(𝑡, 𝑠) ;]0⟩
𝑥1 ↦→𝑣1,...,𝑥𝑚 ↦→𝑣𝑚,𝑧 ↦→𝑤

=⇒ ⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑚 ↦→ 𝑙𝑚, 𝑧 ↦→ 𝑙 ;[0;]0⟩ = ⟨𝑁0;[0;]0⟩
is caused by evaluations of the form ⟨𝑡 ; ∅⟩ ⇓] ⟨⟨𝑣1 :: 𝑙1, . . . , 𝑣𝑚 :: 𝑙𝑚⟩ ;[⟩, and ⟨𝑠;[⟩ ⇓] ⟨𝑤 :: 𝑙 ;[0⟩. By
assumption ⊢Δ′ 𝑠 : Sig𝐶 and thus 𝑠 ∈ TΔ′JSig𝐶K(𝑛, ∅) for all𝑛 by Theorem 5.4, which in turn implies

𝑙 ∈ VΔ′J ∃⃝Sig𝐶K(𝑛, [0) for all 𝑛. Likewise 𝑙 𝑗 ∈ VΔJ ∃⃝Sig𝐵 𝑗 K(𝑛, [0) for all 𝑛, and 𝑗 = 1, . . . ,𝑚. So

⟨𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑚 ↦→ 𝑙𝑚, 𝑧 ↦→ 𝑙 ;[0;]0⟩ ∈ 𝑇 Δ′′
𝑛 for all 𝑛, where Δ′′

𝑧 = Δ′
and Δ′′

𝑥 𝑗
= Δ, for 𝑗 = 1, . . . ,𝑚.

By 𝑛 applications of Lemma 5.6, we thus obtain that ⟨𝑁𝑛 ;[𝑛 ;]𝑛⟩ ∈ 𝑇 Δ′′
1

. In particular, 𝑁𝑛 (𝑧) = 𝑙 ′

for some 𝑙 ′ ∈ VΔ′J ∃⃝(Sig𝐶)K(1, [𝑛). Hence, cl (𝑙 ′) ⊆ dom (Δ′) and thus 𝑧 ↦→ 𝑣 ∈ 𝑂𝑖+1 implies

^𝑖 ∈ cl (𝑙 ′), which in turn implies ^𝑖 ∈ dom (Δ′). □

6 RELATEDWORK
Functional reactive programming originates with Elliott and Hudak [1997]. The use of modal types

for FRP was first suggested by Krishnaswami and Benton [2011], and the connection between

linear temporal logic and FRP was discovered independently by Jeffrey [2012] and Jeltsch [2012].

Although some of these calculi have been implemented, they do not offer operational guarantees

like the ones proved here for lack of space leaks. The first such operational guarantees were

given by Krishnaswami et al. [2012] who describe a modal FRP language using linear types and

allocation resources to statically bound the memory used by a reactive program. The simpler, but

less precise, idea of using an aggressive garbage collection technique for avoiding space leaks is due

to Krishnaswami [2013]. Krishnaswami’s calculus used a dual context approach to programming

with modal types. Bahr et al. [2019] recast these results in a Fitch-style modal calculus, the first

in the RaTT family. This was later implemented in Haskell with some minor modifications [Bahr

2022].

All the above calculi are based on a global notion of time, which in almost all cases is discrete. In

particular, the modal operator ⃝ for time steps in these calculi refers to the next time step on the

global clock. One can of course also understand the step semantics of Async RaTT as operating on

a global clock, but in our model each step is associated with an input coming from an input channel,

and this allows us to define the delay modality ∃⃝ as a delay on a set of input channels. From the

model perspective, ∃⃝𝐴 carries some similarities with the type ⃝(^𝐴), where ^𝐴 � 𝐴 + ⃝^𝐴
is a guarded recursive type. This encoding, however, suffers from the efficiency and abstraction

problems mentioned in the introduction.

The only asynchronous modal FRP calculus that we are aware of is _widget defined by Graulund

et al. [2021], which takes ^ as a type constructor primitive and endows it with synchronisation

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:26 Patrick Bahr and Rasmus Ejlers Møgelberg

primitive similar to select in Async RaTT. However, the programming primitives in _widget are very

different from the ones use here. For example, _widget allows an element of ^𝐴 to be decomposed

into a time and an element of𝐴 at that time, andmuch programmingwith^ uses this decomposition.

There is also no delay type constructor ⃝, so ∃⃝ is not expressible: Unlike ∃⃝𝐴, an element of ^𝐴
could give a value of type 𝐴 already now. Graulund et al. provide a denotational semantics for

_widget, but no operational semantics, and no operational guarantees as proved here.

Another approach to avoiding space leaks and non-causal reactive programs is to devise a carefully

designed interface to manipulate signals such as Yampa [Nilsson et al. 2002] or FRPNow! [Ploeg

and Claessen 2015]. Rhine [Bärenz and Perez 2018] is a recent refinement of Yampa that annotates

signal functions with type-level clocks, which allows the construction of complex dataflow graphs

that combine subsystems running at different clock speeds. The typing discipline fixes the clock of

each subsystem statically at compile time, since the aim of Rhine is provide efficient resampling

between subsystems. By contrast, the type-level clocks of Async RaTT are existentially quantified,

which allows Async RaTT programs to dynamically change the clock of a signal, e.g., by using the

switch combinator from section 3.2.

Elliott [2009] proposed a push-pull implementation of FRP, where signals (which in the tradition

of classic FRP [Elliott and Hudak 1997] are called behaviours) are updated at discrete time steps

(push), but can also be sampled at any time between such updates (pull). We can represent such

push-pull signals in Async RaTT using the type Sig (Time → 𝐴), i.e., at each tick of the clock we

get a new function Time → 𝐴 that describes the time-varying value of the signal until the next tick

of the clock.

Futures, first implemented in MuliLisp [Halstead 1985] and now commonly found in many pro-

gramming languages under different names (promise, async/await, delay, etc.), provide a powerful

abstraction to facilitate communication between concurrent computations. A value of type Future𝐴
is the promise to deliver a value of type 𝐴 at some time in the future. For example, a function

to read the contents of a file could immediately return a value of type FutureBuffer instead of

blocking the caller until the file was read into a buffer. Async RaTT can provide a similar inter-

face using the type modality ∃⃝, either directly or by defining Future as a guarded recursive type

Future𝐴 � 𝐴+ ∃⃝(Future𝐴) to give Future a monadic interface. Since Async RaTT does not require

the set of push-only channels to be finite, we could implement a function that takes a filename

𝑓 and returns a result of type Future Buffer simply as a family of channels readFile𝑓 :p Buffer .
The machine would monitor delayed computations for clocks containing these channels, initiate

reading the corresponding files in parallel, and provide the value of type Buffer on the channel

upon completion of the file reading procedure.

As mentioned earlier, Krishnaswami et al. [2012] used a linear typing discipline to obtain static

memory bounds. In addition to such memory bounds, synchronous (dataflow) languages such

as Esterel [Berry and Cosserat 1985], Lustre [Caspi et al. 1987], and Lucid Synchrone [Pouzet

2006] even provide bounds on runtime. Despite these strong guarantees, Lucid Synchrone affords

a high-level, modular programming style with support for higher-order functions. However, to

achieve such static guarantees, synchronous dataflow languages must necessarily enforce strict

limits on the dynamic behaviour, disallowing both time-varying values of arbitrary types (e.g., we

cannot have a stream of streams) and dynamic switching (i.e., no functionality equivalent to the

switch combinator). Both Lustre and Lucid Synchrone have a notion of a clock, which is simply a

stream of Booleans that indicates at each tick of the global clock, whether the local clock ticks as

well.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:27

7 CONCLUSION AND FUTUREWORK
This paper presented Async RaTT, the first modal language for asynchronous FRP with operational

guarantees. We showed how the new modal type ∃⃝ for asynchronous delay can be used to annotate

the runtime system with dependencies from output channels to input channels, ensuring that

outputs are only recomputed when necessary. The examples of the integral and the derivative even

show how the programmer can actively influence the update rate of output channels.

The choice of Fitch-style modalities is a question of taste, and we believe that the results could be

reproduced in a dual context language. Even though Fitch-style uses non-standard operations on

contexts, other languages in the RaTT family have been implemented as libraries in Haskell [Bahr

2022]. We therefore believe that also Async RaTT can be implemented in Haskell or other functional

programming languages, giving programmers access to a combination of features from RaTT and

the hosting programming language.

One aspect missing from Async RaTT is filtering of output channels. For example, it is not

possible to write a filter function that only produces output when some condition on the input is

met. The best way to do model this is using an output channel of type Maybe(𝐴), leaving it to the

runtime system to only push values of type 𝐴 to the consumers of the output channel. This way

the filtering is external to the programming language. We see no way to meaningfully extend the

runtime model of Async RaTT to internalise it.

ACKNOWLEDGMENTS
Møgelberg was supported by the Independent Research Fund Denmark grant number 2032-00134B.

REFERENCES
Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-carrying Code.

ACM Trans. Program. Lang. Syst. 23, 5 (Sept. 2001), 657–683. https://doi.org/10.1145/504709.504712 00283.

Patrick Bahr. 2022. Modal FRP for all: Functional reactive programming without space leaks in Haskell. Journal of Functional
Programming 32 (2022), e15.

Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. 2019. Simply RaTT: a fitch-style modal calculus for

reactive programming without space leaks. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 1–27.

https://doi.org/10.1145/3341713

Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. 2021. Diamonds are not forever: Liveness in reactive

programming with guarded recursion. Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–28.

Manuel Bärenz and Ivan Perez. 2018. Rhine: FRP with type-level clocks. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell (Haskell 2018). Association for Computing Machinery, New York, NY, USA, 145–157. https:

//doi.org/10.1145/3242744.3242757

Gérard Berry and Laurent Cosserat. 1985. The ESTEREL synchronous programming language and its mathematical semantics.

In Seminar on Concurrency, Stephen D. Brookes, Andrew William Roscoe, and Glynn Winskel (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, DE, 389–448.

Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M Pitts, and Bas Spitters. 2020. Modal

dependent type theory and dependent right adjoints. Mathematical Structures in Computer Science 30, 2 (2020), 118–138.
Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. 1987. LUSTRE: A Declarative Language for Real-time

Programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(Munich, West Germany) (POPL ’87). ACM, New York, NY, USA, 178–188. https://doi.org/10.1145/41625.41641

Andrew Cave, Francisco Ferreira, Prakash Panangaden, and Brigitte Pientka. 2014. Fair Reactive Programming. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, San Diego,

California, USA, 361–372. https://doi.org/10.1145/2535838.2535881

Ranald Clouston. 2018. Fitch-style modal lambda calculi. In Foundations of Software Science and Computation Structures,
Christel Baier and Ugo Dal Lago (Eds.), Vol. 10803. Springer, Springer International Publishing, Cham, 258–275. https:

//doi.org/10.1007/978-3-319-89366-2_14

Rowan Davies and Frank Pfenning. 2001. A modal analysis of staged computation. Journal of the ACM (JACM) 48, 3 (2001),
555–604.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3341713
https://doi.org/10.1145/3242744.3242757
https://doi.org/10.1145/3242744.3242757
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/2535838.2535881
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2_14

205:28 Patrick Bahr and Rasmus Ejlers Møgelberg

Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Proceedings of the Second ACM SIGPLAN International
Conference on Functional Programming (Amsterdam, The Netherlands) (ICFP ’97). ACM, New York, NY, USA, 263–273.

https://doi.org/10.1145/258948.258973

Conal M. Elliott. 2009. Push-pull Functional Reactive Programming. In Proceedings of the 2nd ACM SIGPLAN Symposium on
Haskell (Haskell ’09). ACM, New York, NY, USA, 25–36. https://doi.org/10.1145/1596638.1596643

Christian Uldal Graulund, Dmitrij Szamozvancev, and Neel Krishnaswami. 2021. Adjoint Reactive GUI Programming.. In

FoSSaCS. 289–309.
Robert H. Halstead. 1985. Multilisp: A language for concurrent symbolic computation. ACM Transactions on Programming

Languages and Systems 7, 4 (Oct. 1985), 501–538. https://doi.org/10.1145/4472.4478

Alan Jeffrey. 2012. LTL types FRP: linear-time temporal logic propositions as types, proofs as functional reactive programs.

In Proceedings of the sixth workshop on Programming Languages meets Program Verification, PLPV 2012, Philadelphia,
PA, USA, January 24, 2012, Koen Claessen and Nikhil Swamy (Eds.). ACM, Philadelphia, PA, USA, 49–60. https:

//doi.org/10.1145/2103776.2103783

Alan Jeffrey. 2014. Functional Reactive Types. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
(Vienna, Austria) (CSL-LICS ’14). ACM, New York, NY, USA, Article 54, 9 pages. https://doi.org/10.1145/2603088.2603106

Wolfgang Jeltsch. 2012. Towards a common categorical semantics for linear-time temporal logic and functional reactive

programming. Electronic Notes in Theoretical Computer Science 286 (2012), 229–242. https://doi.org/10.1016/j.entcs.2012.

08.015

Neelakantan R. Krishnaswami. 2013. Higher-order Functional Reactive Programming Without Spacetime Leaks. In Proceed-
ings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM, Boston,Massachusetts,

USA, 221–232. https://doi.org/10.1145/2500365.2500588

Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric Semantics of Reactive Programs. In 2011 IEEE 26th
Annual Symposium on Logic in Computer Science. IEEE Computer Society, Washington, DC, USA, 257–266. https:

//doi.org/10.1109/LICS.2011.38

Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann. 2012. Higher-order functional reactive programming in

bounded space. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, Philadelphia,

PA, USA, 45–58. https://doi.org/10.1145/2103656.2103665

Hiroshi Nakano. 2000. Amodality for recursion. In Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science
(Cat. No.99CB36332). IEEE Computer Society, Washington, DC, USA, 255–266. https://doi.org/10.1109/LICS.2000.855774

Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional reactive programming, continued. In Haskell ’02:
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. ACM, New York, NY, USA, 51–64. https://doi.org/10.1145/

581690.581695

Atze van der Ploeg and Koen Claessen. 2015. Practical principled FRP: forget the past, change the future, FRPNow!. In

Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). Association for

Computing Machinery, Vancouver, BC, Canada, 302–314. https://doi.org/10.1145/2784731.2784752 00019.

Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (SFCS ’77). IEEE Computer Society, USA, 46–57. https://doi.org/10.1109/SFCS.1977.32

Marc Pouzet. 2006. Lucid synchrone, version 3. Tutorial and reference manual. Université Paris-Sud, LRI 1 (2006), 25.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/4472.4478
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2603088.2603106
https://doi.org/10.1016/j.entcs.2012.08.015
https://doi.org/10.1016/j.entcs.2012.08.015
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1145/2103656.2103665
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1145/581690.581695
https://doi.org/10.1145/581690.581695
https://doi.org/10.1145/2784731.2784752
https://doi.org/10.1109/SFCS.1977.32

Asynchronous Modal FRP 205:29

A PROOF OF FUNDAMENTAL PROPERTY
Given a heap [we use the following notation to construct a well-formed store with ⟨^ ↦→ 𝑣⟩ as
follows:

tick^ ↦→𝑣 ([) = [[]^∈ ⟨^ ↦→ 𝑣⟩ [[]^∉
Lemma A.1 (Machine monotonicity). If ⟨𝑡 ;𝜎⟩ ⇓] ⟨𝑣 ;𝜎 ′⟩, then 𝜎 ⊑ 𝜎 ′.

Proof. Straightforward induction on ⟨𝑡 ;𝜎⟩ ⇓] ⟨𝑣 ;𝜎 ′⟩. □

Lemma A.2.
(i) If 𝜎 ⊑Δ

✓
𝜎 ′, then gc(𝜎) ⊑ gc(𝜎 ′).

(ii) gc(𝜎) ⊑Δ
✓
𝜎 .

(iii) If [⊑ [′ then tick^ ↦→𝑣 ([) ⊑ tick^ ↦→𝑣 ([′).

Proof. By a straightforward case analysis. □

Lemma A.3.
(i) [tick^ ↦→𝑣 ([)]Θ = tick^ ↦→𝑣

(
[[]Θ

)
.

(ii) [gc(𝜎)]Θ = gc([𝜎]Θ).

Proof. By a straightforward case analysis. □

Lemma 5.1. Let 𝑛 ≥ 𝑛′, and 𝜎 ⊑Δ
✓
𝜎 ′.

(i) VΔJ𝐴K(𝑛, 𝜎) ⊆ VΔJ𝐴K(𝑛′, 𝜎 ′).
(ii) TΔJ𝐴K(𝑛, 𝜎) ⊆ TΔJ𝐴K(𝑛′, 𝜎 ′).
(iii) CΔJΓK(𝑛, 𝜎) ⊆ CΔJΓK(𝑛′, 𝜎 ′).

Proof of Lemma 5.1. (i) and (ii) are proved by a well-founded induction using the same well-

founded order that we used to argue that both logical relations are well-defined. (iii) is proved by

induction on the length of Γ, and using (i). □

Lemma 5.2.
(i) VΔJ𝐴K(𝑛, 𝜎) ⊆ VΔJ𝐴K(𝑛, gc(𝜎)).
(ii) CΔJΓK(𝑛, 𝜎) ⊆ CΔJΓK(𝑛, gc(𝜎)) if Γ is tick-free.

Proof of lemma 5.2. Both items are proved by induction on the size |𝐴| and on the length of Γ,
respectively. □

Lemma 5.3.
(i) If 𝑣 ∈ VΔJ ∃⃝𝐴K(𝑛, 𝜎), then 𝑣 ∈ VΔJ ∃⃝𝐴K(𝑛, 𝜎 ′), for any 𝜎 ′ with [𝜎]cl(𝑣) = [𝜎 ′]cl(𝑣) .
(ii) If 𝛾 ∈ CΔJΓ,✓\ K(𝑛, 𝜎) and Θ = |\𝛾 | then 𝛾 ∈ CΔJΓ,✓\ K(𝑛, [𝜎]Θ)

Proof of Lemma 5.3. Both items are proved by inspection of the definitions ofVΔJ ∃⃝𝐴K(𝑛, 𝜎)
and CΔJΓ,✓\ K(𝑛, 𝜎), respectively. □

The fact that (i) holds for VΔJ ∃⃝𝐴K(𝑛, 𝜎) but not for TΔJ ∃⃝𝐴K(𝑛, 𝜎) is the reason we needed to

restrict the calculus so that adv and select may only be applied to values.

Lemma A.4. VΔJ𝐴K(𝑛, 𝜎) = VΔJ𝐴K(𝑛, ∅) for any stable type 𝐴.

Proof. By straightforward induction on the size of 𝐴. □

Lemma A.5. Let 𝛾 ∈ CΔJΓ, Γ′K(𝑛, 𝜎) such that Γ′ is tick-free. Then 𝛾 |Γ ∈ CΔJΓK(𝑛, 𝜎).

Proof. By a straightforward induction on the length of Γ′. □

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:30 Patrick Bahr and Rasmus Ejlers Møgelberg

Lemma A.6. If 𝛾 ∈ CΔJΓK(𝑛, 𝜎), then 𝛾 |Γ□ ∈ CΔJΓ□K(𝑛, ∅).

Proof. By a straightforward induction on the length of Γ and using Lemma A.4. □

Lemma A.7. If 𝑡 ∈ VΔJ𝐴K(𝑤), then 𝑡 is a value.

Proof. By inspection of the definition. □

Lemma A.8. VΔJ𝐴K(𝑤) ⊆ TΔJ𝐴K(𝑤).

Proof. Let 𝑡 ∈ VΔJ𝐴K(𝑛, 𝜎), and 𝜎 ′ ⊒Δ
✓
𝜎 and] : Δ. By Lemma A.7, 𝑡 is a value and thus ⟨𝑡 ;𝜎 ′⟩ ⇓]

⟨𝑡 ;𝜎 ′⟩. By Lemma 5.1, we have that 𝑡 ∈ VΔJ𝐴K(𝑛, 𝜎 ′), which in turn implies 𝑡 ∈ VΔJ𝐴K(𝑛, 𝜎 ′) by
Lemma 5.1. □

Lemma A.9. If 𝑣 is a value with 𝑣 ∈ TΔJ𝐴K(𝑤), then 𝑣 ∈ VΔJ𝐴K(𝑤).

Proof. Let 𝑣 ∈ TΔJ𝐴K(𝑛, 𝜎), and pick an arbitrary] : Δ. Since ⟨𝑣 ;𝜎⟩ ⇓] ⟨𝑣 ;𝜎⟩, we have by

definition that 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎). □

Lemma A.10. If Γ ⊢Δ \ : Clock and 𝛾 ∈ CΔJΓK(𝑤), then \𝛾 is a closed clock expression and
|\𝛾 | ⊆ domp (Δ).

Proof. We proceed by induction on Γ ⊢Δ \ : Clock.

•
Γ ⊢Δ \ : Clock Γ ⊢Δ \ ′ : Clock

Γ ⊢Δ \ ⊔ \ ′ : Clock
By induction, \𝛾 and \ ′𝛾 are closed and |\𝛾 | ⊆ dom (Δ). Hence, (\ ⊔\ ′)𝛾 = \𝛾 ⊔\ ′𝛾 is closed

and | (\ ⊔ \ ′)𝛾 | = |\𝛾 | ∪ |\ ′𝛾 | ⊆ dom (Δ).

•
Γ ⊢Δ 𝑣 : ∃⃝𝐴

Γ ⊢Δ cl (𝑣) : Clock
Γ ⊢Δ 𝑣 : ∃⃝𝐴 implies that 𝑣𝛾 ∈ VΔJ ∃⃝𝐴K(𝑤) (because either 𝑣 is a variable or 𝑣 = wait^ for

some clock ^). Hence, 𝑣𝛾 ∈ LocΔ ∪
{
wait^

��^ ∈ domp (Δ)
}
and thus cl (𝑣) 𝛾 is a closed clock

expression and |cl (𝑣) 𝛾 | ⊆ domp (Δ).
□

Lemma A.11. Let 𝐴 be a value type. Then 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎) iff ⊢Δ 𝑣 : 𝐴.

Proof. Straightforward induction on 𝐴. □

Lemma A.12. Let [𝑁 ∈ Heap^ , 𝑣 ∈ VΔJ ∃⃝𝐴K(𝑛 + 1, ([𝑁 , [[𝐿]^∉)),] : Δ, ⊢ 𝑤 : Δ(^) and ^ ∈ |cl (𝑣) |.
Then, for any 𝜎 ⊒ [𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿 , there are some 𝜎 ′ and 𝑣 ′ ∈ VΔJ𝐴K(𝑛, 𝜎 ′) with ⟨adv 𝑣 ;𝜎⟩ ⇓] ⟨𝑣 ′;𝜎 ′⟩.

Proof. By definition, 𝑣 is either some 𝑙 ∈ Loc or of the form wait^′ .

• In the former case, we have by the definition of the value relation and Lemma A.3,

([𝑁 , [[𝐿]^∉) (𝑙) ∈ TΔJ𝐴K(𝑛,
[
[𝑁 ⟨^ ↦→ 𝑤⟩ [[𝐿]^∉

]
cl(𝑙)).

In turn, this implies by Lemma 5.1 that

([𝑁 , [[𝐿]^∉) (𝑙) ∈ TΔJ𝐴K(𝑛, [𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿).

Moreover, since ^ ∈ cl (𝑙) we know that ([𝑁 , [[𝐿]^∉) (𝑙) = [𝑁 (𝑙). Hence, there is a reduction
⟨[𝑁 (𝑙);𝜎⟩ ⇓] ⟨𝑣 ′;𝜎 ′⟩ with 𝑣 ′ ∈ VΔJ𝐴K(𝑛, 𝜎 ′), which by definition means that ⟨adv 𝑣 ;𝜎⟩ ⇓]
⟨𝑣 ′;𝜎 ′⟩.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:31

• In the latter case, we know that ^′ = ^ because ^ ∈ |cl (wait^′) | = {^′}. Moreover, we have

that ^ :𝑐 𝐴 ∈ Δ for 𝑐 ∈ {p, bp} and thus ⊢ 𝑤 : 𝐴. By definition, [𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿 ⊑ 𝜎 implies

that 𝜎 is of the form [′
𝑁
⟨^ ↦→ 𝑤⟩ [′

𝐿
. Hence, by definition ⟨advwait^ ;𝜎⟩ ⇓] ⟨𝑤 ;𝜎⟩. Moreover,

by Lemma A.11𝑤 ∈ VΔJ𝐴K(𝑛, 𝜎).
□

Theorem 5.4 (Fundamental property). Given Γ ⊢Δ, Γ ⊢Δ 𝑡 : 𝐴, and 𝛾 ∈ CΔJΓK(𝑛, 𝜎), then 𝑡𝛾 ∈
TΔJ𝐴K(𝑛, 𝜎).

Proof of Theorem 5.4. Weproceed by structural induction over the typing derivation Γ ⊢Δ 𝑡 : 𝐴.

If 𝑡𝛾 is a value, it suffices to show that 𝑡𝛾 ∈ VΔJ𝐴K(𝑛, 𝜎), according to Lemma A.8. In all other cases,

to prove 𝑡𝛾 ∈ TΔJ𝐴K(𝑛, 𝜎), we assume some input buffer] : Δ and store 𝜎 ′ ⊒Δ
✓
𝜎 , and show that

there exists 𝜎 ′′
and 𝑣 s.t. ⟨𝑡𝛾 ;𝜎⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ and 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′). By Lemma 5.1 we may assume

that 𝛾 ∈ CΔJΓK(𝑛, 𝜎 ′).

•
Γ′ tick-free or 𝐴 stable Γ, 𝑥 : 𝐴, Γ′ ⊢Δ

Γ, 𝑥 : 𝐴, Γ′ ⊢Δ 𝑥 : 𝐴

We show that 𝑥𝛾 ∈ VΔJ𝐴K(𝑛, 𝜎). If Γ′ is tick-free, then 𝑥𝛾 ∈ VΔJ𝐴K(𝑛, 𝜎) by Lemma A.5

If Γ′ is not tick-free, it is of the form Γ1,✓\ , Γ2 and 𝐴 is stable. By Lemma A.5,

𝛾 |Γ,𝑥 :𝐴 ∈ CΔJΓ, 𝑥 : 𝐴K(𝑛 + 1, 𝜎 ′)
for some 𝜎 ′

. Hence, 𝑥𝛾 ∈ VΔJ𝐴K(𝑛 + 1, 𝜎 ′) and by Lemma 5.1 and Lemma A.4 𝑥𝛾 ∈
VΔJ𝐴K(𝑛, 𝜎).

• Γ ⊢Δ ⟨⟩ : 1

Follows immediately by definition.

•
Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵

Γ ⊢Δ let𝑥 = 𝑠 in 𝑡 : 𝐵

By induction, we have 𝑠𝛾 ∈ TΔJ𝐴K(𝑛, 𝜎), which means that ⟨𝑠𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ for some

𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′). By Lemma 5.1 and Lemma A.1, 𝛾 ∈ CΔJΓK(𝑛, 𝜎 ′′) and thus

𝛾 [𝑥 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 : 𝐴K(𝑛, 𝜎 ′′).
Hence, we may apply the induction hypothesis to obtain 𝑡𝛾 [𝑥 ↦→ 𝑣] ∈ TΔJ𝐵K(𝑛, 𝜎 ′′). Since
all elements in the range of 𝛾 are closed terms, 𝑡𝛾 [𝑥 ↦→ 𝑣] = (𝑡𝛾) [𝑣/𝑥] and thus (𝑡𝛾) [𝑣/𝑥] ∈
TΔJ𝐵K(𝑛, 𝜎 ′′). Consequently, ⟨(𝑡𝛾) [𝑣/𝑥];𝜎 ′′⟩ ⇓] ⟨𝑤 ;𝜎 ′′′⟩ with𝑤 ∈ VΔJ𝐵K(𝑛, 𝜎 ′′′). By defini-

tion, we thus have ⟨(let𝑥 = 𝑠 in 𝑡)𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑤 ;𝜎 ′′′⟩ with𝑤 ∈ VΔJ𝐵K(𝑛, 𝜎 ′′′).

•
Γ, 𝑥 : 𝐴 ⊢Δ 𝑡 : 𝐵 Γ tick-free

Γ ⊢Δ _𝑥.𝑡 : 𝐴 → 𝐵

We show that _𝑥.𝑡𝛾 ∈ VΔJ𝐴 → 𝐵K(𝑛, 𝜎). To this end, we assume 𝜎 ′ ⊒Δ
✓
gc(𝜎), 𝑛′ ≤ 𝑛, and

𝑣 ∈ VΔJ𝐴K(𝑛′, 𝜎 ′), with the goal of showing (𝑡𝛾) [𝑣/𝑥] ∈ TΔJ𝐵K(𝑛′, 𝜎 ′). By Lemma 5.2 and

Lemma 5.1, 𝛾 ∈ CΔJΓK(𝑛′, 𝜎 ′), and thus, by definition, 𝛾 [𝑥 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 : 𝐴K(𝑛′, 𝜎 ′). By
induction, we then have that 𝑡𝛾 [𝑥 ↦→ 𝑣] ∈ TΔJ𝐵K(𝑛′, 𝜎 ′). Since all elements in the range of 𝛾

are closed terms, 𝑡𝛾 [𝑥 ↦→ 𝑣] = (𝑡𝛾) [𝑣/𝑥] and thus (𝑡𝛾) [𝑣/𝑥] ∈ TΔJ𝐵K(𝑛′, 𝜎 ′).

•
Γ ⊢Δ 𝑠 : 𝐴 → 𝐵 Γ ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ 𝑠 𝑡 : 𝐵

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:32 Patrick Bahr and Rasmus Ejlers Møgelberg

By induction, we have 𝑠𝛾 ∈ TΔJ𝐴 → 𝐵K(𝑛, 𝜎), which means that ⟨𝑠𝛾 ;𝜎 ′⟩ ⇓] ⟨_𝑥 .𝑠′;𝜎 ′′⟩ for
some _𝑥.𝑠′ ∈ VΔJ𝐴 → 𝐵K(𝑛, 𝜎 ′′). By induction, we also have 𝑡𝛾 ∈ TΔJ𝐴K(𝑛, 𝜎). Since by
Lemma A.1, 𝜎 ′′ ⊒Δ

✓
𝜎 , this means that ⟨𝑡𝛾 ;𝜎 ′′⟩ ⇓] ⟨𝑣 ;𝜎 ′′′⟩ for some 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′′). Hence,

by definition, 𝑠′ [𝑣/𝑥] ∈ TΔJ𝐵K(𝑛, 𝜎 ′′′), since 𝜎 ′′′ ⊒Δ′

✓
gc(𝜎 ′′) by Lemma A.2 and Lemma A.1.

That means that we have ⟨𝑠 [𝑣/𝑥];𝜎 ′′′⟩ ⇓] ⟨𝑤 ;𝜎 ′′′′⟩ for some𝑤 ∈ VΔJ𝐵K(𝑛, 𝜎 ′′′′). By defini-

tion of the machine, we thus have ⟨(𝑠𝛾) (𝑡𝛾);𝜎 ′⟩ ⇓] ⟨𝑤 ;𝜎 ′′′′⟩.

•
Γ ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑡 ′ : 𝐵

Γ ⊢Δ (𝑡, 𝑡 ′) : 𝐴 × 𝐵

By induction, we have 𝑠𝛾 ∈ TΔJ𝐴K(𝑛, 𝜎), which means that ⟨𝑠𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ for some

𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′). We also have 𝑡𝛾 ∈ TΔJ𝐴K(𝑛, 𝜎) by induction, which by Lemma A.1 means

that ⟨𝑡𝛾 ;𝜎 ′′⟩ ⇓] ⟨𝑣 ′;𝜎 ′′′⟩ for some 𝑣 ′ ∈ VΔJ𝐵K(𝑛, 𝜎 ′′′). Hence, ⟨(𝑡, 𝑡 ′) ;𝜎 ′⟩ ⇓] ⟨(𝑣, 𝑣 ′) ;𝜎 ′′′⟩,
and by Lemma 5.1, (𝑣, 𝑣 ′) ∈ VΔJ𝐴 × 𝐵K(𝑛, 𝜎 ′′′).

•
Γ ⊢Δ 𝑡 : 𝐴1 ×𝐴2 𝑖 ∈ {1, 2}

Γ ⊢Δ 𝜋𝑖 𝑡 : 𝐴𝑖

By induction, we have 𝑡𝛾 ∈ TΔJ𝐴1 × 𝐴2K(𝑛, 𝜎), which means that ⟨𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨(𝑣1, 𝑣2) ;𝜎 ′′⟩
with 𝑣𝑖 ∈ VΔJ𝐴𝑖K(𝑛, 𝜎 ′′). Moreover, by definition, ⟨𝜋𝑖 𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣𝑖 ;𝜎 ′′⟩.

•
Γ ⊢Δ 𝑡 : 𝐴𝑖 𝑖 ∈ {1, 2}

Γ ⊢Δ in𝑖 𝑡 : 𝐴1 +𝐴2

By induction, we have 𝑡𝛾 ∈ TΔJ𝐴𝑖K(𝑛, 𝜎), which means that ⟨𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ with 𝑣 ∈
VΔJ𝐴𝑖K(𝑛, 𝜎 ′′). Hence, by definition, ⟨in𝑖 𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨in𝑖 𝑣 ;𝜎 ′′⟩ and in𝑖 𝑣 ∈ VΔJ𝐴1 +𝐴2K(𝑛, 𝜎 ′′).

•
Γ, 𝑥 : 𝐴𝑖 ⊢Δ 𝑡𝑖 : 𝐵 Γ ⊢Δ 𝑡 : 𝐴1 +𝐴2 𝑖 ∈ {1, 2}

Γ ⊢Δ case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2 : 𝐵

By induction, we have 𝑡𝛾 ∈ TΔJ𝐴1 + 𝐴2K(𝑛, 𝜎), which means that ⟨𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨in𝑖 𝑣 ;𝜎 ′′⟩
for some 𝑖 ∈ {1, 2} such that 𝑣 ∈ VΔJ𝐴𝑖K(𝑛, 𝜎 ′′). By Lemma 5.1 and Lemma A.1, 𝛾 ∈
CΔJΓK(𝑛, 𝜎 ′′) and thus 𝛾 [𝑥 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 : 𝐴𝑖K(𝑛, 𝜎 ′′). Hence, we may apply the induc-

tion hypothesis to obtain 𝑡𝑖𝛾 [𝑥 ↦→ 𝑣] ∈ TΔJ𝐵K(𝑛, 𝜎 ′′). Since all elements in the range of

𝛾 are closed terms, 𝑡𝑖𝛾 [𝑥 ↦→ 𝑣] = (𝑡𝑖𝛾) [𝑣/𝑥] and thus (𝑡𝑖𝛾) [𝑣/𝑥] ∈ TΔJ𝐵K(𝑛, 𝜎 ′′). Conse-
quently, ⟨(𝑡𝑖𝛾) [𝑣/𝑥];𝜎 ′′⟩ ⇓] ⟨𝑤 ;𝜎 ′′′⟩ with 𝑤 ∈ VΔJ𝐵K(𝑛, 𝜎 ′′′). By definition, we thus have

⟨(case 𝑡 of in1 𝑥 .𝑡1; in2 𝑥 .𝑡2)𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑤 ;𝜎 ′′′⟩, as well.

•
Γ,✓\ ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ \ : Clock

Γ ⊢Δ delay\ 𝑡 : ∃⃝𝐴

By definition of the machine we have that

〈
delay\𝛾 𝑡𝛾 ;𝜎

′
〉
⇓] ⟨𝑙 ;𝜎 ′′⟩, where 𝜎 ′′ = 𝜎 ′, 𝑙 ↦→

𝑡𝛾 and cl (𝑙) = |\𝛾 |. By Lemma A.10, |\𝛾 | ⊆ domp (Δ). It remains to be shown that 𝑙 ∈
VΔJ ∃⃝𝐴K(𝑛, 𝜎 ′′). For the case where 𝑛 = 0, this follows immediately from the fact that

|\𝛾 | ⊆ domp (Δ).
Assume that 𝑛 = 𝑛′ + 1, ^ ∈ Θ, and ⊢ 𝑣 : Δ(^), where Θ = |\𝛾 |. By Lemma 5.1 and Lemma 5.2,

we have that 𝛾 ∈ CΔJΓK(𝑛′ + 1, gc(𝜎 ′′)). By definition we thus have that

𝛾 ∈ CΔJΓ,✓\ K(𝑛′, [gc(𝜎 ′′)]^∈ ⟨^ ↦→ 𝑣⟩ [gc(𝜎 ′′)]^∉) = CΔJΓ,✓\ K(𝑛′, tick^ ↦→𝑣 (gc(𝜎 ′′))),

and thus 𝛾 ∈ CΔJΓ,✓\ K(𝑛′, [tick^ ↦→𝑣 (gc(𝜎 ′′))]Θ) according to Lemma 5.3. Hence, we can

apply the induction hypothesis to conclude that

𝑡𝛾 ∈ TΔJ𝐴K(𝑛′, [tick^ ↦→𝑣 (gc(𝜎 ′′))]Θ).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:33

Since 𝜎 ′′ (𝑙) = 𝑡𝛾 , we thus have that 𝑙 ∈ VΔJ ∃⃝𝐴K(𝑛, 𝜎 ′′).

• Γ ⊢Δ never : ∃⃝𝐴

According to the definition of the machine, we have ⟨never;𝜎 ′⟩ ⇓] ⟨𝑙 ;𝜎 ′⟩ with 𝑙 = alloc∅ (𝜎).
Since cl (𝑙) = ∅, we know that 𝑙 ∈ VΔJ ∃⃝𝐴K(𝑛, 𝜎 ′).

•
^ :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {p, bp}

Γ ⊢Δ wait^ : ∃⃝𝐴

wait^𝛾 = wait^ ∈ VΔJ𝐴K(𝑛, 𝜎) follows immediately by definition and the premise.

•
^ :𝑐 𝐴 ∈ Δ, 𝑐 ∈ {b, bp}

Γ ⊢Δ read^ : 𝐴

Since] : Δ, we know that ⊢] (^) : 𝐴. Hence, By definition of the machine ⟨read^ ;𝜎 ′⟩ ⇓]
⟨] (^);𝜎 ′⟩. Moreover, by Lemma A.11] (^) ∈ VΔJ𝐴K(𝑛, 𝜎 ′).

•
Γ ⊢Δ 𝑣 : ∃⃝𝐴 Γ,✓cl(𝑣) , Γ

′ ⊢Δ
Γ,✓cl(𝑣) , Γ

′ ⊢Δ adv 𝑣 : 𝐴

By Lemma 5.1we have that𝛾 ∈ CΔJΓ,✓cl(𝑣) , Γ′K(𝑛, 𝜎 ′) and by LemmaA.5,𝛾 |Γ ∈ CΔJΓ,✓cl(𝑣) K(𝑛, 𝜎 ′).
Let Θ = |cl (𝑣) 𝛾 |Γ |. By definition of the context relation, Θ is well-defined and a sub-

set of domp (Δ). By definition of the context relation we also find ^ ∈ Θ, [𝑁 , [𝐿 , [
′
𝑁
, [′

𝐿

such that 𝜎 ′ = [𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿 , ⊢ 𝑤 : Δ(^), [[𝑁]Θ =
[
[′
𝑁

]
Θ
, [[𝐿]Θ =

[
[′
𝐿

]
Θ
, and 𝛾 |Γ ∈

CΔJΓK(𝑛+1, ([′
𝑁
,
[
[′
𝐿

]
^∉
)). By induction, we thus have that 𝑣𝛾 ∈ TΔJ ∃⃝𝐴K(𝑛+1, ([′

𝑁
,
[
[′
𝐿

]
^∉
)).

Since 𝑣𝛾 is a value we have 𝑣𝛾 ∈ VΔJ ∃⃝𝐴K(𝑛 + 1, ([′
𝑁
,
[
[′
𝐿

]
^∉
)) by Lemma A.9. By Lemma 5.3

we then have that

𝑣𝛾 ∈ VΔJ ∃⃝𝐴K(𝑛 + 1, ([𝑁 , [[𝐿]^∉)).

By Lemma A.12, we then find a reduction ⟨adv 𝑣𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ′;𝜎 ′′⟩ with 𝑣 ′ ∈ VΔJ𝐴K(𝑛, 𝜎 ′′).

•
Γ ⊢Δ 𝑣1 : ∃⃝𝐴1 Γ ⊢Δ 𝑣2 : ∃⃝𝐴2 ⊢ \ = cl (𝑣1) ⊔ cl (𝑣2) Γ,✓\ , Γ

′ ⊢Δ
Γ,✓\ , Γ

′ ⊢Δ select 𝑣1 𝑣2 : ((𝐴1 × ∃⃝𝐴2) + (∃⃝𝐴1 ×𝐴2)) + (𝐴1 ×𝐴2)
By Lemma 5.1 we have that 𝛾 ∈ CΔJΓ,✓\ , Γ′K(𝑛, 𝜎 ′) and by Lemma A.5, 𝛾 |Γ ∈ CΔJΓ,✓\ K(𝑛, 𝜎 ′).
Let Θ1 = |cl (𝑣1) 𝛾 |Γ |, Θ2 = |cl (𝑣2) 𝛾 |Γ |, and Θ = Θ1 ∪ Θ2. According to the definition of

the context relation, Θ is well-defined and a subset of dom (Δ). By definition of the context

relation we also find ^ ∈ Θ, [𝑁 , [𝐿 , [
′
𝑁
, [′

𝐿
such that 𝜎 ′ = [𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿 , ⊢ 𝑤 : Δ(^), [[𝑁]Θ =[

[′
𝑁

]
Θ
, [[𝐿]Θ =

[
[′
𝐿

]
Θ
, and 𝛾 |Γ ∈ CΔJΓK(𝑛 + 1, ([′

𝑁
,
[
[′
𝐿

]
^∉
)). By induction hypothesis, we

thus have that 𝑣𝑖𝛾 ∈ TΔJ ∃⃝𝐴𝑖K(𝑛 + 1, ([′
𝑁
,
[
[′
𝐿

]
^∉
)) for all 𝑖 ∈ {1, 2}. Since 𝑣𝑖𝛾 are values,

we also have that 𝑣𝑖𝛾 ∈ VΔJ ∃⃝𝐴𝑖K(𝑛 + 1, ([′
𝑁
,
[
[′
𝐿

]
^∉
)) by Lemma A.9. By Lemma 5.3 we

then have that 𝑣𝑖𝛾 ∈ VΔJ ∃⃝𝐴𝑖K(𝑛 + 1, ([𝑁 , [[𝐿]^∉)) for all 𝑖 ∈ {1, 2}. There are two cases to
consider:

– Let 𝑖 ∈ {1, 2} and 𝑗 = 3 − 𝑖 such that ^ ∈ Θ𝑖 \ Θ𝑗 :

By Lemma A.12, there is a reduction ⟨adv 𝑣𝑖𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑢𝑖 ;𝜎 ′′⟩ with 𝑢𝑖 ∈ VΔJ𝐴𝑖K(𝑛, 𝜎 ′′),
which by definition means that ⟨select 𝑣1𝛾 𝑣2𝛾 ;𝜎 ′⟩ ⇓] ⟨in1 (in𝑖 (𝑢1, 𝑢2));𝜎 ′′⟩ with 𝑢 𝑗 = 𝑣 𝑗𝛾 .

It thus remains to be shown that 𝑣 𝑗𝛾 ∈ VΔJ ∃⃝𝐴 𝑗 K(𝑛, 𝜎 ′′). There are two cases to consider.

∗ Let 𝑣 𝑗𝛾 = 𝑙 for some 𝑙 ∈ LocΔ. From 𝑙 ∈ VΔJ ∃⃝𝐴 𝑗 K(𝑛 + 1, ([𝑁 , [[𝐿]^∉)) and the fact that

^ ∉ Θ𝑗 , we obtain that 𝑙 ∈ VΔJ ∃⃝𝐴 𝑗 K(𝑛 + 1, [[𝐿]^∉) by using Lemma 5.3. In particular, we

use the fact that [[𝑁]Θ𝑗
= ∅ since [𝑁 ∈ Heap^ and ^ ∉ Θ𝑗 . Since [[𝐿]^∉ ⊑Δ

✓
𝜎 ′

and, by

Lemma A.1, 𝜎 ′ ⊑Δ
✓
𝜎 ′′

, we can then use Lemma 5.1 to conclude that 𝑙 ∈ VΔJ ∃⃝𝐴 𝑗 K(𝑛, 𝜎 ′′).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

205:34 Patrick Bahr and Rasmus Ejlers Møgelberg

∗ Let 𝑣 𝑗𝛾 = wait^′ for some clock ^′. But then Γ ⊢Δ 𝑣 𝑗 : ∃⃝𝐴 𝑗 is due to ^′ :p 𝐴 𝑗 ∈ Δ or

^′ :bp 𝐴 𝑗 ∈ Δ and thus 𝑣 𝑗𝛾 ∈ VΔJ ∃⃝𝐴 𝑗 K(𝑛, 𝜎 ′′) follows immediately by definition of the

value relation.

– ^ ∈ Θ1 ∩ Θ2: By Lemma A.12, we obtain a reduction ⟨adv 𝑣1𝛾);𝜎 ′⟩ ⇓]
〈
𝑣 ′
1
;𝜎 ′′〉

with

𝑣 ′
1
∈ VΔJ𝐴1K(𝑛, 𝜎 ′′), and a reduction ⟨adv 𝑣2𝛾 ;𝜎 ′′⟩ ⇓]

〈
𝑣 ′
2
;𝜎 ′′′〉

with 𝑣 ′
2
∈ VΔJ𝐴2K(𝑛, 𝜎 ′′′).

By definition we thus obtain a reduction ⟨select (𝑣1𝛾) (𝑣2𝛾);𝜎 ′⟩ ⇓]
〈
in2 (

(
𝑣 ′
1
, 𝑣 ′

2

)
);𝜎 ′′′〉

.

Moreover, applying Lemma A.1 and Lemma 5.1, we obtain that 𝑣 ′
1
∈ VΔJ𝐴1K(𝑛, 𝜎 ′′′), which

means that we have in2 (
(
𝑣 ′
1
, 𝑣 ′

2

)
) ∈ VΔJ𝐴1 ×𝐴2K(𝑛, 𝜎 ′′′).

• Γ ⊢Δ 0 : Nat
0𝛾 ∈ VΔJNatK(𝑛, 𝜎) follows immediately by definition.

•
Γ ⊢Δ 𝑡 : Nat

Γ ⊢Δ suc 𝑡 : Nat
By induction hypothesis 𝑡𝛾 ∈ TΔJNatK(𝑛, 𝜎), which means that ⟨𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨suc𝑚 0;𝜎 ′′⟩ for
some𝑚 ∈ N. Hence, by definition, ⟨suc 𝑡𝛾 ;𝜎 ′⟩ ⇓]

〈
suc𝑚+1

0;𝜎 ′′〉
and suc𝑚+1

0 ∈ VΔJNatK(𝑛, 𝜎 ′′).

•
Γ ⊢Δ 𝑠 : 𝐴 Γ, 𝑥 : Nat, 𝑦 : 𝐴 ⊢Δ 𝑡 : 𝐴 Γ ⊢Δ 𝑢 : Nat

Γ ⊢Δ recNat (𝑠, 𝑥 𝑦.𝑡,𝑢) : 𝐴
We claim that the following holds:

recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑘 0) ∈ TΔJ𝐴K(𝑛, 𝜎) for all 𝑘 ∈ N (5)

To show that recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾,𝑢𝛾) ∈ TΔJ𝐴K(𝑛, 𝜎), assume some 𝜎 ′ ⊒Δ
✓
𝜎 and] : Δ. By induc-

tion hypothesis 𝑢𝛾 ∈ TΔJNatK(𝑛, 𝜎), which means that ⟨𝑢𝛾 ;𝜎 ′⟩ ⇓] ⟨suc𝑚 0;𝜎 ′′⟩. By (5) and

Lemma A.1 we have that ⟨recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑚 0);𝜎 ′′⟩ ⇓] ⟨𝑣 ;𝜎 ′′′⟩ with 𝑣 ∈ TΔJ𝐴K(𝑛, 𝜎 ′′′).
By definition of the machine, we also have that ⟨recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾,𝑢𝛾);𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′′⟩.
We conclude by showing (5) by induction on 𝑘 .

– Case 𝑘 = 0: Let 𝜎 ′ ⊒Δ
✓
𝜎 and] : Δ. By definition, ⟨0;𝜎 ′⟩ ⇓] ⟨0;𝜎 ′⟩. By induction hypothesis

𝑠𝛾 ∈ TΔJ𝐴K(𝑛, 𝜎), which means that ⟨𝑠𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ for some 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′). By
definition, ⟨recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, 0);𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ follows.

– Case𝑘 = 𝑙+1. Let𝜎 ′ ⊒Δ
✓
𝜎 and] : Δ. By definition,

〈
suc𝑘 0;𝜎 ′〉 ⇓] 〈suc(suc𝑙 0);𝜎 ′〉

. By induc-

tion (on 𝑘), we have that
〈
recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑙 0);𝜎 ′〉 ⇓] ⟨𝑣 ;𝜎 ′′⟩ with 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′).

By Lemma A.1 and Lemma 5.1, we have 𝛾 ∈ CΔJΓK(𝑛, 𝜎 ′′) and thus

𝛾 [𝑥 ↦→ suc𝑙 0, 𝑦 ↦→ 𝑣] ∈ CΔJΓ, 𝑥 : Nat, 𝑦 : 𝐴K(𝑛, 𝜎 ′′).

By induction we thus obtain that

(𝑡𝛾) [suc𝑙 0/𝑥, 𝑣/𝑦] = 𝑡𝛾 [𝑥 ↦→ suc𝑙 0, 𝑦 ↦→ 𝑣] ∈ TΔJ𝐴K(𝑛, 𝜎 ′′),

which means that there is a reduction

〈
(𝑡𝛾) [suc𝑙 0/𝑥, 𝑣/𝑦];𝜎 ′′〉 ⇓] ⟨𝑤 ;𝜎 ′′′⟩ with 𝑤 ∈

VΔJ𝐴K(𝑛, 𝜎 ′′′). According to the definition of the machine, we thus have〈
recNat (𝑠𝛾, 𝑥 𝑦.𝑡𝛾, suc𝑘 0);𝜎 ′

〉
⇓] ⟨𝑤 ;𝜎 ′′′⟩ .

•
Γ□, 𝑥 : ∀⃝𝐴 ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ fix𝑥 .𝑡 : 𝐴
We will show that

dfix𝑥 .𝑡𝛾 ∈ VΔJ ∀⃝𝐴K(𝑚, ∅) for all𝑚 ≤ 𝑛. (6)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

Asynchronous Modal FRP 205:35

Using (6), Lemma A.6, and Lemma 5.1, we then obtain that (𝛾 |Γ□) [𝑥 ↦→ dfix𝑥 .𝑡𝛾] ∈ CΔJΓ□, 𝑥 :

∀⃝𝐴K(𝑛, 𝜎). Hence, by induction, 𝑡 [dfix𝑥 .𝑡/𝑥]𝛾 = 𝑡 (𝛾 |Γ□) [𝑥 ↦→ dfix𝑥 .𝑡𝛾] ∈ TΔJ𝐴K(𝑛, 𝜎),
which means that we find ⟨𝑡 [dfix𝑥 .𝑡/𝑥]𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ with 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′). By definition
of the machine we thus obtain the desired ⟨fix𝑥 .𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩.
We prove (6) by induction on𝑚.

If𝑚 = 0, then (6) follows immediately from the fact that dfix𝑥 .𝑡𝛾 is a closed term.

Let 𝑚 = 𝑚′ + 1. By Lemma 5.1 and Lemma A.6, 𝛾 |Γ□ ∈ CΔJΓ□K(𝑚′, ∅). By the induction

hypothesis (on (6)) we have dfix𝑥 .𝑡𝛾 ∈ VΔJ ∀⃝𝐴K(𝑚′, ∅) and thus

(𝛾 |Γ□) [𝑥 ↦→ dfix𝑥 .𝑡𝛾] ∈ CΔJΓ□, 𝑥 : ∀⃝𝐴K(𝑚′, ∅) .
Hence, by induction, 𝑡 [dfix𝑥 .𝑡/𝑥]𝛾 = 𝑡 (𝛾 |Γ□) [𝑥 ↦→ dfix𝑥 .𝑡𝛾] ∈ TΔJ𝐴K(𝑚′, ∅), which allows

us to conclude that dfix𝑥 .𝑡𝛾 ∈ VΔJ ∀⃝𝐴K(𝑚, ∅).

•
Γ ⊢Δ 𝑥 : ∀⃝𝐴 Γ,✓\ , Γ

′ ⊢Δ
Γ,✓\ , Γ

′ ⊢Δ adv𝑥 : 𝐴

By Lemma 5.1 we have that 𝛾 ∈ CΔJΓ,✓\ , Γ′K(𝑛, 𝜎 ′) and by Lemma A.5, 𝛾 |Γ ∈ CΔJΓ,✓\ K(𝑛, 𝜎 ′).
Let Θ = |\𝛾 |Γ |. According the definition of the context relation, Θ is well-defined and we

find ^ ∈ Θ, ⊢ 𝑤 : Δ(^), [𝑁 , [𝐿 , [′𝑁 , [′𝐿 such that 𝜎 ′ = [𝑁 ⟨^ ↦→ 𝑤⟩ [𝐿 , [[𝑁]Θ =
[
[′
𝑁

]
Θ
,

[[𝐿]Θ =
[
[′
𝐿

]
Θ
, and 𝛾 |Γ ∈ CΔ′JΓK(𝑛 + 1, ([′

𝑁
,
[
[′
𝐿

]
^∉
)). By Lemma A.5, we thus have that

𝛾 (𝑥) = dfix𝑦.𝑡 with dfix𝑦.𝑡 ∈ VΔJ ∀⃝𝐴K(𝑛 + 1, ([′
𝑁
,
[
[′
𝐿

]
^∉
)). By definition, this implies that

𝑡 [dfix𝑦.𝑡/𝑦] ∈ TΔJ𝐴K(𝑛, ∅). That is, we find a reduction ⟨𝑡 [dfix𝑦.𝑡/𝑦];𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩ with
𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′), which by definition means that we also have a reduction ⟨adv𝑥𝛾 ;𝜎 ′⟩ ⇓]
⟨𝑣 ;𝜎 ′′⟩.

•
Γ□ ⊢Δ 𝑡 : 𝐴

Γ ⊢Δ box 𝑡 : □𝐴
We show that box 𝑡𝛾 ∈ VΔJ□𝐴K(𝑛, 𝜎). By Lemma A.6, 𝛾 |Γ□ ∈ CΔJΓ□K(𝑛, ∅). Hence, by induc-

tion, 𝑡𝛾 = 𝑡𝛾 |Γ□ ∈ TΔJ𝐴K(𝑛, ∅), and thus box 𝑡𝛾 ∈ VΔJ□𝐴K(𝑛, 𝜎).

•
Γ ⊢Δ 𝑡 : □𝐴

Γ ⊢Δ unbox 𝑡 : 𝐴
By induction hypothesis, we have that 𝑡𝛾 ∈ TΔJ□𝐴K(𝑛, 𝜎). That is, ⟨𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨box 𝑠;𝜎 ′′⟩
for some 𝑠 ∈ TΔJ𝐴K(𝑛, ∅). Hence, ⟨𝑠;𝜎 ′′⟩ ⇓] ⟨𝑣 ;𝜎 ′′′⟩ such that 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′′) which, by
Lemma 5.1, implies 𝑣 ∈ VΔJ𝐴K(𝑛, 𝜎 ′′′). Moreover, by definition of the machine we have that

⟨unbox 𝑡 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′′⟩.

•
Γ ⊢Δ 𝑡 : Fix 𝛼.𝐴

Γ ⊢Δ out 𝑡 : 𝐴[∃⃝(Fix 𝛼.𝐴)/𝛼]
By induction hypothesis 𝑡𝛾 ∈ TΔJFix𝛼.𝐴K(𝑛, 𝜎), which means that ⟨𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨into 𝑣 ;𝜎 ′′⟩
for some 𝑣 ∈ VΔJ𝐴[∃⃝(Fix𝛼.𝐴)/𝛼]K(𝑛, 𝜎 ′′). Moreover, by definition of the machine we

consequently have ⟨out 𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨𝑣 ;𝜎 ′′⟩.

•
Γ ⊢Δ 𝑡 : 𝐴[∃⃝(Fix𝛼.𝐴)/𝛼]

Γ ⊢Δ into 𝑡 : Fix𝛼.𝐴
By induction hypothesis 𝑡𝛾 ∈ TΔJ𝐴[∃⃝(Fix𝛼.𝐴)/𝛼]K(𝑛, 𝜎), which means that ⟨𝑡𝛾 ;𝜎 ′⟩ ⇓]
⟨𝑣 ;𝜎 ′′⟩with 𝑣 ∈ VΔJ𝐴[∃⃝(Fix𝛼.𝐴)/𝛼]K(𝑛, 𝜎 ′′). Hence, by definition, ⟨into 𝑡𝛾 ;𝜎 ′⟩ ⇓] ⟨into 𝑣 ;𝜎 ′′⟩
and into 𝑣 ∈ VΔJFix𝛼.𝐴K(𝑛, 𝜎 ′′).

□

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 205. Publication date: August 2023.

	Abstract
	1 Introduction
	1.1 Async RaTT
	1.2 Operational Semantics and Results
	1.3 Overview

	2 Async RaTT
	2.1 Clocks and
	2.2 Stable Types and Fixed Points

	3 Programming in Async RaTT
	3.1 Simple Signal Combinators
	3.2 Concurrent Signal Combinators
	3.3 A Simple GUI Example
	3.4 Integral and Derivative
	3.5 Elaboration of Surface Syntax into Core Calculus

	4 Operational Semantics and Operational Guarantees
	4.1 Evaluation Semantics
	4.2 Reactive Semantics
	4.3 Example
	4.4 Main Results

	5 Metatheory
	5.1 Kripke Logical Relation
	5.2 Operational Properties

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References
	A Proof of Fundamental Property

