
Domain-Specific Languages for Enterprise

Systems

Tom Hvitved Patrick Bahr Jesper Andersen

Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen, Denmark

{hvitved,bahr,jespera}@diku.dk

December 2011

Abstract

The process-oriented event-driven transaction systems (POETS) ar-
chitecture introduced by Henglein et al. is a novel software architecture
for enterprise resource planning (ERP) systems. POETS employs a prag-
matic separation between (i) transactional data, that is what has hap-
pened; (ii) reports, that is what can be derived from the transactional
data; and (iii) contracts, that is which transactions are expected in the
future. Moreover, POETS applies domain-specific languages (DSLs) for
specifying reports and contracts, in order to enable succinct declarative
specifications as well as rapid adaptability and customisation. In this
report we document an implementation of a generalised and extended
variant of the POETS architecture. The generalisation is manifested in
a detachment from the ERP domain, which is rather an instantiation of
the system than a built-in assumption. The extensions amount to a cus-
tomisable data model based on nominal subtyping; support for run-time
changes to the data model, reports and contracts, while retaining full au-
ditability; and support for referable data that may evolve over time, also
while retaining full auditability as well as referential integrity. Besides the
revised architecture, we present the DSLs used to specify data definitions,
reports, and contracts respectively, and we provide the complete speci-
fication for a use case scenario, which demonstrates the conciseness and
validity of our approach. Lastly, we describe technical aspects of our im-
plementation, with focus on the techniques used to implement the tightly
coupled DSLs.

Contents

1 Introduction 3
1.1 Outline and Contributions . 5

1

2 Revised POETS Architecture 6
2.1 Data Model . 7

2.1.1 Types . 7
2.1.2 Values . 10
2.1.3 Type Checking . 11
2.1.4 Ontology Language . 13
2.1.5 Predefined Ontology . 14

2.2 Event Log . 15
2.3 Entity Store . 17
2.4 Report Engine . 19

2.4.1 The Report Language . 20
2.4.2 Incrementalisation . 22
2.4.3 Lifecycle of Reports . 23

2.5 Contract Engine . 24
2.5.1 Contract Templates . 25
2.5.2 Contract Instances . 25
2.5.3 The Contract Language 27

3 Use Case: µERP 30
3.1 Data Model . 30
3.2 Reports . 32
3.3 Contracts . 33
3.4 Bootstrapping the System . 36

4 Implementation Aspects 37
4.1 External Interface . 37
4.2 Domain-Specific Languages . 38

5 Conclusion 40
5.1 Future Work . 40

A Predefined Ontology 44
A.1 Data . 44
A.2 Event . 44
A.3 Transaction . 44
A.4 Report . 44
A.5 Contract . 44

B Static and Dynamic Semantics of the Report Language 45
B.1 Types, Type Constraints and Type Schemes 45
B.2 Built-in Symbols . 45
B.3 Type System . 47
B.4 Operational Semantics . 49

2

C µERP Specification 53
C.1 Ontology . 53

C.1.1 Data . 53
C.1.2 Transaction . 54
C.1.3 Report . 54
C.1.4 Contract . 55

C.2 Reports . 55
C.2.1 Prelude Functions . 55
C.2.2 Domain-Specific Prelude Functions 57
C.2.3 Internal Reports . 59
C.2.4 External Reports . 61

C.3 Contracts . 65
C.3.1 Prelude . 65
C.3.2 Domain-Specific Prelude 65
C.3.3 Contract Templates . 65

1 Introduction

Enterprise resource planning (ERP) systems are comprehensive software sys-
tems used to manage daily activities in enterprises. Such activities include—
but are not limited to—financial management (accounting), production plan-
ning, supply chain management and customer relationship management. ERP
systems emerged as a remedy to heterogeneous systems, in which data and
functionality are spread out—and duplicated—amongst dedicated subsystems.
Instead, an ERP system it built around a central database, which stores all
information in one place.

Traditional ERP systems such as Microsoft Dynamics NAV1, Microsoft Dy-
namics AX2, and SAP3 are three-tier architectures with a client, an applica-
tion server, and a centralised relational database system. The central database
stores information in tables, and the application server provides the business
logic, typically coded in a general purpose, imperative programming language.
A shortcoming to this approach is that the state of the system is decoupled
from the business logic, which means that business processes—that is, the daily
activities—are not represented explicitly in the system. Rather, business pro-
cesses are encoded implicitly as transition systems, where the state is maintained
by tables in the database, and transitions are encoded in the application server,
possibly spread out across several different logical modules.

The process-oriented event-driven transaction systems (POETS) architec-
ture introduced by Henglein et al. [6] is a qualitatively different approach to
ERP systems. Rather than storing both transactional data and implicit process
state in a database, POETS employs a pragmatic separation between transac-
tional data, which is persisted in an event log, and contracts, which are explicit

1http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx.
2http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx.
3http://www.sap.com.

3

http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx
http://www.sap.com

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add report
delete report
get report
query report

Event
log

events updates

query results

Figure 1: Bird’s-eye view of the POETS architecture (diagram copied from [6]).

representations of business processes, stored in a separate module. Moreover,
rather than using general purpose programming languages to specify business
processes, POETS utilises a declarative domain-specific language (DSL) [1]. The
use of a DSL not only enables explicit formalisation of business processes, it also
minimises the gap between requirements and a running system. In fact, Hen-
glein et al. take it as a goal of POETS that “[...] the formalized requirements
are the system” [6, page 382].

The bird’s-eye view of the POETS architecture is presented in Figure 1.
At the heart of the system is the event log, which is an append-only list of
transactions. Transactions represent “things that take place” such as a payment
by a customer, a delivery of goods by a shipping agency, or a movement of items
in an inventory. The append-only restriction serves two purposes. First, it is
a legal requirement in ERP systems that transactions, which are relevant for
auditing, are retained. Second, the report engine utilises monotonicity of the
event log for optimisation, as shown by Nissen and Larsen [12].

Whereas the event log stores historical data, contracts play the role of de-
scribing which events are expected in the future. For instance, a yearly payment
of value-added tax (VAT) to the tax authorities is an example of a (recurring)
business process. The amount to be paid to the tax authorities depends, of
course, on the financial transactions that have taken place. Therefore, infor-
mation has to be derived from previous transactions in the event log, which
is realised as a report. A report provides structured data derived from the
transactions in the event log. Like contracts, reports are written in a declara-
tive domain-specific language—not only in order to minimise the semantic gap
between requirements and the running system, but also in order to perform
automatic optimisations.

Besides the radically different software architecture, POETS distinguishes
itself from existing ERP systems by abandoning the double-entry bookkeeping
(DEB) accounting principle [17] in favour of the resources, events, and agents
(REA) accounting model of McCarthy [10].

In double-entry bookkeeping, each transaction is recorded as two postings in
a ledger—a debit and a credit. When, for instance, a customer pays an amount
x to a company, then a debit of x is posted in a cash account, and a credit of x

4

is posted in a sales account, which reflects the flow of cash from the customer to
the company. The central invariant of DEB is that the total credit equals the
total debit—if not, resources have either vanished or spontaneously appeared.
DEB fits naturally in the relational database oriented architectures, since each
ledger is similar in structure to a table. Moreover, DEB is the de facto standard
accounting method, and therefore used by current ERP systems.

In REA, transactions are not registered in accounts, but rather as the events
that take place. An event in REA is of the form (a1, a2, r) meaning that agent
a1 transfers resource r to agent a2. Hence, when a customer pays an amount x
to a company, then it is represented by a single event (customer, company, x).
Since events are atomic, REA does not have the same redundancy4 as DEB,
and inconsistency is not a possibility: resources always have an origin and a
destination. The POETS architecture not only fits with the REA ontology, it
is based on it. Events are stored as first-class objects in the event log, and
contracts describe the expected future flow of resources.5 Reports enable com-
putation of derived information that is inherent in DEB, and which may be a
legal requirement for auditing. For instance, a sales account—which summarises
(pending) sales payments—can be reconstructed from information about initi-
ated sales and payments made by customers. Such a computation will yield the
same derived information as in DEB, and the principles of DEB consistency will
be fulfilled simply by construction.

1.1 Outline and Contributions

The motivation for our work is to assess the POETS architecture in terms of a
prototype implementation. During the implementation process we have added
features to the architecture that were painfully missing. Moreover, in the process
we found that the architecture need not be tailored to the REA ontology—
indeed to ERP systems—but the applicability of our generalised architecture to
other domains remains future research. Our contributions are as follows:

• We present a generalised and extended POETS architecture (Section 2)
that has been fully implemented.

• We present domain-specific languages (DSLs) for data modelling (Sec-
tion 2.1), report specification (Section 2.4), and contract specification
(Section 2.5).

• We demonstrate how to implement a small use case, from scratch, in
our implemented system (Section 3). We provide the complete specifica-
tion of the system, which demonstrates both the conciseness and domain-
orientation6 of our approach. We conclude that the extended architecture

4In traditional DEB, redundancy is a feature to check for consistency. However, in a
computer system such redundancy is superfluous.

5Structured contracts are not part of the original REA ontology but instead due to An-
dersen et al. [1].

6Compare the motto: “[...] the formalized requirements are the system” [6, page 382].

5

Contract Engine

- manage templates
- manage contracts
- retrieve contracts
- register transactions

Report Engine

- manage reports
- query reports

Entity Store

- manage entities

Rule Engine

- manage rules
- apply rules

Event
log

Data Model

- manage data definitions
- retrieve data definitions

information pushed information pulled

Figure 2: Bird’s-eye view of the generalised and extended POETS architecture.

is indeed well-suited for implementing ERP systems—although the DSLs
and the data model may require additions for larger systems. Most no-
tably, the amount of code needed to implement the system is but a fraction
of what would be have to be implemented in a standard ERP system.

• We describe how we have utilised state-of-the art software development
tools in our implementation, especially how the tightly coupled DSLs are
implemented (Section 4).

2 Revised POETS Architecture

Our generalised and extended architecture is presented in Figure 2. Compared
to the original architecture in Figure 1, the revised architecture sees the addition
of three new components: a data model, an entity store, and a rule engine. The
rule engine is currently not implemented, and we will therefore not return to
this module until Section 5.1.

As in the original POETS architecture, the event log is at the heart of the
system. However, in the revised architecture the event log plays an even greater
role, as it is the only persistent state of the system. This means that the
states of all other modules are also persisted in the event log, hence the flow of
information from all other modules to the event log in Figure 2. For example,
whenever a contract is started or a new report is added to the system, then
an event reflecting this operation is persisted in the event log. This, in turn,
means that the state of each module can—in principle—be derived from the
event log. However, for performance reasons each module—including the event

6

Data Model

Function Input Output

addDataDefs ontology specification
getRecordDef record name type definition
getSubTypes record name list of record names

Figure 3: Data model interface.

log—maintains its own state in memory.
The addition of a data model constitutes the generalisation of the new ar-

chitecture over the old architecture. In the data model, data definitions can be
added to the system—at run-time—such as data defining customers, resources,
or payments. Therefore, the system is not a priori tailored to ERP systems or
the REA ontology, but it can be instantiated to that, as we shall see in Section 3.

The entity store is added to the architecture in order to support entities—
unique “objects” with associated data that may evolve over time. For instance,
a concrete customer can suitably be modelled as an entity: Although informa-
tion attributed to that customer—such as address, or even name—are likely to
change over time, it is still the same customer. Moreover, we do not want a
copy of the customer data in for instance a sale, but rather a reference to that
customer. Hence by modelling customers as entities, we are able to derive, for
instance, all transactions in which that customer has participated—even if the
customer attributes have changed over time.

We describe each module of the revised architecture in the following subsec-
tions. Since we will focus on the revised architecture in the remainder of the
text, we will refer to said architecture simply as POETS.

2.1 Data Model

The data model is a core component of the extended architecture, and the
interface it provides is summarised in Figure 3. The data model defines the
types of data that are used throughout the system, and it includes predefined
types such as events. Custom types such as invoices can be added to the data
model at run-time via addDataDefs—for simplicity, we currently only allow
addition of types, not updates and deletions. Types define the structure of the
data in a running POETS instance manifested as values. A value—such as a
concrete invoice—is an instance of the data specified by a type. Values are not
only communicated between the system and its environment but they are also
stored in the event log, which is simply a list of values of a certain type.

2.1.1 Types

Structural data such as payments and invoices are represented as records, that is
typed finite mappings from field labels to values. Record types define the struc-
ture of such records by listing the constituent field labels and their associated

7

types. In order to form a hierarchical ontology of record types, we use a nominal
subtyping system [14]. That is, each record type has a unique name, and one
type is a subtype of another if and only if stated so explicitly or by transitivity.
For instance, a customer can be defined as a subtype of a person, which means
that a customer contains all the data of a person, similar to inheritance in object
oriented programming.

The choice of nominal types over structural types [14] is justified by the
domain: the nominal type associated with a record may have a semantic impact.
For instance, the type of customers and premium customers may be structurally
equal, but a value of one type is considered different from the other, and clients
of the system may for example choose to render them differently. Moreover,
the purpose of the rule engine, which we return to in Section 5.1, is to define
rules for values of a particular semantic domain, such as invoices. Hence it is
wrong to apply these rules to data that happens to have the same structure as
invoices. Although we use nominal types to classify data, the DSLs support full
record polymorphism [13] in order to minimise code duplication. That is, it is
possible for instance to use the same piece of code with customers and premium
customers, even if they are not related in the subtyping hierarchy.

The grammar for types is as follows:

T ::= Bool | Int | Real | String | Timestamp | Duration (type constants)
| RecordName (record type)
| [T] (list type)
| 〈RecordName〉 (entity type)

Type constants are standard types Booleans, integers, reals, and strings, and
less standard types timestamps (absolute time) and durations (relative time).
Record types are named types, and the record typing environment—which we
will describe shortly—defines the structure of records. For record types we
assume a set RecordName = {Customer,Address, Invoice, . . . } of record names
ranged over by r. Concrete record types are typeset in sans-serif, and they
always begin with a capital letter. Likewise, we assume a set FieldName of all
field names ranged over by f . Concrete field names are typeset in sans-serif
beginning with a lower-case letter.

List types [τ] represent lists of values, where each element has type τ , and
it is the only collection type currently supported. Entity types 〈r〉 represent
entity values that have associated data of type r. For instance, if the record
type Customer describes the data of a customer, then a value of type 〈Customer〉
is a (unique) customer entity, whose associated Customer data may evolve over
time. The type system ensures that a value of an entity type in the system
will have associated data of the given type, similar to referential integrity in
database systems [3]. We will return to how entities are created and modified
in Section 2.3.

A record typing environment provides the record types that are available,
their subtype relation, and the fields they define.

Definition 2.1. A record typing environment is a tuple (R,A, F, ρ,≤) consist-
ing of finite sets R ⊆ RecordName and F ⊆ FieldName, a set A ⊆ R, a mapping

8

ρ : R→ Pfin(F × T), and a relation ≤ ⊆ R×R, where Pfin(X) denotes the set
of all finite subsets of a set X.

Intuitively, R is the set of defined record types, ρ gives for each defined
record type its fields and their types, ≤ gives the subtyping relation between
record types, and record types in A are considered to be abstract. Abstract
record types are not supposed to be instantiated, they are only used to structure
the record type hierarchy. The functions getRecordDef and getSubTypes from
Figure 3 provide the means to retrieve the record typing environment from a
running system.

Record types can depend on other record types by having them as part of
the type of a constituent field:

Definition 2.2. The immediate dependency relation of a record typing envi-
ronment R = (R,A, F, ρ,≤), denoted→R, is the binary relation on R such that
r1 →R r2 iff there is some (f, τ) ∈ ρ(r1) such that a record name r occurs in τ
with r2 ≤ r. The dependency relation →+

R of R is the transitive closure of →R.

We do not permit all record typing environments. Firstly, we do not allow
the subtyping to be cyclic, that is a record type r cannot have a proper subtype
which has r as a subtype. Secondly, the definition of field types must be unique
and must follow the subtyping, that is a subtype must define at least the fields of
its supertypes. Lastly, we do not allow recursive record type definitions, that is
a cycle in the dependency relation. The two first restrictions are sanity checks,
but the last restriction makes a qualitative difference: the restriction is imposed
for simplicity, and moreover we have not encountered practical situations where
recursive types were needed.

Definition 2.3. A record typing environment R = (R,A, F, ρ,≤) is well-
formed, whenever the following is satisfied:

• ≤ is a partial order, (acyclic inheritance)

• each ρ(r) is the graph of a partial function F ⇀ T , (unique typing)

• r1 ≤ r2 implies ρ(r1) ⊇ ρ(r2), and (consistent typing)

• →+
R is irreflexive, that is r1 →+

R r2 implies r1 6= r2. (non-recursive)

Well-formedness of a record typing environment combines both conditions
for making it easy to reason about them—for instance, transitivity of ≤ and
inclusion of fields of supertypes—and hard restrictions such as non-recursiveness
and unique typing. If a record typing environment fails to be well-formed due
to the former only, it can be uniquely closed to a well-formed one:

Definition 2.4. The closure of a record typing environmentR = (R,A, F, ρ,≤)
is the record typing environment Cl (R) = (R,A, F, ρ′,≤′) such that ≤′ is the
transitive, reflexive closure of ≤ and ρ′ is the consistent closure of ρ with respect
to ≤′, that is ρ′(r) =

⋃
r≤′r′ ρ(r′).

9

The definition of closure allows us to easily build a well-formed record typing
environment from an incomplete specification.

Example 2.5. As an example, we may define a record typing environment
R = (R,A, F, ρ,≤) for persons and customers as follows:

R = {Person,Customer,Address} ρ(Person) = {(name,String)}
A = {Person} ρ(Customer) = {(address,Address)}
F = {name, address, road, no} ρ(Address) = {(road,String), (no, Int)} ,

with Customer ≤ Person. The only properties that prevent R from being well-
formed are the missing field typing (name,String) that Customer should inherit
from Person and the missing reflexivity of ≤. Hence, the closure Cl (R) of R is
indeed a well-formed record typing environment.

In order to combine record typing environments we define the union R1∪R2

of two record typing environments Ri = (Ri, Ai, Fi, ρi,≤i) as the pointwise
union:

R1 ∪R2 = (R1 ∪R2, A1 ∪A2, F1 ∪ F2, ρ1 ∪ ρ2,≤1 ∪ ≤2),

where (ρ1 ∪ ρ2)(r) = ρ1(r) ∪ ρ2(r) for all r ∈ R1 ∪ R2. Note that the union
of two well-formed record typing environments need not be well-formed—either
due to incompleteness, which can be resolved by forming the closure of the
union, or due to inconsistencies respectively cyclic dependencies, which cannot
be resolved.

2.1.2 Values

The set of values Value supplementing the types from the previous section is
defined inductively as the following disjoint union:

Value = Bool]Int]Real]String]Timestamp]Duration]Record]List]Ent ,

with

Bool = {true, false} String = Char∗ Record = RecordName × Fields

Int = Z Timestamp = N Fields = FieldName ⇀fin Value

Real = R Duration = Z List = Value∗,

where X∗ denotes the set of all finite sequences over a set X; Char is a set
of characters; Ent is an abstract, potentially infinite set of entity values; and
A ⇀fin B denotes the set of finite partial mappings from a set A to a set B.

Timestamps are modelled using UNIX time7 and durations are measured in
seconds. A record (r,m) ∈ Record consists of a record name r ∈ RecordName
together with a finite set of named values m ∈ Fields. Entity values e ∈ Ent are
abstract values that only permit equality testing and dereferencing—the latter
takes place only in the report engine (Section 2.4), and the type system ensures
that dereferencing cannot get stuck, as we shall see in the following subsection.

7http://en.wikipedia.org/wiki/Unix time.

10

http://en.wikipedia.org/wiki/Unix_time

Example 2.6. As an example, a customer record value c ∈ Record may be as
follows:

c = (Customer,m) m′(road) = Universitetsparken

m(name) = John Doe m′(no) = 1,

m(address) = (Address,m′)

where m,m′ ∈ Fields.

2.1.3 Type Checking

All values are type checked before they enter the system, both in order to check
that record values conform with the record typing environment, but also to check
that entity values have valid associated data. In particular, events—which are
values—are type checked before they are persisted in the event log. In order
to type check entities, we assume an entity typing environment E : Ent ⇀fin

RecordName, that is a finite partial mapping from entities to record names.
Intuitively, an entity typing environment maps an entity to the record type that
it has been declared to have upon creation.

The typing judgement has the form R, E ` v : τ , where R is a well-formed
record typing environment, E is an entity typing environment, v ∈ Value is a
value, and τ ∈ T is a type. The typing judgment uses the auxiliary subtyping
judgement R ` τ1 <: τ2, which is a generalisation of the subtyping relation from
Section 2.1.1 to arbitrary types.

The typing rules are given in Figure 4. The typing rules for base types and
lists are standard. In order to type check a record, we need to verify that the
record contains all and only those fields that the record typing environment
prescribes, and that the values have the right type. The typing rule for entities
uses the entity typing environment to check that each entity has associated data,
and that the data has the required type. The last typing rule enables values to
be coerced to a supertype in accordance with the subtyping judgement, which is
also given in Figure 4. The rules for the subtyping relation extend the relation
from Section 2.1.1 to include subtyping of base types, and contextual rules for
lists and entities. We remark that the type system in Figure 4 is declarative: in
our implementation, an equivalent algorithmic type system is used.

Example 2.7. Reconsider the record typing environment R and its closure
Cl (R) from Example 2.5, and the record value c from Example 2.6. Using the
typing rules in Figure 4, we can derive the typing judgement Cl (R) , E ` c :
Customer for any entity typing environment E . Moreover, since Customer is a
subtype of Person we also have that Cl (R) , E ` c : Person.

In the following, we want to detail how the typing rules guarantee the in-
tegrity of entities, which involves reasoning about the evolution of the system
over time. To this end, we use Rt = (Rt, At, Ft, ρt,≤t) and Et to indicate the
record typing environment and the entity typing environment respectively, at a
point in time t ∈ Timestamp. In order to reason about the data associated with

11

R, E ` v : τ b ∈ Bool
R, E ` b : Bool

n ∈ Int
R, E ` n : Int

r ∈ Real
R, E ` r : Real

s ∈ String

R, E ` s : String

t ∈ Timestamp

R, E ` t : Timestamp

d ∈ Duration
R, E ` d : Duration

(r,m) ∈ Record

R = (R,A, F, ρ,≤)

r ∈ R \A
dom(ρ(r)) = dom(m)

∀f ∈ dom(m) : R, E ` m(f) : ρ(r)(f)

R, E ` (r,m) : r

(v1, . . . , vn) ∈ List ∀i ∈ {1, . . . , n}.R, E ` vi : τ

R, E ` (v1, . . . , vn) : [τ]

e ∈ Ent E(e) = r

R, E ` e : 〈r〉

R, E ` v : τ ′ R ` τ ′ <: τ

R, E ` v : τ

R ` τ1 <: τ2
R ` τ <: τ

R ` τ1 <: τ2 R ` τ2 <: τ3
R ` τ1 <: τ3

R ` Int <: Real
r1 ≤ r2

(R,A, F, ρ,≤) ` r1 <: r2

R ` τ1 <: τ2
R ` [τ1] <: [τ2]

r1 ≤ r2
(R,A, F, ρ,≤) ` 〈r1〉 <: 〈r2〉

Figure 4: Type checking of values R, E ` v : τ and subtyping R ` τ1 <: τ2.

an entity, we assume for each point in time t ∈ Timestamp an entity environ-
ment εt : Ent ⇀fin Record that maps an entity to its associated data. Entity
(typing) environments form the basis of the entity store, which we will describe
in detail in Section 2.3.

Given T ⊆ Timestamp and sequences (Rt)t∈T , (Et)t∈T and (εt)t∈T of record
typing environments, entity typing environments, and entity environments re-
spectively, which represent the evolution of the system over time, we require
the following invariants to hold for all t, t′ ∈ Timestamp, r, r′ ∈ RecordName,
e ∈ Ent , and v ∈ Record :

if Et(e) = r and Et′(e) = r′, then r = r′, (stable type)

if Et(e) is defined, then so is εt(e), and (well-definedness)

if εt(e) = v, then Et(e) = r and Rt′ , Et′ ` v : r for some t′ ≤ t. (well-typing)

We refer to the three invariants above collectively as the entity integrity invari-
ants. The stable type invariant states that each entity can have at most one
declared type throughout its lifetime. The well-definedness invariant guaran-
tees that every entity that is given a type also has an associated record value.

12

Finally, the well-typing invariant guarantees that the record value associated
with an entity was well-typed at some earlier point in time t′.

The well-typing invariant is, of course, not strong enough. What we need
is that the value v associated with an entity e remains well-typed throughout
the lifetime of the system. This is, however, dependant on the record typing
environment and the entity typing environment, which both may change over
time. Therefore, we need to impose restrictions on the possible evolution of the
record typing environment, and we need to take into account that entities used
in the value v may have been deleted. We return to these issues in Section 2.2
and Section 2.3, and in the latter we will see that the entity integrity invariants
are indeed satisfied by the system.

2.1.4 Ontology Language

Section 2.1.1 provides the semantic account of record types, and in order to
specify record types, we use a variant of Attempto Controlled English [4] due
to Jønsson Thomsen [8], referred to as the ontology language. The approach is
to define data types in near-English text, in order to minimise the gap between
requirements and specification. As an example, the record typing environment
from Example 2.5 is specified in the ontology language as follows:

Person is abstract.
Person has a String called name.

Customer is a Person.
Customer has an Address.

Address has a String called road.
Address has an Int called no.

An ontology definition consists of a sequence of sentences as defined by the
grammar below (where [·] denotes optionality):

Ontology ::= Sentence∗ (ontology)
Sentence ::= RecordName is [a | an] RecordName. (supertype declaration)

| RecordName is abstract. (abstract declaration)
| RecordName has [a | an] Type (field declaration)

[called FieldName].
Type ::= Bool | Int | Real (type constants)

| String | Timestamp | Duration
| RecordName (record type)
| list of Type (list type)
| RecordName entity (entity type)

The language of types Type reflects the definition of types in T and there is
an obvious bijection J·K : Type → T with Jlist of tK = [JtK], Jr entityK = 〈r〉,
and otherwise JtK = t.

The semantics of the ontology language is given by a straightforward map-
ping into the domain of record typing environments. Each sentence is translated

13

into a record typing environment. The semantics of a sequence of sentences is
simply the closure of the union of each sentence’s record typing environment:

Js1 · · · snK = Cl (Js1K ∪ Js2K ∪ · · · ∪ JsnK)
Jr1 is [a | an] r2.K = ({r1, r2} , ∅, ∅, {r1 7→ ∅, r2 7→ ∅} , {(r1, r2)})
Jr is abstract.K = ({r} , {r} , ∅, {r 7→ ∅} , ∅)

Jr has [a | an] t called f.K = ({r} , ∅, {f} , {r 7→ {(f, JtK)}} , ∅)

We omit the case where the optional FieldName is not supplied in a field
declaration. We treat this form as syntactic sugar for r has (a | an) t called f.
where f is derived from the type t. In this case a default name is used based
on the type, simply by changing the first letter to a lower-case. Hence, in the
example above the field name of a customer’s address is address. Note that
the record typing environment need not be well-formed (Definition 2.3), and a
subsequent check for well-formedness has to be performed.

Data definitions added to the system via addDataDefs are specified in the
ontology language. We require, of course, that the result of adding data defini-
tions must yield a well-defined record typing environment. Moreover, we impose
further monotonicity constraints which ensure that existing data in the system
remain well-typed. We return to these constraints when we discuss the event log
in Section 2.2. Type definitions retrieved via getRecordDef provide the semantic
structure of a record type, that is its immediate supertypes, its fields, and an
indication whether the record type is abstract. getSubTypes returns a list of im-
mediate subtypes of a given record type, hence getRecordDef and getSubTypes
provide the means for clients of the system to traverse the type hierarchy—both
upwards and downwards.

2.1.5 Predefined Ontology

Unlike the original POETS architecture [6], our generalised architecture is not
fixed to an enterprise resource planning (ERP) domain. However, we require a
set of predefined record types, which are included in Appendix A. That is, the
record typing environment R0 denoted by the ontology in Appendix A is the
initial record typing environment in all POETS instances.

The predefined ontology defines five root concepts in the data model, that is
record types maximal with respect to the subtype relation ≤. Each of these five
root concepts Data, Event, Transaction, Report, and Contract are abstract and
only Event and Contract define record fields. Custom data definitions added via
addDataDefs are only permitted as subtypes of Data, Transaction, Report, and
Contract. In contrast to that, Event has a predefined and fixed hierarchy.

Data types represent elements in the domain of the system such as customers,
items, and resources.

Transaction types represent events that are associated with a contract, such as
payments, deliveries, and issuing of invoices.

14

Report types are result types of report functions, that is the data of reports,
such as inventory status, income statement, and list of customers. The
Report structure does not define how reports are computed, only what kind
of result is computed. We will return to this discussion in Section 2.4.

Contract types represent the different kinds of contracts, such as sales, pur-
chases, and manufacturing procedures. Similar to Report, the structure
does not define what the contract dictates, only what is required to instan-
tiate the contract. The purpose of Contract is hence dual to the purpose
of Report: the former determines an input type, and the latter determines
an output type. We will return to contracts in Section 2.5.

Event types form a fixed hierarchy and represent events that are logged in the
system. Events are conceptually separated into internal events and exter-
nal events, which we describe further in the following section.

2.2 Event Log

The event log is the only persistent state of the system, and it describes the
complete state of a running POETS instance. The event log is an append-only
list of records of the type Event defined in Appendix A. Each event reflects an
atomic interaction with the running system. This approach is also applied at the
“meta level” of POETS: in order to allow agile evolution of a running POETS
instance, changes to the data model, reports, and contracts are reflected in the
event log as well.

The monotonic nature of the event log—data is never overwritten or deleted
from the system—means that the state of the system can be reconstructed at
any previous point in time. In particular, transactions are never deleted, which
is a legal requirement for ERP systems. The only component of the architecture
that reads directly from the event log is the report engine (compare Figure 2),
hence the only way to access data in the log is via a report.

All events are equipped with an internal timestamp (internalTimeStamp), the
time at which the event is registered in the system. Therefore, the event log
is always monotonically decreasing with respect to internal timestamps, as the
newest event is at the head of the list. Conceptually, events are divided into
external and internal events.

External events are events that are associated with a contract, and only
the contract engine writes external events to the event log. The event type
TransactionEvent models external events, and it consists of three parts: (i) a
contract identifier (contractId), (ii) a timestamp (timeStamp), and (iii) a trans-
action (transaction). The identifier associates the external event with a contract,
and the timestamp represents the time at which the external event takes place.
Note that the timestamp need not coincide with the internal timestamp. For
instance, a payment in a sales contract may be registered in the system the
day after it takes place. There is hence no a priori guarantee that external
events have decreasing timestamps in the event log—only external events that
pertain to the same contract are required to have decreasing timestamps. The

15

Event Description

AddDataDefs A set of data definitions is added to the system. The field
defs contains the ontology language specification.

CreateEntity An entity is created. The field data contains the data associ-
ated with the entity, the field recordType contains the string
representation of the declared type, and the field ent contains
the newly created entity value.

UpdateEntity The data associated with an entity is updated.
DeleteEntity An entity is deleted.

CreateReport A report is created. The field code contains the specification
of the report, and the fields description and tags are meta
data.

UpdateReport A report is updated.
DeleteReport A report is deleted.

CreateContractDef A contract template is created. The field code contains
the specification of the contract template, and the fields
recordType and description are meta data.

UpdateContractDef A contract template is updated.
DeleteContractDef A contract template is deleted.

CreateContract A contract is instantiated. The field contractId contains the
newly created identifier of the contract and the field contract
contains the name of the contract template to instantiate, as
well as data needed to instantiate the contract template.

UpdateContract A contract is updated.
ConcludeContract A contract is concluded.

Figure 5: Internal events.

last component, transaction, represents the actual action that takes place, such
as a payment from one person or company to another. The transaction is a
record of type Transaction, for which the system has no presumptions.

Internal events reflect changes in the state of the system at a meta level. This
is the case for example when a contract is instantiated or when a new record
definition is added. Internal events are represented by the remaining subtypes of
the Event record type. Figure 5 provides an overview of all non-abstract record
types that represent internal events.

A common pattern for internal events is to have three event types to rep-
resent creation, update, and deletion of respective components. For instance,
when a report is added to the report engine, a CreateReport event is persisted
to the log, and when it is updated or deleted, UpdateReport and DeleteReport
events are persisted accordingly. This means that previous versions of the re-
port specification can be retrieved, and more generally that the system can be
restarted simply by replaying the events that are persisted in the log on an
initially empty system. Another benefit to the approach is that the report en-
gine, for instance, does not need to provide built-in functionality to retrieve,

16

Entity Store

Function Input Output

createEntity record name, record entity
updateEntity entity, record
deleteEntity entity

Figure 6: Entity store interface.

say, the list of all reports added within the last month—such a list can instead
be computed as a report itself! We will see how to write such a “meta” re-
port in Section 2.4. Similarly, lists of entities, contract templates, and running
contracts can be defined as reports.

Since we allow the data model of the system to evolve over time, we must be
careful to ensure that the event log, and thus all data in it, remains well-typed
at any point in time. Let (Rt)t∈T , (Et)t∈T , and (lt)t∈T be sequences of record
typing environments, entity typing environments, and event logs respectively.
Since an entity might be deleted over time, and thus is removed from the entity
typing environment, the event log may not be well-typed with respect to the
current entity typing environment. To this end, we type the event log with
respect to the accumulated entity typing environment Êt =

⋃
t′≤t Et′ . That is,

Êt(e) = r iff there is some t′ ≤ t with Et′(e) = r. The stable type invariant

guarantees that Êt is indeed well-defined.
For changes to the record typing environment, we require the following in-

variants for any points in time t, t′ and the event log lt at time t:

if t′ ≥ t then Rt′ = Rt ∪R∆ for some R∆, and (monotonicity)

Rt, Êt ` lt : [Event] . (log typing)

Note that the log typing invariant follows from the monotonicity invariant and
the type checking Rt, Et ` e : Event for each new incoming event, provided that
for each record name r occurring in the event log, no additional record fields
are added to r, and r is not made an abstract record type. We will refer to the
two invariants above collectively as record typing invariants. They will become
crucial in the following section.

2.3 Entity Store

The entity store provides very simple functionality, namely creation, deletion
and updating of entities, respectively. To this end, the entity store maintains the
current entity typing environment Et as well as the history of entity environments
ε0, . . . , εt. The interface of the entity store is summarised in Figure 6.

The creation of a new entity via createEntity at time t+1 requires a declared
type r and an initial record value v, and it is checked that Rt, Et ` v : r. If the
value type checks, a fresh entity value e 6∈

⋃
t′≤t dom(εt′) is created, and the

17

entity environment and the entity typing environment are updated accordingly:

εt+1(x) =

{
v if x = e,

εt(x) otherwise,
Et+1(x) =

{
r if x = e,

Et(x) otherwise.

Moreover, a CreateEntity event is persisted to the event log containing e, r, and
v for the relevant fields.

Similarly, if the data associated with an entity e is updated to the value v
at time t + 1, then it is checked that Rt, Et ` v : Et(e), and the entity store is
updated like above. Note that the entity typing environment is unchanged, that
is Et+1 = Et. A corresponding UpdateEntity event is persisted to the event log
containing e and v for the relevant fields.

Finally, if an entity e is deleted at time t+ 1, then it is removed from both
the entity store and the entity typing environment:

εt+1(x) = εt(x) iff x ∈ dom(εt) \ {e}
Et+1(x) = Et(x) iff x ∈ dom(Et) \ {e} .

A corresponding DeleteEntity event is persisted to the event log containing e for
the relevant field.

Note that, by default, εt+1 = εt and Et+1 = Et, unless one of the situations
above apply. It is straightforward to show that the entity integrity invariants are
maintained by the operations described above (the proof follows by induction
on the timestamp t). Internally, that is, for the report engine compare Figure 2,
the entity store provides a lookup function lookupt : Ent × [0, t] ⇀fin Record ,
where lookupt(e, t

′) provides the latest value associated with the entity e at
time t′, where t is the current time. Note that this includes the case in which
e has been deleted at or before time t′. In that case, the value associated with
e just before the deletion is returned. Formally, lookupt is defined in terms of
the entity environments as follows:

lookupt(e, t1) = v iff ∃t2 ≤ t1 : εt2(e) = v and ∀t2 < t3 ≤ t1 : e 6∈ dom(εt3).

In particular, we have that if e ∈ dom(εt1) then lookupt(e, t1) = εt1(e).
From this definition and the invariants of the system, we obtain the following

property:

Corollary 2.8. Let (Rt)t∈T , (Et)t∈T , and (εt)t∈T be sequences of record typing
environments, entity typing environments, and entity environments respectively,
satisfying the entity integrity invariants and the record typing invariants. Then
the following holds for all timestamps t ≤ t1 ≤ t2 and entities e ∈ Ent:

If Rt, Êt ` e : 〈r〉 then lookupt2(e, t1) = v for some v and Rt2 , Êt2 ` v : r.

Proof. Assume that Rt, Êt ` e : 〈r〉. Then it follows from the typing rule for

entity values and the subtyping rules that Êt(e) = r′ for some r′ with r′ ≤t r.
That is, there is some t′ ≤ t with Et′(e) = r′. Hence, from the well-definedness

18

Report Engine

Function Input Output

addReport name, type, description, tags, report definition
updateReport name, type, description, tags, report definition
deleteReport name
queryReport name, list of values value

Figure 7: Report engine interface.

invariant it follows that εt′(e) is defined. Since t′ ≤ t ≤ t1, we can thus conclude
that lookupt2(e, t1) = (r′′,m), for some record value (r′′,m).

According to the definition of lookupt2 , we then have some t3 ≤ t1 with
εt3(e) = (r′′,m). Applying the well-typing invariant, we obtain some t4 ≤ t3
with Rt4 , Et4 ` (r′′,m) : Et3(e). Since, by the stable type invariant, Et3(e) =
Et′ = r′, we then have Rt4 , Et4 ` (r′′,m) : r′. Moreover, according to the typing
rules, this can only be the case if r′′ ≤t4 r′.

Due to the monotonicity invariant, we know that Rt2 = Rt4 ∪R∆ for some
R∆. In particular, this means that r′′ ≤t4 r′ implies that r′′ ≤t2 r′. Similarly,
r′ ≤t r implies that r′ ≤t2 r. Hence, by transitivity of ≤t2 , we have that
r′′ ≤t2 r.

According to the implementation of the entity store, we know that εt3(e) =
(r′′,m) implies that (r′′,m) occurs in the event log (as part of an event of type
CreateEntity or UpdateEntity) at least from t3 onwards, in particular in the event
log lt2 at t2. Since, by the log typing invariant, the event log lt2 is well-typed as

Rt2 , Êt2 ` lt2 : [Event], we know that Rt2 , Êt2 ` (r′′,m) : r′′. From the subtype

relation r′′ ≤t2 r we can thus conclude Rt2 , Êt2 ` (r′′,m) : r.

The corollary above describes the fundamental safety property with respect
to entity values: if an entity value previously entered the system, and hence type
checked, then all future dereferencing will not get stuck, and the obtained value
will be well-typed with respect to the accumulated entity typing environment.

2.4 Report Engine

The purpose of the report engine is to provide a structured view of the database
that is constituted by the system’s event log. This structured view of the data
in the event log comes in the form of a report, which provides a collection of
condensed structured information compiled from the event log. Conceptually,
the data provided by a report is compiled from the event log by a function of
type [Event]→ Report, a report function. The report language provides a means
to specify such a report function in a declarative manner. The interface of the
report engine is summarised in Figure 7.

19

2.4.1 The Report Language

In this section, we provide an overview over the report language. For a detailed
description of the language including the full static and dynamic semantics
consult Appendix B.

The report language is—much like the query fragment of SQL—a functional
language without side effects. It only provides operations to non-destructively
manipulate and combine values. Since the system’s storage is based on a shallow
event log, the report language must provide operations to relate, filter, join,
and aggregate pieces of information. Moreover, as the data stored in the event
log is inherently heterogeneous—containing data of different kinds—the report
language offers a comprehensive type system that allows us to safely operate in
this setting.

Example 2.9. Consider the following simple report function that lists all re-
ports available in the system:

reports : [PutReport]
reports = nubProj (λx → x.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events,

ur.name ≡ cr.name]]

The report function above uses the two functions nubProj and first, which are
defined in the standard library of the report language. The function nubProj
of type (Eq b) ⇒ (a → b) → [a] → [a] removes duplicates in the given list ac-
cording to the equality on the result of the provided projection function. In
the example above, reports with the same name are considered duplicates. The
function first : a → [a] → a returns the first element of the given list or the
default value provided as first argument if the list is empty.

Every report function implicitly has as its first argument the event log of
type [Event]—a list of events—bound to the name events. The syntax—and
to large parts also the semantics—is based on Haskell [9]. The central data
structure is that of lists. In order to formulate operations on lists concisely, we
use list comprehensions [16] as seen in Example 2.9. A list comprehension of
the form [e | c] denotes a list containing elements of the form e generated by
c, where c is a sequence of generators and filters.

As we have mentioned, access to type information and its propagation to
subsequent computations is essential due to the fact that the event log is a list
of heterogeneously typed elements—events of different kinds. The generator
cr : CreateReport ← events iterates through elements of the list events, bind-
ing each element to the variable cr. The typing cr : CreateReport restricts this
iteration to elements of type CreateReport, a subtype of Event. This type infor-
mation is propagated through the subsequent generators and filters of the list
comprehension. In the filter ur.name ≡ cr.name, we use the fact that elements
of type ReportEvent have a field name of type String. When binding the first
element of the result of the nested list comprehension to the variable pr it is

20

also checked whether this element is in fact of type PutReport. Thus we ignore
reports that are marked as deleted via a DeleteReport event.

The report language is based on the simply typed lambda calculus extended
with polymorphic (non-recursive) let expressions as well as type case expres-
sions. The core language is given by the following grammar:

e ::= x | c | λx .e | e1 e2 | let x = e1 in e2 | type x = e of {r → e1; → e2} ,

where x ranges over variables, and c over constants which include integers,
Booleans, tuples and list constructors as well as operations on them like +,
if-then-else etc. In particular, we assume a fold operation fold of type (α →
β → β) → β → [α] → β. This is the only operation of the report language
that permits recursive computations on lists. List comprehensions are mere
syntactic sugar and can be reduced to fold and let expressions as for example
in Haskell [9].

The extended list comprehensions of the report language that allow filtering
according to run-time type information depend on type case expressions of the
form type x = e of {r → e1; → e2}. In such a type case expression, an
expression e of some record type re gets evaluated to record value v which is
then bound to a variable x. The record type r that the record value v is matched
against can be any subtype of re. Further evaluation of the type case expression
depends on the type rv of the record value v. This type can be any subtype of
re. If rv ≤ r then the evaluation proceeds with e1, otherwise with e2. Binding
e to a variable x allows us to use the stricter type r in the expression e1.

Another important component of the report language consists of the deref-
erencing operators ! and @, which give access to the lookup operator provided
by the entity store. Given an expression e of an entity type 〈r〉, both derefer-
encing operators provide a value v of type r. That is, both ! and @ are unary
operators of type 〈r〉 → r for any record type r. In the case of the operator
!, the resulting record value v is the latest value associated with the entity to
which e evaluates. More concretely, given an entity value v, the expression v!
evaluates to the record value lookupt(v, t), where t is the current timestamp.

On the other hand, the contextual dereference operator @ provides as the
result the value associated with the entity at the moment the entity was used
in the event log (based on the internalTimeStamp field). This is the case when
the entity is extracted from some event from the event log. Otherwise, the
entity value stems from an actual argument to the report function. In the latter
case @ behaves like the ordinary dereference operator !. In concrete terms,
every entity value v that enters the event log is annotated with the timestamp
of the event it occurs in. That is, each entity value embedded in an event e
in the event log, occurs in an annotated form (v, s), where s is the value of
e’s internalTimeStamp field. Given such an annotated entity value (v, s), the
expression (v,s)@ evaluates to lookupt(v, s) and given a bare entity value v the
expression v@ evaluates to lookupt(v, t).

Note that in each case for either of the two dereference operators, Corol-
lary 2.8 guarantees that the lookup operation yields a record value of the right

21

type. That is, both ! : 〈r〉 → r and @ : 〈r〉 → r are total functions that never
get stuck.

Example 2.10. The entity store and the contextual dereferencing operator pro-
vide a solution to a recurring problem in ERP systems, namely how to maintain
historical data for auditing. For example, when an invoice is issued in a sale,
then a copy of the customer information at the time of the invoice is needed
for auditing. Traditional ERP systems solve the problem by explicit copying of
data, since referenced data might otherwise get destructively updated.

Since data is never deleted in a POETS system, we can solve the problem
without copying. Consider the following definition of transactions that represent
issuing of invoices, and invoices respectively (we assume that the record types
Customer and OrderLine are already defined):

IssueInvoice is a Transaction.
IssueInvoice has a Customer entity.
IssueInvoice has a list of OrderLine.

Invoice is Data.
Invoice has a Customer.
Invoice has a list of OrderLine.

Rather than containing a Customer record, an IssueInvoice transaction contains
a Customer entity, which eliminates copying of data. From an IssueInvoice trans-
action we can instead derive the invoice data by the following report function:

invoices : [Invoice]
invoices = [Invoice{customer = ii.customer@, orderLines = ii.orderLines} |

tr : TransactionEvent ← events,
ii : IssueInvoice = tr.transaction]

Note how the @ operator is used to dereference the customer data: since the
ii.customer value originates from an event in the event log, the contextual deref-
erencing will produce data associated with the customer at the time when the
invoice was issued, as required.

2.4.2 Incrementalisation

While the type system is important in order to avoid obvious specification errors,
it is also important to ensure a fast execution of the thus obtained functional
specifications. This is, of course, a general issue for querying systems. In our
system it is, however, of even greater importance since shifting the structure
of the data—from the data store to the domain of queries—means that queries
operate on the complete data set of the database. In principle, the data of each
report has to be recomputed after each transaction by applying the correspond-
ing report function to the updated event log. In other words, if treated näıvely,
the conceptual simplification provided by the flat event log has to be paid via
more expensive computations.

This issue can be addressed by transforming a given report function f into
an incremental function f ′ that updates the report data computed previously
according to the changes that have occurred since the report data was computed
before. That is, given an event log l and an update to it l ⊕ e, we require that

22

f(l⊕ e) = f ′(f(l), e). The new report data f(l⊕ e) is obtained by updating the
previous report data f(l) according to the changes e. In the case of the event
log, we have a list structure. Changes only occur monotonically, by adding new
elements to it: given an event log l and a new event e, the new event log is e# l,
where # is the list constructor of type α→ [α]→ [α].

Here it is crucial that we have restricted the report language such that op-
erations on lists are limited to the higher-order function fold. The fundamental
idea of incrementalising report functions is based on the following equation sat-
isfied by fold:

fold f e (x# xs) = f x (fold f e (xs))

Based on this idea, we are able to make the computation of most report
functions independent of the size of the event log but only dependent of the
changes to the event log and the previous result of the report function [12].
Unfortunately, if we consider for example list comprehensions containing more
than one generator, we have functions with nested folds. In order to properly
incrementalise such functions, we need to move from list structures to multi-
sets. This is, however, only rarely a practical restriction since most aggregation
functions are based on commutative binary operations and are thus oblivious
to ordering.

2.4.3 Lifecycle of Reports

Like entities, the set of reports registered in a running POETS instance—and
thus available for querying—can be changed via the external interface to the
report engine. To this end, the report engine interface provides the operations
addReport, updateReport, and deleteReport. The former two take a report specifi-
cation that contains the name of the report, the definition of the report function
that generates the report data and the type of the report function. Optionally,
it may also contain further meta information in the form of a description text
and a list of tags.

Example 2.11. Reconsider the function defined in Example 2.9 that lists all
active reports with all their meta data. The following report specification uses
the report function from Example 2.9 in order to define a report function that
lists the names of all active report:

name: ReportNames
description: A list of names of all registered reports.
tags: internal, report

reports : [PutReport]
reports = nubProj (λx → x.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events,

ur.name ≡ cr.name]]

report : [String]

23

Contract Engine

Function Input Output

createTemplate name, type, description, specification
updateTemplate name, type, description, specification
deleteTemplate name

createContract meta data contract ID
updateContract contract ID, meta data
concludeContract contract ID
getContract contract ID contract state
registerTransaction contract ID, timestamp, transaction

Figure 8: Contract engine interface.

report = [r.name | r ← reports]

In the header of the report specification, the name and optionally also a
description text as well as a list of tags is provided as meta data to the actual
report function specification. Every report specification must define a top-level
function called report, which provides the report function that derives the
report data from the event log. In the example above, this function takes no
(additional) arguments and returns a list of strings—the names of active reports.

Calls to addReport and updateReport are both reflected by a correspond-
ing event of type CreateReport and UpdateReport respectively. Both events are
subtypes of PutReport and contain the meta information as well as the original
specification text of the concerning report. When a report is no longer needed,
it can be removed from the report engine by a corresponding deleteReport oper-
ation. Note that the change and removal of reports only affect the state of the
POETS system from the given point in time. Transactions that occurred prior
to a change or deletion of a report are not affected. This is important for the
system’s ability to fully recover after a crash by replaying the events from the
event log.

The remaining operation provided by the report engine—queryReport—
constitutes the core functionality of the reporting system. Given a name of
a registered report and a list of arguments, this operation supplies the given
arguments to the corresponding report function and returns the result. For ex-
ample, the ReportNames report specified in Example 2.11 does not require any
arguments—its type is [String]—and returns the names of registered reports.

2.5 Contract Engine

The role of the contract engine is to determine which transactions—that is
external events, compare Section 2.2—are expected by the system. Transactions
model events that take place according to an agreement, for instance a delivery
of goods in a sale, a payment in a lease agreement, or a movement of items from

24

one inventory to another in a production plan. Such agreements are referred to
as contracts, although they need not be legally binding contracts. The purpose
of a contract is to provide a detailed description of what is expected, by whom,
and when. A sales contract, for example, may stipulate that first the company
sends an invoice, then the customer pays within a certain deadline, and finally
the company delivers goods within another deadline.

The interface of the contract engine is summarised in Figure 8.

2.5.1 Contract Templates

In order to specify contracts such as the aforementioned sales contract, we use
an extended variant of the contract specification language (CSL) of Hvitved
et al. [7], which we will refer to as the POETS contract specification language
(PCSL) in the following. For reusability, contracts are always specified as con-
tract templates rather than as concrete contracts. A contract template consists
of four parts: (i) a template name, (ii) a template type, which is a subtype of the
Contract record type, (iii) a textual description, and (iv) a PCSL specification.
We describe PCSL in Section 2.5.3.

The template name is a unique identifier, and the template type determines
the parameters that are available in the contract template.

Example 2.12. We may define the following type for sales contracts in the
ontology language (assuming that the record types Customer, Company, and
Goods have been defined):

Sale is a Contract.
Sale has a Customer entity.
Sale has a Company entity.
Sale has a list of Goods.
Sale has an Int called amount.

With this definition, contract templates of type Sale are parametrised over the
fields customer, company, goods, and amount of types 〈Customer〉, 〈Company〉,
[Goods], and Int, respectively.

The contract engine provides an interface to add contract templates (cre-
ateTemplate), update contract templates (updateTemplate), and remove con-
tract templates (deleteTemplate) from the system at run-time. The structure
of contract templates is reflected in the external event types CreateContractDef,
UpdateContractDef, and DeleteContractDef, compare Section 2.2. A list of (non-
deleted) contract templates can hence be computed by a report, similar to the
list of (non-deleted) reports from Example 2.11.

2.5.2 Contract Instances

A contract template is instantiated via createContract by supplying a record
value v of a subtype of Contract. Besides custom fields, which depend on
the type at hand, such a record always contains the fields templateName and

25

startDate inherited from the Contract record type, compare Appendix A. The
field templateName contains the name of the template to instantiate, and the
field startDate determines the start date of the contract. The fields of v are
substituted into the contract template in order to obtain a contract instance,
and the type of v must therefore match the template type. For instance, if v
has type Sale then the field templateName must contain the name of a contract
template that has type Sale. We refer to the record v as contract meta data.

When a contract c is instantiated by supplying contract meta data v, a fresh
contract identifier i is created, and a CreateContract event is persisted in the
event log with with contract = v and contractId = i. Hereafter, transactions t
can be registered with the contract via registerTransaction, which will update

the contract to a residual contract c′, written c
t→ c′, and a TransactionEvent

with transaction = t and contractId = i is written to the event log. The state
of the contract can be acquired from the contract engine at any given point in
time via getContract, which enables run-time analyses of contracts, for instance
in order to generate a list of expected transactions.

Registration of a transaction c
t→ c′ is only permitted if the transaction is

expected in the current state c. That is, there need not be a residual state for

all transactions. After zero or more successful transactions, c
t1→ c1

t2→ · · · tn→ cn,
the contract may be concluded via concludeContract, provided that the residual
contract cn does not contain any outstanding obligations. This results in a
ConcludeContract event to be persisted in the event log.

The lifecycle described above does not take into account that contracts may
have to be updated at run-time, for example if it is agreed to extend the payment
deadline in a sales contract. To this end, running contracts are allowed to be
updated, simply by supplying new contract meta data (updateContract). The
difference in the new meta data compared to the old meta data may not only
be a change of, say, items to be sold, but it may also be a change in the field
templateName. The latter makes it is possible to replace the old contract by a
qualitatively different contract, since the new contract template may describe
a different workflow. There is, however, an important restriction: a contract
can only be updated if any previous transactions registered with the contract
also conform with the new contract. That is, if the contract has evolved like

c
t1→ c1

t2→ · · · tn→ cn, and an update to a new contract c′ is requested, then only

if c′
t1→ c′1

t2→ · · · tn→ c′n, for some c′1, . . . , c
′
n, is the update permitted. A successful

update results in an UpdateContract event to be written to the event log with
the new meta data.

Note that, for simplicity, we only allow the updates described above. An-
other possibility is to allow updates where the current state of the contract c
is replaced directly by a new state c′. Although we can achieve this effect via
a suitably defined contract template and the updateContract function above, a
direct update is preferable.

As for contract templates, a list of (non-concluded) contract instances can
be computed by a report that inspects CreateContract, UpdateContract, and
ConcludeContract events respectively.

26

2.5.3 The Contract Language

The fourth component of contract templates—the PCSL specification—is the
actual normative content of contract templates. The core grammar for PCSL is
presented in Figure 9. PCSL extends CSL mainly at the level of expressions E,
by adding support for the value types in POETS, as well as lambda abstractions
and function applications. At the level of clauses C, PCSL is similar to CSL,
albeit with a slightly altered syntax.

The semantics of PCSL is a straightforward extension of that of CSL [7], al-
though we use a partial small-step semantics rather than CSL’s total small-step
semantics. That is, there need not be a residue for all clauses and transactions,
as described in Section 2.5.2. This is simply in order to prevent “unexpected”
events from entering the system, for instance we only allow a payment to be
entered into the system if a running contract expects that payment.

The type system for clauses is identical with CSL. Typing of expressions is,
however, more challenging since we have introduced (record) polymorphism as
well as subtyping. We will not present the extended semantics nor the extended
typing rules, but only remark that the typing serves the same purpose as in
CSL: evaluation of expressions does not get stuck and always terminates, and
contracts have unique blame assignment.

Example 2.13. We demonstrate PCSL by means of an example, presented in
Figure 10. The contract template is of the type Sale from Example 2.12, which
means that the fields goods, amount, company, and customer are available in
the body of the contract template, that is the right-hand side of the contract
keyword. Hence, concrete values are substituted from the contract meta data
when the template is instantiated, as described in Section 2.5.2.

The example uses standard syntactic sugar at the level of expressions, for
instance ¬e means if e then false else true and e1 ∨ e2 means ¬(¬e1 ∧ ¬e2).
Moreover, we omit the after part of a deadline if it is 0, we write immediately
for within 0, we omit the remaining part if it is not used, and we write
fun f x1 · · ·xn = e for val f = λx1 → · · · λxn → e.

The template implements a simple workflow: first the company issues an
invoice, then the customer pays within 14 days, and simultaneously the company
delivers goods within a week. Delivery of goods is allowed to take place in
multiple deliveries, which is coded as the recursive clause template delivery .
Note how the variable r is bound to the remainder of the deadline: All deadlines
in a then branch are relative to the time of the guarding event, hence the
relative deadline for delivering the remaining goods is whatever remains of the
original one week deadline. Note also that the initial reference time of a contract
instance is determined by the field startDate in the contract meta data, compare
Appendix A. Hence if the contract above is instantiated with start date t ∈
Timestamp, then the invoice is supposed to be issued at time t.

Finally, we remark that obligation clauses are binders. That is, for instance
the variable g is bound to value of the field goods of the IssueInvoice transaction
when it takes place, and the scope of g is the where clause and the continuation
clause following the then keyword.

27

Tmp ::= name : ContractName (contract template)
type : RecordName
description : String
Def . . .Def contract = C

Def ::= val Var = E (value definition)
| clause ClauseName(Var : T , . . . ,Var : T) (clause template)

〈Var : T , . . . ,Var : T 〉 = C

C ::= fulfilment (no obligations)
| 〈E〉 RecordName(F , . . . ,F) (obligation)

where E due D remaining Var then C
| when RecordName(F , . . . ,F) (external choice)

where E due D remaining Var then C else C
| if E then C else C (internal choice)
| C and C (conjunction)
| C or C (disjunction)
| ClauseName(E , . . . ,E)〈E , . . . ,E〉 (instantiation)

F ::= FieldName Var (field binder)

R ::= RecordName Var (record binder)

T ::= TypeVar (type variable)
| () (unit type)
| Bool | Int | Real | String (type constants)
| Timestamp | Duration
| RecordName (record type)
| [T] (list type)
| 〈T 〉 (entity type)
| T → T (function type)

E ::= Var (variable)
| BaseValue (base value)
| RecordName{FieldName = E , . . . ,FieldName = E} (record expression)
| [E , . . . ,E] (list expression)
| λVar → E (function abstraction)
| E E (function application)
| E ⊕ E (binary expression)
| E .FieldName (field projection)
| E{FieldName = E} (field update)
| if E then E else E (conditional)
| case E of R → E | · · · |R → E (record type casing)

D ::= after E within E (deadline expression)

⊕ ::= × | / | + | 〈×〉 | 〈+〉 | # | ≡ | ≤ | ∧ (binary operators)

Figure 9: Grammar for the core contract language PCSL. ContractName is
the set of all contract template names, ClauseName is the set of all clause
template names ranged over by k, Var is the set of all variable names ranged
over by x, TypeVar is the set of all type variable names ranged over by α, and
BaseValue = Bool] Int] Real] String] Timestamp]Duration] Ent .

28

name: salesContract
type: Sale
description: "A simple sales contract between a company and a customer"

fun elem x = foldr (λy b → x ≡ y ∨ b) false
fun filter f = foldr (λx b → if f x then x # b else b) []
fun subset l1 l2 = all (λx → elem x l2) l1
fun diff l1 l2 = filter (λx → ¬ (elem x l2)) l1

clause sale(goods : [Goods], amount : Int)〈comp : 〈Company〉, cust : 〈Customer〉〉 =
〈comp〉 IssueInvoice(goods g, amount a)

where g ≡ goods ∧ a ≡ amount due immediately
then
〈cust〉 Payment(amount a)

where a ≡ amount due within 14D
and
delivery(goods, 1W)〈comp〉

clause delivery(goods : [Goods], deadline : Duration)〈comp : 〈company〉〉 =
if goods ≡ [] then

fulfilment
else
〈comp〉 Delivery(goods g)

where g 6≡ [] ∧ subset g goods due within deadline remaining r
then
delivery(diff goods g, r)〈comp〉

contract = sale(goods, amount)〈company, customer〉

Figure 10: PCSL sales contract template of type Sale.

Built-in symbols PCSL has a small set of built-in symbols, from which other
standard functions can be derived:

foldl : (a → b → a) → a → [b] → a
foldr : (a → b → b) → b → [a] → b
ceil : Real → Int
reports : Reports

The list includes fold operations in order to iterate over lists, since explicit
recursion is not permitted, and a special constant reports of type Reports. The
record type Reports is internally derived from the active reports in the report
engine, and it is used only in the contract engine in order to enable querying of
reports from within contracts. The record type contains one field per report. For
instance, if the report engine contains a single report Inventory of type Inventory,
then the typing of Report is (using the same notation as in Section 2.1.1):

ρ(Reports) = {(inventory, ()→ Inventory)} ,

29

and the expression reports.inventory () invokes the report.

3 Use Case: µERP

In this section we describe a use case instantiation of POETS, which we refer to
as µERP. With µERP we model a simple ERP system for a small bicycle shop.
Naturally, we do not intend to model all features of a full-blown ERP system,
but rather we demonstrate a limited set of core ERP features. In our use case,
the shop purchases bicycles from a bicycle vendor, and sells those bicycles to
customers. We want to make sure that the bicycle shop only sells bicycles in
stock, and we want to model a repair guarantee, which entitles customers to
have their bikes repaired free of charge up until three months after purchase.

Following Henglein et al. [6], we also provide core financial reports, namely
the income statement, the balance sheet, the cash flow statement, the list of open
(not yet paid) invoices, and the value-added tax (VAT) report. These reports
are typical, minimal legal requirements for running a business. We provide
some example code in this section, and the complete specification is included
in Appendix C. As we have seen in Section 2, instantiating POETS amounts
to defining a data model, a set of reports, and a set of contract templates. We
describe each of these components in the following subsections.

3.1 Data Model

The data model of µERP is tailored to the ERP domain in accordance with
the REA ontology [10]. Therefore, the main components of the data model are
resources, transactions (that is, events associated with contracts), and agents.
The complete data model is provided in Appendix C.1.

Agents are modelled as an abstract type Agent. An agent is either a Customer, a
Vendor, or a special Me agent. Customers and Vendors are equipped with a name
and an address. The Me type is used to represent the bicycle company itself.
In a more elaborate example, the Me type will have subtypes such as Inventory
or SalesPerson to represent subdivisions of, or individuals in, the company. The
agent model is summarised below:

Agent is Data.

Customer is an Agent.
Customer has a String called name.
Customer has an Address.

Me is an Agent.

Vendor is an Agent.
Vendor has a String called name.
Vendor has an Address.

Resources are—like agents—Data. In our modelling of resources, we make a
distinction between resource types and resources. A resource type represents a
kind of resource, and resource types are divided into currencies (Currency) and
item types (ItemType). Since we are modelling a bicycle shop, the only item
type (for now) is bicycles (Bicycle). A resource is an instance of a resource type,

30

and—similar to resource types—resources are divided into money (Money) and
items (Item). Our modelling of items assumes an implicit unit of measure, that
is we do not explicitly model units of measure such as pieces, boxes, pallets, etc.
Our resource model is summarised below:

ResourceType is Data.
ResourceType is abstract.

Currency is a ResourceType.
Currency is abstract.

DKK is a Currency.
EUR is a Currency.

ItemType is a ResourceType.
ItemType is abstract.

Bicycle is an ItemType.

Bicycle has a String called model.

Resource is Data.
Resource is abstract.

Money is a Resource.
Money has a Currency.
Money has a Real called amount.

Item is a Resource.
Item has an ItemType.
Item has a Real called quantity.

Transactions (events in the REA terminology) are, not surprisingly, subtypes
of the built-in Transaction type. The only transactions we consider in our use
case are bilateral transactions (BiTransaction), that is transactions that have
a sender and a receiver. Both the sender and the receiver are agent entities,
that is a bilateral transaction contains references to two agents rather than
copies of agent data. For our use case we model payments (Payment), deliveries
(Delivery), issuing of invoices (IssueInvoice), requests for repair of a set of items
(RequestRepair), and repair of a set of items (Repair). Issuing of invoices contain
the relevant information for modelling of VAT, encapsulated in the OrderLine
type. We include some of these definitions below:

BiTransaction is a Transaction.
BiTransaction is abstract.
BiTransaction has an Agent entity

called sender.
BiTransaction has an Agent entity

called receiver.

Transfer is a BiTransaction.
Transfer is abstract.

Payment is a Transfer.

Payment is abstract.
Payment has Money.

CashPayment is a Payment.
CreditCardPayment is a Payment.
BankTransfer is a Payment.

IssueInvoice is a BiTransaction.
IssueInvoice has a list of OrderLine

called orderLines.

Besides agents, resources, and transactions, the data model defines the
output types of reports (Appendix C.1.3) the input types of contracts (Ap-
pendix C.1.4), and generic data definitions such as Address and OrderLine. The
report types define the five mandatory reports mentioned earlier, and additional
Inventory and TopNCustomers report types. The contract types define the two
types of contracts for the bicycle company, namely Purchase and Sale.

31

3.2 Reports

Report specifications are divided into prelude functions (Appendix C.2.1), domain-
specific prelude functions (Appendix C.2.2), internal reports (Appendix C.2.3),
and external reports (Appendix C.2.4).

Prelude functions are utility functions that are independent of the custom
data model. These functions are automatically added to all POETS instances,
but they are included in the appendix for completeness. The prelude includes
standard functions such as filter, but it also includes generators for accessing
event log data such as reports. The event log generators provide access to data
that has a lifecycle such as contracts or reports, compare Section 2.2.

Domain-specific prelude functions are utility functions that depend on the
custom data model. The itemsReceived function, for example, computes a list
of all items that have been delivered to the company, and it hence relies on
the Delivery transaction type (normaliseItems and isMe are also defined in Ap-
pendix C.2.2):

itemsReceived : [Item]
itemsReceived = normaliseItems [is |

tr ← transactionEvents,
del : Delivery = tr.transaction,
¬(isMe del.sender) ∧ isMe del.receiver,
is ← del.items]

Internal reports are reports that are needed either by clients of the system or
by contracts. For instance, the ContractTemplates report is needed by clients
of the system in order to instantiate contracts, and the Me report is needed by
the two contracts, as we shall see in the following subsection. A list of internal
reports, including a short description of what they compute, is summarised in
Figure 11. Except for the Me report, all internal reports are independent from
the custom data model.

External reports are reports that are expected to be rendered directly in
clients of the system, but they may also be invoked by contracts. The external
reports in our use case are the reports mentioned earlier, namely the income
statement, the balance sheet, the cash flow statement, the list of unpaid invoices,
and the VAT report. Moreover, we include reports for calulating the list of items
in the inventory, and the list of top-n customers, respectively. We include the
inventory report below as an example:

report : Inventory
report =
let itemsSold’ = map (λi → i{quantity = 0 − i.quantity}) itemsSold
in
−− The available items is the list of received items minus the
−− list of reserved or sold items

32

Report Result

Me The special Me entity.
Entities A list of all non-deleted entities.
EntitiesByType A list of all non-deleted entities of a given type.
ReportNames A list of names of all non-deleted reports.
ReportNamesByTags A list of names of all non-deleted reports whose tags

contain a given set and do not contain another given
set.

ReportTags A list of all tags used by non-deleted reports.
ContractTemplates A list of names of all non-deleted contract templates.
ContractTemplatesByType A list of names of all non-deleted contract templates

of a given type.
Contracts A list of all non-deleted contract instances.
ContractHistory A list of previous transactions for a given contract

instance.
ContractSummary A list of meta data for a given contract instance.

Figure 11: Internal reports.

Inventory{availableItems = normaliseItems (itemsReceived ++ itemsSold’)}

The value itemsSold is defined in the domain-specific prelude, similar to the
value itemsReceived. But unlike itemsReceived, the computation takes into ac-
count that items can be reserved but not yet delivered. Hence when we check
that items are in stock using the inventory report, we also take into account
that some items in the inventory may have been sold, and therefore cannot be
sold again.

The five standard reports are defined according to the specifications given
by Henglein et al. [6, Section 2.1], but for simplicity we do not model fixed costs,
depreciation, and fixed assets. We do, however, model multiple currencies, ex-
emplified via Danish Kroner (DKK) and Euro (EUR). This means that financial
reports, such as IncomeStatement, provide lists of values of type Money—one for
each currency used.

3.3 Contracts

Contract specifications are divided into prelude functions (Appendix C.3.1),
domain-specific prelude functions (Appendix C.3.2), and contract templates
(Appendix C.3.3).

Prelude functions are utility functions similar to the report engine’s prelude
functions. They are independent from the custom data model, and are automat-
ically added to all POETS instances. The prelude includes standard functions
such as filter.

Domain-specific prelude functions are utility functions that depend on the
custom data model. The inStock function, for example, checks whether the

33

items described in a list of order lines are in stock, by querying the Inventory
report (we assume that the item types are different for each line):

fun inStock lines =
let inv = (reports.inventory ()).availableItems
in
all (λl → any (λi → (l.item).itemType ≡ i.itemType ∧

(l.item).quantity ≤ i.quantity) inv) lines

Contract templates describe the daily activities in the company, and in our
µERP use case we only consider a purchase contract and a sales contract. The
purchase contract is presented below:

name: purchase
type: Purchase
description: "Set up a purchase"

clause purchase(lines : [OrderLine])〈me : 〈Me〉, vendor : 〈Vendor〉〉 =
〈vendor〉 Delivery(sender s, receiver r, items i)

where s ≡ vendor ∧ r ≡ me ∧ i ≡ map (λx → x.item) lines
due within 1W

then
when IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ vendor ∧ r ≡ me ∧ sl ≡ lines
due within 1Y

then
payment(lines, vendor, 14D)〈me〉

clause payment(lines : [OrderLine], vendor : 〈Vendor〉, deadline : Duration)
〈me : 〈Me〉〉 =

if null lines then
fulfilment

else
〈me〉 BankTransfer(sender s, receiver r, money m)

where s ≡ me ∧ r ≡ vendor ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, vendor, newDeadline)〈me〉

contract = purchase(orderLines)〈me, vendor〉

The contract describes a simple workflow, in which the vendor delivers items,
possibly followed by an invoice, which in turn is followed by a bank transfer of
the company. Note how the me parameter in the contract template body refers
to the value from the domain-specific prelude, which in turn invokes the Me
report. Note also how the payment clause template is recursively defined in
order to accommodate for potentially different currencies. That is, the total
payment is split up in as many bank transfers as there are currencies in the
purchase.

34

The sales contract is presented below:

name: sale
type: Sale
description: "Set up a sale"

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)

where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

clause payment(lines : [OrderLine], me : 〈Me〉, deadline : Duration)
〈customer : 〈Customer〉〉 =

if null lines then
fulfilment

else
〈customer〉 Payment(sender s, receiver r, money m)

where s ≡ customer ∧ r ≡ me ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, me, newDeadline)〈customer〉

clause repair(items : [Item], customer : 〈Customer〉, deadline : Duration)
〈me : 〈Me〉〉 =

when RequestRepair(sender s, receiver r, items i)
where s ≡ customer ∧ r ≡ me ∧ subset i items
due within deadline
remaining newDeadline

then
〈me〉 Repair(sender s, receiver r, items i’)

where s ≡ me ∧ r ≡ customer ∧ i ≡ i’
due within 5D

and
repair(items, customer, newDeadline)〈me〉

contract = sale(orderLines)〈me, customer〉

The contract describes a workflow, in which the company issues an invoice to
the customer—but only if the items on the invoice are in stock. The issuing of
invoice is followed by an immediate (within an hour) payment by the customer to
the company, and a delivery of goods by the company within a week. Moreover,

35

we also model the repair guarantee mentioned in the introduction.

3.4 Bootstrapping the System

The previous subsections described the specification code for µERP. Since data
definitions, report specifications, and contract specifications are added to the
system at run-time, µERP is instantiated by invoking the following sequence of
services on an initially empty POETS instance:

1. Add data definitions in Appendix C.1 via addDataDefs.

2. Create a designated Me entity via createEntity.

3. Add report specifications via addReport.

4. Add contract specifications via createTemplate.

Hence, the event log will, conceptually, have the form (we write the value of
the field internalTimeStamp before each event):

t1: AddDataDefs{defs = "ResourceType is ..."}

t2: CreateEntity{ent = e1, recordType = "Me", data = Me}

t3: CreateReport{name = "Me", description = "Returns the ...",
code = "name: Me\n ...", tags = ["internal","entity"]}

...

ti: CreateReport{name = "TopNCustomers", description = "A list ...",
code = "name: TopNCustomers\n ...",
tags = ["external","financial","crm"]}

ti+1: CreateContractDef{name = "Purchase", recordType = "Purchase",
code = "name: purchase\n ...", description = "Set up ..."}

ti+2: CreateContractDef{name = "Sale", recordType = "Sale",
code = "name: sale\n ...", description = "Set up a sale"}

for some increasing timestamps t1 < t2 < . . . < ti+2. Note that the entity value
e1 of the CreateEntity event is automatically generated by the entity store, as
described in Section 2.3.

Following these operations, the system is operational. That is, (i) customers
and vendors can be managed via createEntity, updateEntity, and deleteEntity,
(ii) contracts can be instantiated, updated, concluded, and inspected via cre-
ateContract, updateContract, concludeContract, and getContract respectively,
(iii) transactions can be registered via registerTransaction, and (iv) reports can
be queried via queryReport.

For example, if a sale is initiated with a new customer John Doe, starting
at time t, then the following events will be added to the event log:

36

ti+3: CreateEntity{ent = e2, recordType = "Customer", data = Customer{
name = "John Doe", address = Address{
string = "Universitetsparken 1", country = Denmark}}}

ti+4: CreateContract{contractId = 0, contract = Sale{
startDate = t, templateName = "sale", customer = e2,
orderLines = [OrderLine{
item = Item{itemType = Bicycle{model = "Avenue"}, quantity = 1.0},
unitPrice = Money{currency = DKK, amount = 4000.0},
vatPercentage = 25.0}]}}

That is, first the customer entity is created, and then we can instantiate a new
sales contract. In this particular sale, one bicycle of the model “Avenue” is sold
at a unit price of 4000 DKK, with an additional VAT of 25 percent. Note that
the contract id 0 of the CreateContract is automatically generated and that the
start time t is explicitly given in the CreateContract’s startDate field independent
from the internalTimeStamp field.

Following the events above, if the contract is executed successfully, events
of type IssueInvoice, Delivery, and Payment will persisted in the event log with
appropriate values—in particular, the payment will be 5000 DKK.

4 Implementation Aspects

In this section we briefly discuss some of the implementation techniques used in
our implementation of POETS. POETS is implemented in Haskell [9], and the
logical structure of the implementation reflects the diagram in Figure 2, that is
each component is implemented as a separate Haskell module.

4.1 External Interface

The external interface to the POETS system is implemented in a separate
Haskell module. We currently use Thrift [15] for implementing the communi-
cation layer between the server and its clients, but other communication layers
can in principle be used. Changing the communication layer will only require a
change in one module.

Besides offering an abstract, light-weight interface to communication, Thrift
enables type-safe communication. The types and services of the server are spec-
ified in a language-independent description language, from which Haskell code is
generated (or code in other languages for the clients). For example, the external
interface to querying a report can be specified as follows:

Value queryReport(

1 : string name // name of the report to execute

2 : list<Value> args // input arguments

) throws (

1 : ReportNotFoundException notFound

37

2 : RunTimeException runtime

3 : TypeException type

)

From this specification, Thrift generates the Haskell code for the server interface,
and implementing the interface amounts to supplying a function of the type
String → [Value]→ IO Value—namely the query function.

4.2 Domain-Specific Languages

The main ingredient of the POETS implementation is the implementation of
the domain-specific languages. What is interesting in that respect—compared
to implementations of domain-specific languages in isolation of each other—is
the common core shared by the languages, in particular types and values.

In order to reuse and extend the structure of types and values in the report
language and the contract language, we make use of the compositional data
types [2] library. Compositional data types take the data types as fixed points [11]
view on abstract syntax trees (ASTs), namely a separation of the recursive
structure of ASTs from their signatures. As an example, we define the signatures
of types from Section 2.1.1 as follows:

type RecordName = String
data TypeConstant a = TBool | TInt | · · ·
data TypeRecord a = TRecord RecordName
data TypeList a = TList a
data TypeEnt a = TEnt RecordName

The signature for the types of the data model is then obtained by combin-
ing the individual signatures above TSig = TypeConstant :+: TypeRecord :+:
TypeList :+: TypeEnt , where (:+:) :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ is the sum of
two functors. Finally, the data type for ASTs of types can be defined by tying
the recursive knot T = Term TSig , where Term :: (∗ → ∗) → ∗ is the functor
fixed point.

Recursive functions over ASTs are defined as type classes, with one instance
per atomic signature. For instance, a pretty printer for types can be defined as
follows:

class Functor f ⇒ Render f where
render :: f String → String

instance Render TypeConstant where
render TInt = "Int"

render TBool = "Bool"

· · ·
instance Render TypeRecord where

render (TRecord r) = r

instance Render TypeList where

38

render (TList τ) = "[" ++ τ ++ "]"

instance Render TypeEnt where
render (TEnt r) = "<" ++ r ++ ">"

and pretty printing of terms is subsequently obtained by lifting the render alge-
bra to a catamorphism, that is a function of type Render f ⇒ Term f → String .

Extendability The first benefit of the approach above is that we can extend
the signature for types to fit, for example, the contract language as in Figure 9:

type TypeVar = String
data TypeUnit a = TUnit
data TypeVar a = TVar TypeVar
data TypeFunction a = TFunction a a

Extending the pretty printer amounts to only providing the new cases:

instance render TypeUnit where
render TUnit = "()"

instance render TypeVar where
render (TVar α) = α

instance render TypeFunction where
render (TFunction τ1 τ2) = τ1 ++ " -> " ++ τ2

A similar modular encoding is used for the language of values:

data Value a = VInt Int | VBool Bool | VString String | · · ·

and the signature of expressions in the contract language of Figure 9 can be
obtained by providing the extensions compared to the language of values:

type Var = String
data Exp a = EVar Var | ELambda Var a | EApply a a | · · ·

That is, Term (Exp :+: Value) represents the type of ASTs for expressions of
the contract language. Reusing the signature for (core) values means that the
values of Section 2.1.2, which are provided as input to the system for instance
in the registerTransaction function, can be automatically coerced to the richer
language of expressions. That is, values of type Term Value can be readily used
as values of type Term (Exp :+: Value), without explicit copying or translation.

Notice the difference in the granularity of (core) value signatures and (core)
type signatures: types are divided into three signatures, whereas values are in
one signature. The rule of thumb we apply is to divide signatures only when a
function needs the granularity. For instance, the type inference algorithm used
in the report language and the contract language implements a simplification
procedure [5], which reduces type constraints to atomic type constraints. In
order to guarantee this transformation invariant statically, we hence need a
signature of atomic types, namely TypeConstant :+: TypeVar , which prompts
the finer granularity on types.

39

Syntactic sugar Besides enabling a common core of ASTs and functions on
them, compositional data type enable AST transformations where the invariant
of the transformation is witnessed by the type. Most notably, desugaring can
be implemented by providing a signature for syntactic sugar:

data ExpSug a = ELet Var a a | · · ·

as well as a transformation to the core signature:

instance Desugar ExpSug where
desugar (ELet x e1 e2) = ELam x e2 ‘EApp‘ e1

· · ·

This approach yields a desugaring function of the type Term (ExpSug :+:Exp :+:
Value) → Term (Exp :+: Value), which witnesses that the syntactic sugar has
indeed been removed.

Moreover, since we define the desugaring translation in the style of a term
homomorphism [2], we automatically get a lifted desugaring function that prop-
agates AST annotations, such as source code positions, to the desugared term.
This means, for instance, that type error messages can provide detailed source
position information also for terms that originate from syntactic sugar.

5 Conclusion

We have presented an extended and generalised version of the POETS architec-
ture [6], which we have fully implemented. We have presented domain-specific
languages for specifying the data model, reports, and contracts of a POETS in-
stance, and we have demonstrated an application of POETS in a small use case.
The use case demonstrates the conciseness of our approach—Appendix C con-
tains the complete source needed for a running system—as well as the domain-
orientation of our specification languages. We believe that non-programmers
should be able to read and understand the data model of Appendix C.1, to
some extent the contract specifications of Appendix C.3.3, and to a lesser ex-
tent the reports of Appendix C.2 (after all, reports describe computations).

5.1 Future Work

With our implementation and revision of POETS we have only taken the first
steps towards a software system that can be used in practice. In order to
properly verify our hypothesis that POETS is practically feasible, we want to
conduct a larger use case in a live, industrial setting. Such use case will both
serve as a means of testing the technical possibilities of POETS, that is whether
we can model and implement more complex scenarios, as well as a means of
testing our hypothesis that the use of domain-specific languages shortens the
gap between requirements and implementation.

40

Expressivity As mentioned above, a larger and more realistic use case is
needed in order to fully evaluate POETS. In particular, we are interested in
investigating whether the data model, the report language, and the contract
language have sufficient expressivity. For instance, a possible extension of the
data model is to introduce finite maps. Such extension will, for example, sim-
plify the reports from our µERP use case that deal with multiple currencies.
Moreover, finite maps will enable a modelling of resources that is closer in struc-
ture to that of Henglein et al. [6].

Another possible extension is to allow types as values in the report language.
For instance, the EntitiesByType report in Appendix C.2.3 takes a string repre-
sentation of a record type, rather than the record type itself. Hence the function
cannot take subtypes into account, that is if we query the report with input A,
then we only get entities of declared type A and not entities of declared subtypes
of A.

Rules A rule engine is a part of our extended architecture (Figure 2), however
it remains to be implemented. The purpose of the rule engine is to provide
rules—written in a separate domain-specific language—that can constrain the
values that are accepted by the system. For instance, a rule might specify that
the items list of a Delivery transaction always be non-empty.

More interestingly, the rule engine will enable values to be inferred from
the rules in the engine. For instance, a set of rules for calculating VAT will
enable the field vatPercentage of an OrderLine to be inferred automatically in
the context of a Sale record. That is, based on the information of a sale and the
items that are being sold, the VAT percentage can be calculated automatically
for each item type.

The interface to the rule engine will be very simple: A record value, as
defined in Section 2.1.2, with zero or more holes is sent to the engine, and the
engine will return either (i) an indication that the record cannot possibly fulfil
the rules in the engine, or (ii) a (partial) substitution that assigns inferred values
to (some of) the holes of the value as dictated by the rules. Hence when we,
for example, instantiate the sale of a bicycle in Section 3.4, then we first let the
rule engine infer the VAT percentage before passing the contract meta data to
the contract engine.

Forecasts A feature of the contract engine, or more specifically of the reduc-
tion semantics of contract instances, is the possibility to retrieve the state of a
running contract at any given point in time. The state is essentially the AST of
a contract clause, and it describes what is currently expected in the contract,
as well as what is expected in the future.

Analysing the AST of a contract enables the possibility to do forecasts, for
instance to calculate the expected outcome of a contract or the items needed
for delivery within the next week. Forecasts are, in some sense, dual to reports.
Reports derive data from transactions, that is facts about what has previously
happened. Forecasts, on the other hand, look into the future, in terms of calcu-

41

lations over running contracts. We have currently implemented a single forecast,
namely a forecast that lists the set of immediately expected transactions for a
given contract. A more ambitious approach is to devise (yet another) language
for writing forecasts, that is functions that operate on contract ASTs.

Practicality In order to make POETS useful in practice, many features are
still missing. However, we see no inherent difficulties in adding them to POETS
compared to traditional ERP architectures. To mention a few: (i) security, that
is authorisation, users, roles, etc.; (ii) module systems for the report language
and contract language, that is better support for code reuse; and (iii) check-
pointing of a running system, that is a dump of the memory of a running
system, so the event log does not have to be replayed from scratch when the
system is restarted.

Acknowledgements We are grateful to Fritz Henglein for many fruitful dis-
cussions and for convincing us of the POETS approach in the first place. Morten
Ib Nielsen and Mikkel Jønsson Thomsen both contributed to our implementa-
tion and design of POETS, for which we are thankful. Lastly, we thank the
participants of the DIKU course “POETS Summer of Code” for valuable input.

References

[1] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Simonsen, and
Christian Stefansen. Compositional specification of commercial contracts.
International Journal on Software Tools for Technology Transfer (STTT),
8:485–516, 2006.

[2] Patrick Bahr and Tom Hvitved. Compositional Data Types. In Proceedings
of the seventh ACM SIGPLAN workshop on Generic programming, pages
83–94, New York, NY, USA, 2011. ACM.

[3] Arthur J. Bernstein and Michael Kifer. Databases and Transaction Process-
ing: An Application-Oriented Approach. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1st edition, 2001.

[4] Norbert Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled
English for Knowledge Representation. In Reasoning Web, pages 104–124.
Springer Berlin / Heidelberg, 2008.

[5] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. Theo-
retical Computer Science, 73(2):155–175, 1990.

[6] Fritz Henglein, Ken Friis Larsen, Jakob Grue Simonsen, and Christian Ste-
fansen. POETS: Process-oriented event-driven transaction systems. Jour-
nal of Logic and Algebraic Programming, 78(5):381–401, May 2009.

42

[7] Tom Hvitved, Felix Klaedtke, and Eugen Zălinescu. A Trace-based Model
for Multiparty Contracts. Journal of Logic and Algebraic Programming,
2011. To appear.

[8] Mikkel Jønsson Thomsen. Using Controlled Natural Language for speci-
fying ERP Requirements. Master’s thesis, University of Copenhagen, De-
partment of Computer Science, 2010.

[9] Simon Marlow. Haskell 2010 Language Report, 2010.

[10] William E. McCarthy. The REA Accounting Model: A Generalized Frame-
work for Accounting Systems in a Shared Data Environment. The Account-
ing Review, LVII(3):554–578, 1982.

[11] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional Program-
ming with Bananas, Lenses, Envelopes and Barbed Wire. In Proceedings of
the 5th ACM conference on Functional programming languages and com-
puter architecture, pages 124–144, New York, NY, USA, 1991. Springer-
Verlag New York, Inc.

[12] Michael Nissen and Ken Friis Larsen. FunSETL — Functional Reporting
for ERP Systems. In Olaf Chitil, editor, Implementation and Application
of Functional Languages, 19th International Symposium, IFL 2007, pages
268–289, 2007.

[13] Atsushi Ohori. A Polymorphic Record Calculus and Its Compilation. ACM
Trans. Program. Lang. Syst., 17:844–895, November 1995.

[14] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
2002.

[15] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable Cross-
Language Services Implementation. Technical report, Facebook, 156 Uni-
versity Ave, Palo Alto, CA, 2007.

[16] Philip Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2(04):461–493, 1992.

[17] Jerry J. Weygandt, Donald E. Kieso, and Paul D. Kimmel. Financial
Accounting, with Annual Report. Wiley, 2004.

43

A Predefined Ontology

A.1 Data
Data is abstract.

A.2 Event
Event is abstract.
Event has a Timestamp

called internalTimeStamp.

Add data definitions to the system
AddDataDefs is an Event.
AddDataDefs has a String called defs.

Events associated with entities
EntityEvent is an Event.
EntityEvent is abstract.
EntityEvent has a Data entity called ent.

Put entity event
PutEntity is an EntityEvent.
PutEntity has Data.
PutEntity is abstract.

Create entity event
CreateEntity is a PutEntity.
CreateEntity has a String called recordType.

Update entity event
UpdateEntity is a PutEntity.

Delete entity event
DeleteEntity is an EntityEvent.

Events associated with a report definition
ReportEvent is an Event.
ReportEvent has a String called name.

Put report definition event
PutReport is a ReportEvent.
PutReport is abstract.
PutReport has a String called code.
PutReport has a String called description.
PutReport has a list of String called tags.

Create report definition event
CreateReport is a PutReport.

Update report definition event
UpdateReport is a PutReport.

Delete report definition event
DeleteReport is a ReportEvent.

Events associated with a contract template
ContractDefEvent is an Event.
ContractDefEvent has a String called name.

Put contract template event
PutContractDef is a ContractDefEvent.
PutContractDef is abstract.
PutContractDef has a String called recordType.
PutContractDef has a String called code.
PutContractDef has a String called description.

Create contract template event
CreateContractDef is a PutContractDef.

Update contract template event
UpdateContractDef is a PutContractDef.

Delete contract template event
DeleteContractDef is a ContractDefEvent.

Events associated with a contract
ContractEvent is an Event.
ContractEvent is abstract.
ContractEvent has an Int called contractId.

Put contract event
PutContract is a ContractEvent.
PutContract has a Contract.
PutContract is abstract.

Create contract event
CreateContract is a PutContract.

Update contract event
UpdateContract is a PutContract.

Conclude contract event
ConcludeContract is a ContractEvent.

Transaction super class
TransactionEvent is a ContractEvent.
TransactionEvent has a Timestamp.
TransactionEvent has a Transaction.

A.3 Transaction
Transaction is abstract.

A.4 Report
Report is abstract.

A.5 Contract
Contract is abstract.
Contract has a Timestamp called startDate.
Contract has a String called templateName.

44

B Static and Dynamic Semantics of the Report
Language

B.1 Types, Type Constraints and Type Schemes

The following grammar describes the type expressions that are used in the report
language:

τ ::= r | α | Bool | Int | Real | Char | Timestamp | Duration
| DurationTimestamp | [τ] | 〈r〉 | τ1 → τ2 | τ1 + τ2 | (τ1 , τ2) | ()

where r ranges over record names and α over type variables.
The report language is polymorphically typed and permits to put constraints

on types, for example, subtyping constraints. The language of type constraints
is defined as follows:

C ::= τ1 <: τ2 | τ1 .f : τ2 | Eq(τ) | Ord(τ)

Intuitively, these constraints can be interpreted as follows:

• A subtype constraint of the form τ1 <: τ2 requires τ1 to be a subtype of
τ2,

• a field constraint of the form τ1.f : τ2 requires τ1 to be a record type
containing a field f of type τ2,

• an equality constraint of the form Eq(τ) requires the type τ to have an
equality predicate ≡ defined on it, and

• an order constraint of the form Ord(τ) requires the type τ to have order
predicates (<, ≤) defined on it.

In order to accommodate for the polymorphic typing, we have to move from
types to type schemes. Type schemes are of the form ∀α.C ⇒ τ , that is, a type
with a universal quantification over a sequence of type variables, restricted by
a sequence of constraints. We abbreviate ∀ 〈〉 .C ⇒ τ by writing C ⇒ τ , and
〈〉 ⇒ τ by τ . The universal closure of a type scheme C ⇒ τ , that is, ∀α.C ⇒ τ
for α the free variables fv(C, τ) in C and τ , is abbreviated by ∀C ⇒ τ .

B.2 Built-in Symbols

In the following we give an overview of the constants provided by the language.
Along with each constant c we will associate a designated type scheme σc.

One part of the set of constants consists of literals: Numeric literals R,
Boolean literals {True,False}, character literals {’a’, ’b’, . . .}, and string lit-
erals. Each literal is associated with its obvious type: Int (respectively Real),
Bool, Char, respectively String. Moreover, we also have entity values 〈r, e〉 of
type 〈r〉 with e a unique identifier.

In the following we list the remaining built-in constants along with their
respective type schemes. Many of the given constant symbols are used as mixfix

45

operators. This is indicated by placeholders . For example a binary infix
operator ◦ is then written as a constant ◦ . For a constant c we write c : C ⇒ τ
in order to indicate the type scheme σc = ∀C ⇒ τ assigned to c.

◦ : α <: Real⇒ α→ α→ α ∀◦ ∈ {+,−, ∗}
/ : Real→ Real→ Real

≡ : Eq(α)⇒ α→ α→ Bool

◦ : Ord(α)⇒ α→ α→ Bool ∀◦ ∈ {>,≥, <,≤}
◦ : α <: DurationTimestamp⇒ α→ Duration→ α ∀◦ ∈ {〈+〉, 〈−〉}

r {f1 = , . . . , fn = } : τ1 → . . . τn → r where ρ(r) = {(f1, τ1), . . . , (fn, τn)}
.f : α.f : β ⇒ α→ β

{f1 = , . . . , fn = } : α.f1 : α1, . . . , α.fn : αn ⇒ α→ α1 → . . .→ αn → α

¬ : Bool→ Bool

◦ : Bool→ Bool→ Bool ∀◦ ∈ {∧,∨}
if then else : Bool→ α→ α→ α

[] : [α]

: α→ [α]→ [α]

fold : Eq(β)⇒ (α→ β → β)→ β → [α]→ β

() : ()

(,) : α→ β → (α, β)

Inl : α→ α+ β

Inr : β → α+ β

case : α+ β → (α→ γ)→ (β → γ)→ γ

.1: (α, β)→ α

.2: (α, β)→ β

! : 〈r〉 → r

@: 〈r〉 → r

〈〈 − − : : 〉〉 : Int→ · · · → Int︸ ︷︷ ︸
6×

→ Timestamp

〈〈 s, min, h, d, w, mon, y〉〉 : Int→ · · · → Int︸ ︷︷ ︸
7×

→ Duration

46

error : String→ α

We assume that there is always defined a record type Event which is the type
of an event stored in the central event log of the system. The list of all events
in the event log can be accessed by the following constant:

events : [Event]

When considering built-in constants, we also distinguish between defined
functions f and constructors F . Constructors are the constants 〈〈 − −

: : 〉〉, 〈〈 s, min, h, d, w, mon, y〉〉, r {f1 = , . . . , fn = }, #,
[], (), (,), Inl, Inr and error as well as all literals. The remaining constants
are defined functions.

Derived from its type scheme we can also assign an arity ar(c) to each con-
stant c by defining ar(c) as the largest n such that σc = ∀α.C ⇒ τ1 → τ2 →
· · · → τn+1

B.3 Type System

Before we can present the type system of the report language, we have to give the
rules for the type constraints. To this end we extend the subtyping judgement
R ` τ1 <: τ2 for values from Figure 4. The constraint entailment judgement
R, C C states that a constraint C follows from the set of constraints C and
the record typing environment R.

The type constraint entailment judgement R, C C is straightforwardly
extended to sequences of constraints C. We define that R, C C1, . . . , Cn iff
R, C Ci for all 1 ≤ i ≤ n.

The type system of the report language is a straightforward polymorphic
lambda calculus extended with type constraints. The typing judgement for the
report language is written R, C,Γ ` e : σ, where R is a record typing environ-
ment, C a set of type constraints, Γ a type environment, e an expression and σ
a type scheme. The inference rules for this judgement are given in Figure 13.

A typing R, C′,Γ′ ` e : τ ′ is an instance of R, C,Γ ` e : τ iff there is a
substitution S such that Γ′ ⊇ ΓS, τ ′ = τS, and R, C′ CS. Deriving from that

we say that the type scheme σ′ = ∀α′.C ′ ⇒ τ ′ is an instance of σ = ∀α.C ⇒ τ ,
written σ′ < σ, iff there is a substitution S with dom(S) = α such that τ ′ = τS
and R, C′ CS.

Top-level function definitions are of the form

f x1 . . . xn = e

and can be preceded by an explicit type signature declaration of the form f : σ.
Depending on whether an explicit type signature is present, the following

inference rules define the typing of top-level function definitions:

R, C ∪ C,Γ ∪ {x1 : τ1, . . . , xn : τn} ` e : τ α 6∈ fv(C) ∪ fv(Γ)
(Fun)

R, C,Γ ` f x1 . . . xn = e : ∀α.C ⇒ τ1 → · · · → τn → τ

47

C ∈ C
(Hyp)

R, C C

r1 ≤ r2
(<: Rec)

(R,A, F, ρ,≤), C r1 <: r2

(<: Refl)
R, C τ <: τ

R, C τ1 <: τ2 R, C τ2 <: τ3
(<: Trans)

R, C τ1 <: τ3

R, C τ1 <: τ2 R, C τ3 <: τ4
(<: Fun)

R, C τ2 → τ3 <: τ1 → τ4

R, C τ1 <: τ2
(<: List)

R, C [τ1] <: [τ2]

R, C τ1 <: τ2 R, C τ3 <: τ4
(<: Sum)

R, C τ1 + τ3 <: τ2 + τ4

R, C τ1 <: τ2 R, C τ3 <: τ4
(<: Prod)

R, C (τ1, τ3) <: (τ2, τ4)

(<: Num)
R, C Int <: Real

(<: Timestamp)
R, C Timestamp <: DurationTimestamp

(<: Duration)
R, C Duration <: DurationTimestamp

(f, τ) ∈ ρ(r)
(Field)

(R,A, F, ρ,≤), C r.f : τ

R, C τ1.f : τ2 R, C τ ′1 <: τ1
(Field Prop)

R, C τ ′1.f : τ2

τ ∈ {Bool, Int,Real,Char,Duration,Timestamp,DurationTimestamp}
(Ord Base)

R, C Ord(τ)

R, C Ord(τ)
(Eq Ord)

R, C Eq(τ)

r ∈ R
(Eq Rec)

(R,A, F, ρ,≤), C Eq(r)

F ∈ {(·, ·),+, [·] , 〈·〉} P ∈ {Ord(·),Eq(·)} ∀1 ≤ i ≤ n : R, C P (τi)
(P F)

R, C P (F (τ1, . . . , τn))

Figure 12: Type constraint entailment R, C C.

48

x : σ ∈ Γ
(Var)

R, C,Γ ` x : σ
(Const)

R, C,Γ ` c : σc

R, C,Γ ` e : τ C τ <: τ ′
(Sub)

R, C,Γ ` e : τ ′
R, C,Γ ∪ {x : τ} ` e : τ ′

(Abs)
R, C,Γ ` λx→ e : τ → τ ′

R, C,Γ ` e1 : τ1 → τ2 R, C,Γ ` e2 : τ1
(App)

R, C,Γ ` e1 e2 : τ2

R, C,Γ ` e1 : σ R, C,Γ ∪ {x : σ} ` e2 : τ
(Let)

R, C,Γ ` let x = e1 in e2 : τ

R, C,Γ ` e : r′

R, C r <: r′
R, C,Γ ∪ {x : r} ` e1 : τ

R, C,Γ ∪
{
x : r′

}
` e2 : τ

(Type Of)
R, C,Γ ` type x = e of {r → e1; → e2} : τ

R, C,Γ ` e :
〈
r′
〉

R, C r <: r′
R, C,Γ ∪ {x : 〈r〉} ` e1 : τ

R, C,Γ ∪
{
x :
〈
r′
〉}
` e2 : τ

(Type Of Ref)
R, C,Γ ` type x = e of {〈r〉 → e1; → e2} : τ

R, C ∪ C,Γ ` e : τ α 6∈ fv(C) ∪ fv(Γ)
(∀ Intro)

R, C,Γ ` e : ∀α.C ⇒ τ

R, C,Γ ` e : ∀α.C ⇒ τ ′ R, C C [α/τ]
(∀ Elim)

R, C,Γ ` e : τ ′ [α/τ]

Figure 13: Type inference rules for the report language.

R, C,Γ ` f x1 . . . xn = e : σ σ′ < σ
(Fun’)

R, C,Γ ` f : σ′; f x1 . . . xn = e : σ′

B.4 Operational Semantics

In order to simplify the presentation of the operational semantics we assign to
each constant c of the language its set of strict argument positions strict(c) ⊆
{1, . . . , ar(c)}:

strict(◦) = {1, 2} for all binary operators ◦ 6= #

strict(c) = {1} ∀c ∈ {¬, if then else , case, error, @, !}
strict(.f) = {1}

strict({fi = ei}) = {1}
strict(.i) = {1}

For all other constraints c for which the above equations do not apply strict(c)
is defined as the empty set ∅.

49

Values form a subset of expressions which are fully evaluated at the top-
level. Such expressions are also said to be in weak head normal form (whnf).
An expression is in weak head normal form, if it is an application of a built-in
function to too few arguments, an application of a constructor, or a lambda
abstraction. Moreover, if a value is not of the form error v, it is called defined :

v ::= c e1 . . . en n < ar(f)

|F e1 . . . en n = ar(F),∀i ∈ strict(F) ei is defined value

|λx→ e

An even more restricted subset of the set of values is the set of constructor
values which are expressions in constructor head normal form. It is similar to
weak head normal form, but with the additional restriction, that arguments of
a fully applied constructor are in constructor normal form as well:

V ::= c e1 . . . en n < ar(f)

|F V1 . . . Vn n = ar(F),∀i ∈ strict(F) Vi is defined

|λx→ e

To further simplify the presentation we introduce evaluation contexts. The
following evaluation context E corresponds to weak head normal forms:

E ::= [·] | E e | type x = E of {r → e1; → e2}
|c e1 . . . ei−1 E ei+1 . . . en i ∈ strict(c), n = ar(c),

∀j < i, j ∈ strict(c) : ej is defined value

The evaluation context F corresponds to constructor head normal forms:

F ::= [·] | E e | type x = E of {r → e1; → e2}
|f e1 . . . ei−1 E ei+1 . . . en i ∈ strict(f), n = ar(f),

∀j < i, j ∈ strict(f) : ej is defined value

|F V1 . . . Vi−1 F ei+1 . . . en n = ar(F), V1 . . . Vi−1 are defined

Computations take place in a context of an event log, i.e. a sequence of
values of type Event. In the following definition of the semantics of the report
language we use (evi)i<n to refer to this sequence, where each evi is of the form
r{fj = ej} with r ≤ Event.

We assume that the Event record type has a field internalTimeStamp that
records the time at which the event was added to the log. For each evi, we
define its extension ev′i as follows: Each occurrence of an entity value 〈r, e〉 is
replaced by 〈r, e, t〉 where t is the value of the internalTimeStamp field of evi.
This will allow us to define the semantics of the contextual dereference operator

50

@. The semantics of both the @ and the ! operator are given by the lookup
operator, which is provided by the entity store, compare Section 2.3. In order
to retrieve the latest value associated to an entity, we assume the timestamp
tnow that denotes the current time.

The rules describing the semantics of the report language in the form of a
small step transition relation → are given in Figure 14.

51

e→ e′ (Context)
F [e]→ F [e′]

(Error)
F [error v]→ error v

(Abs)
(λx→ e1)e2 → e1 [x/e2]

(Let)
let x = e1 in e2 → e2 [x/e1]

r′ ≤ r v = r′{. . . }
(Type suc)

type x = v of {r → e1; → e2} → e1 [x/v]

r′ 6≤ r v = r′{. . . }
(Type def)

type x = v of {r → e1; → e2} → e2 [x/v]

injection φ : {1, . . . ,m} ↪→ {1, . . . , n}
∀j ∈ {1, . . . ,m} : f ′

j = fφ(j)

e′′i =

{
e′φ−1(i) if i ∈ Im(φ)

ei otherwise

(Mod)
r{f1 = e1, . . . , fn = en} {f ′

1 = e′1, . . . , f
′
m = e′m} → r{f1 = e′′1 , . . . , fn = e′′n}

(Acc)
r{f1 = e1, . . . , fn = en}.fi → ei

(If True)
if True then e1 else e2 → e1

(If False)
if False then e1 else e2 → e2

(Case Left)
case (Inl e) e1 e2 → e1 e

(Case Right)
case (Inr e) e1 e2 → e2 e

i ∈ {1, 2}
(Proj)

(e1, e2).i→ ei

(Events)
events→ [ev1, ev2, . . . , evn]

(Fold Empty)
fold e1 e2 []→ e2

(Fold Cons)
fold e1 e2 (e3 # e4)→ e1 e3 (fold e1 e2 e4)

lookuptnow
(e, tnow) = v

(! ignore)
〈r, e, t〉!→ v

lookuptnow (e, tnow) = v
(!)

〈r, e〉!→ v

lookuptnow
(e, t) = v

(@)
〈r, e, t〉@→ v

lookuptnow (e, tnow) = v
(@ now)

〈r, e〉@→ v

Figure 14: Small step operational semantics of the report language.

52

C µERP Specification

C.1 Ontology

C.1.1 Data

ResourceType is Data.
ResourceType is abstract.

Currency is a ResourceType.
Currency is abstract.

DKK is a Currency.
EUR is a Currency.

ItemType is a ResourceType.
ItemType is abstract.

Bicycle is an ItemType.
Bicycle has a String called model.

Resource is Data.
Resource is abstract.

Money is a Resource.
Money has a Currency.
Money has a Real called amount.

Item is a Resource.
Item has an ItemType.
Item has a Real called quantity.

Agent is Data.

Me is an Agent.

Customer is an Agent.
Customer has a String called name.
Customer has an Address.

Vendor is an Agent.
Vendor has a String called name.
Vendor has an Address.

Address is Data.
Address has a String.
Address has a Country.

Country is Data.
Country is abstract.

Denmark is a Country.

OrderLine is Data.
OrderLine has an Item.
OrderLine has Money called unitPrice.
OrderLine has a Real called vatPercentage.

CurrentAssets is Data.
CurrentAssets has a list of Money called currentAssets.
CurrentAssets has a list of Money called inventory.
CurrentAssets has a list of Money called accountsReceivable.
CurrentAssets has a list of Money called cashPlusEquiv.

Liabilities is Data.
Liabilities has a list of Money called liabilities.

53

Liabilities has a list of Money called accountsPayable.
Liabilities has a list of Money called vatPayable.

Invoice is Data.
Invoice has an Agent called sender.
Invoice has an Agent called receiver.
Invoice has a list of OrderLine called orderLines.

UnpaidInvoice is Data.
UnpaidInvoice has an Invoice.
UnpaidInvoice has a list of Money called remainder.

CustomerStatistics is Data.
CustomerStatistics has a Customer entity.
CustomerStatistics has Money called totalPaid.

C.1.2 Transaction

BiTransaction is a Transaction.
BiTransaction is abstract.
BiTransaction has an Agent entity called sender.
BiTransaction has an Agent entity called receiver.

Transfer is a BiTransaction.
Transfer is abstract.

Payment is a Transfer.
Payment is abstract.
Payment has Money.

CashPayment is a Payment.
CreditCardPayment is a Payment.
BankTransfer is a Payment.

Delivery is a Transfer.
Delivery has a list of Item called items.

IssueInvoice is a BiTransaction.
IssueInvoice has a list of OrderLine called orderLines.

RequestRepair is a BiTransaction.
RequestRepair has a list of Item called items.

Repair is a BiTransaction.
Repair has a list of Item called items.

C.1.3 Report

IncomeStatement is a Report.
IncomeStatement has a list of Money called revenue.
IncomeStatement has a list of Money called costOfGoodsSold.
IncomeStatement has a list of Money called contribMargin.
IncomeStatement has a list of Money called fixedCosts.
IncomeStatement has a list of Money called depreciation.
IncomeStatement has a list of Money called netOpIncome.

BalanceSheet is a Report.
BalanceSheet has a list of Money called fixedAssets.
BalanceSheet has CurrentAssets.
BalanceSheet has a list of Money called totalAssets.
BalanceSheet has Liabilities.
BalanceSheet has a list of Money called ownersEquity.
BalanceSheet has a list of Money called totalLiabilitiesPlusEquity.

CashFlowStatement is a Report.
CashFlowStatement has a list of Payment called expenses.
CashFlowStatement has a list of Payment called revenues.

54

CashFlowStatement has a list of Money called revenueTotal.
CashFlowStatement has a list of Money called expenseTotal.

UnpaidInvoices is a Report.
UnpaidInvoices has a list of UnpaidInvoice called invoices.

VATReport is a Report.
VATReport has a list of Money called outgoingVAT.
VATReport has a list of Money called incomingVAT.
VATReport has a list of Money called vatDue.

Inventory is a Report.
Inventory has a list of Item called availableItems.

TopNCustomers is a Report.
TopNCustomers has a list of CustomerStatistics.

C.1.4 Contract

Purchase is a Contract.
Purchase has a Vendor entity.
Purchase has a list of OrderLine called orderLines.

Sale is a Contract.
Sale has a Customer entity.
Sale has a list of OrderLine called orderLines.

C.2 Reports

C.2.1 Prelude Functions

−− Arithmetic
min : (Ord a) ⇒ a → a → a
min x y = if x < y then x else y

max : (Ord a) ⇒ a → a → a
max x y = if x > y then x else y

−− List functions
null : [a] → Bool
null = fold (λe r → False) True

first : a → [a] → a
first = fold (λx a → x)

head : [a] → a
head = first (error "’head’ applied to empty list")

elemBy : (a → a → Bool) → a → [a] → Bool
elemBy f e = fold (λx a → a ∨ f x e) False

elem : (Ord a) ⇒ a → [a] → Bool
elem = elemBy (≡)

sum : (a < Real, Int < a) ⇒ [a] → a
sum = fold (+) 0

length : [a] → Int
length = fold (λ x y → y+1) 0

map : (a → b) → [a] → [b]
map f = fold (λx a → (f x) # a) []

filter : (a → Bool) → [a] → [a]
filter f = fold (λx a → if f x then x # a else a) []

55

nupBy : (a → a → Bool) → [a] → [a]
nupBy f = fold (λx a → x # filter (λ y → ¬ (f x y)) a) []

nup : (Ord a) ⇒ [a] → [a]
nup = nupBy (≡)

all : (a → Bool) → [a] → Bool
all f = fold (λx a → f x ∧ a) True

any : (a → Bool) → [a] → Bool
any f = fold (λx a → f x ∨ a) False

concat : [[a]] → [a]
concat = fold (λx a → x ++ a) []

concatMap : (a → [b]) → [a] → [b]
concatMap f l = concat (map f l)

take : Int → [a] → [a]
take n l = (fold (λx a → if a.2 > 0 then (x # a.1,a.2 − 1) else a) ([],n) l).1

−− Grouping functions
addGroupBy : (a → a → Bool) → a → [[a]] → [[a]]
addGroupBy f a ll =

let felem l = fold (λ el r → f el a) False l
run el r =

if r.1 then (True,el # r.2)
else if felem el then (True, (a # el) # r.2)
else (False, el # r.2)

res = fold run (False,[]) ll
in if res.1 then res.2 else [a] # res.2

groupBy : (a → a → Bool) → [a] → [[a]]
groupBy f = fold (addGroupBy f) []

addGroupProj : (Ord b) ⇒ (a → b) → a → [(b,[a])] → [(b,[a])]
addGroupProj f a ll =

let run el r =
if r.1 then(True,el # r.2)
else if el.1 ≡ f a then (True, (el.1,a # el.2) # r.2)
else (False, el # r.2)

res = fold run (False,[]) ll
in if res.1 then res.2 else (f a,[a]) # res.2

groupProj : (Ord b) ⇒ (a → b) → [a] → [(b, [a])]
groupProj f = fold (addGroupProj f) []

−− Sorting functions
insertBy : (a → a → Bool) → a → [a] → [a]
insertBy le a l =

let ins e r =
if r.1 then (True, e # r.2)
else if le e a then (True,e # a # r.2)
else (False, e # r.2)

res = fold ins (False,[]) l
in if res.1 then res.2 else a # res.2

insertProj : (Ord b) ⇒ (a → b) → a → [a] → [a]
insertProj proj = insertBy (λx y → proj x ≤ proj y)

insert : (Ord a) ⇒ a → [a] → [a]
insert = insertBy (≤)

sortBy : (a → a → Bool) → [a] → [a]
sortBy le = fold (λe r → insertBy le e r) []

sortProj : (Ord b) ⇒ (a → b) → [a] → [a]

56

sortProj proj = sortBy (λx y → proj x ≤ proj y)

sort : (Ord a) ⇒ [a] → [a]
sort = sortBy (≤)

−− Generators for ’lifecycled’ data
reports : [PutReport]
reports = nupBy (λpr1 pr2 → pr1.name ≡ pr2.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events, ur.name ≡ cr.name]]

entities : [(〈Data〉,String)]
entities = [(ce.ent,ce.recordType) |

ce : CreateEntity ← events,
null [de | de : DeleteEntity ← events, de.ent ≡ ce.ent]]

contracts : [PutContract]
contracts = [pc |

cc : CreateContract ← events,
pc = first cc [uc | uc : UpdateContract ← events, uc.contractId ≡ cc.contractId],
null [cc | cc : ConcludeContract ← events, cc.contractId ≡ pc.contractId]]

contractDefs : [PutContractDef]
contractDefs = nupBy (λpcd1 pcd2 → pcd1.name ≡ pcd2.name) [pcd |

ccd : CreateContractDef ← events,
pcd : PutContractDef = first ccd [ucd | ucd : ContractDefEvent ← events, ucd.name ≡ ccd.name]]

transactionEvents : [TransactionEvent]
transactionEvents = [tr | tr : TransactionEvent ← events]

transactions : [Transaction]
transactions = [tr.transaction | tr ← transactionEvents]

C.2.2 Domain-Specific Prelude Functions

−− Check if an agent is the company itself
isMe : 〈Agent〉 → Bool
isMe a = a :? 〈Me〉

−− Normalise a list of money by grouping currencies together
normaliseMoney : [Money] → [Money]
normaliseMoney ms = [Money{currency = m.1, amount = sum (map (λm → m.amount) m.2)} |

m ← groupProj (λm → m.currency) ms]

−− Add one list of money from another
addMoney : [Money] → [Money] → [Money]
addMoney m1 m2 = normaliseMoney (m1 ++ m2)

−− Subtract one list of money from another
subtractMoney : [Money] → [Money] → [Money]
subtractMoney m1 m2 = addMoney m1 (map (λm → m{amount = 0 − m.amount}) m2)

−− Produce normalised list of all items given in list
normaliseItems : [Item] → [Item]
normaliseItems its = [Item{itemType = i.1, quantity = sum (map (λis → is.quantity) i.2)} |

i ← groupProj (λis → is.itemType) its]

−− List of all invoices and their associated contract ID
invoices : [(Int,IssueInvoice)]
invoices = [(tr.contractId,inv) |

tr ← transactionEvents,
inv : IssueInvoice = tr.transaction]

−− List of all received invoices and their associated contract ID
invoicesReceived : [(Int,IssueInvoice)]
invoicesReceived =

filter (λinv → ¬ (isMe (inv.2).sender) ∧ isMe (inv.2).receiver) invoices

57

−− List of all sent invoices and their associated contract ID
invoicesSent : [(Int,IssueInvoice)]
invoicesSent = filter (λinv → isMe inv.2.sender ∧ ¬ (isMe inv.2.receiver)) invoices

−− Calculate the total price including VAT on an invoice
invoiceTotal : (a.orderLines : [OrderLine]) ⇒ a → [Money]
invoiceTotal inv = normaliseMoney [line.unitPrice{amount = price} |

line ← inv.orderLines,
quantity = line.item.quantity,
price = ((100 + line.vatPercentage) × line.unitPrice.amount × quantity) / 100]

−− List of all items delivered to the company
itemsReceived : [Item]
itemsReceived = normaliseItems [is |

tr ← transactionEvents,
del : Delivery = tr.transaction,
¬(isMe del.sender) ∧ isMe del.receiver,
is ← del.items]

−− List of all items that have been sold
itemsSold : [Item]
itemsSold = normaliseItems [line.item | inv ← invoicesSent, line ← inv.2.orderLines]

−− Inventory acquisitions, that is a list of all received items and the unit
−− price of each item, exluding VAT.
invAcq : [(Item,Money)]
invAcq = [(item,line.unitPrice) |

inv ← invoicesReceived,
tr ← transactionEvents,
tr.contractId ≡ inv.1,
deliv : Delivery = tr.transaction,
item ← deliv.items,
line ← inv.2.orderLines,
line.item.itemType ≡ item.itemType]

−− FIFO costing: Calculate the cost of all sold goods based on FIFO costing.
fifoCost : [Money]
fifoCost = let
−− Check whether a set of items equals the current set of items in the
−− inventory. If so, ’take’ as many of the inventory items as possible
−− and add the price of these items to the totals.
checkInventory y x = let

invItem = y.1 −− The current item in the inventory
invPrice = y.2 −− The price of the current item in the inventory
oldInv = x.1 −− The part of the inventory that has been processed
item = x.2 −− The item to find in the inventory
total = x.3 −− The total costs so far

in
if item.itemType ≡ invItem.itemType then let

deltaInv =
if invItem.quantity ≤ item.quantity then

[]
else

[(invItem{quantity = invItem.quantity − item.quantity},invPrice)]
remainingItem = item{quantity = max 0 (item.quantity − invItem.quantity)}
price = invPrice{amount = invPrice.amount × (min item.quantity invItem.quantity)}

in
(oldInv ++ deltaInv, remainingItem, price # total)

else
(oldInv ++ [(invItem,invPrice)], item, total)

−− Process a sold item
processSoldItem soldItem x = let

total = x.1 −− the total costs so far
inv = x.2 −− the remaning inventory so far
y = fold checkInventory ([],soldItem,total) inv

in

58

(y.3,y.1)
in
normaliseMoney ((fold processSoldItem ([],invAcq) itemsSold).1)

−− Outoing VAT
vatOutgoing : [Money]
vatOutgoing = normaliseMoney [price |

inv ← invoicesReceived,
l ← inv.2.orderLines,
price = l.unitPrice{amount = (l.vatPercentage × l.unitPrice.amount × l.item.quantity) / 100}]

−− Incoming VAT
vatIncoming : [Money]
vatIncoming = normaliseMoney [price |

inv ← invoicesSent,
l ← inv.2.orderLines,
price = l.unitPrice{amount = (l.vatPercentage × l.unitPrice.amount × l.item.quantity) / 100}]

C.2.3 Internal Reports

Me

name: Me
description:

Returns the pseudo entity ’Me’ that represents the company.
tags: internal, entity

report : 〈Me〉
report = head [me | me : 〈Me〉 ← map (λe → e.1) entities]

Entities

name: Entities
description:

A list of all entities.
tags: internal, entity

report : [〈Data〉]
report = map (λe → e.1) entities

EntitiesByType

name: EntitiesByType
description:

A list of all entities with the given type.
tags: internal, entity

report : String → [〈Data〉]
report t = map (λe → e.1) (filter (λe → e.2 ≡ t) entities)

ReportNames

name: ReportNames
description:

A list of names of all registered reports.
tags: internal, report

report : [String]
report = [r.name | r ← reports]

59

ReportNamesByTags

name: ReportNamesByTags
description:

A list of reports that have the all tags provided as first argument to the
function and none of the tags provided as second argument.

tags: internal, report

filt allOf noneOf rep =
all (λx → elem x rep.tags) allOf ∧
¬ (any (λx → elem x rep.tags) noneOf)

report : [String] → [String] → [String]
report allOf noneOf = [r.name | r ← filter (filt allOf noneOf) reports]

ReportTags

name: ReportTags
description:

A list of tags that are used in registered reports.
tags: internal, report

report : [String]
report = nup (concatMap (λx → x.tags) reports)

ContractTemplates

name: ContractTemplates
description:

A list of ’PutContractDef’ events for each non−deleted contract template.
tags: internal, contract

report : [PutContractDef]
report = contractDefs

ContractTemplatesByType

name: ContractTemplatesByType
description:

A list of ’PutContractDef’ events for each non−deleted contract template of the
given type.

tags: internal, contract

report : String → [PutContractDef]
report r = filter (λx → x.recordType ≡ r) contractDefs

Contracts

name: Contracts
description:

A list of all running (i.e. non−concluded) contracts.
tags: internal, contract

report : [PutContract]
report = contracts

60

ContractHistory

name: ContractHistory
description:

A list of previous transactions for the given contract.
tags: internal, contract

report : Int → [TransactionEvent]
report cid = [transaction |

transaction : TransactionEvent ← events,
transaction.contractId ≡ cid]

ContractSummary

name: ContractSummary
description:

A list of meta data for the given contract.
tags: internal, contract

report : Int → [PutContract]
report cid = [createCon |

createCon : PutContract ← contracts,
createCon.contractId ≡ cid]

C.2.4 External Reports

IncomeStatement

name: IncomeStatement
description:

The Income Statement.
tags: external, financial

−− Revenue
revenue = normaliseMoney [line.unitPrice{amount = amount} |
inv ← invoicesSent,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.items.numberOfItems]

costOfGoodsSold = fifoCost
contribMargin = subtractMoney revenue fifoCost
fixedCosts = [] −− For simplicity
depreciation = [] −− For simplicity
netOpIncome = subtractMoney (subtractMoney contribMargin fixedCosts) depreciation

report : IncomeStatement
report = IncomeStatement{

revenue = revenue,
costOfGoodsSold = costOfGoodsSold,
contribMargin = contribMargin,
fixedCosts = fixedCosts,
depreciation = depreciation,
netOpIncome = netOpIncome}

BalanceSheet

name: BalanceSheet
description:

The Balance Sheet.
tags: external, financial

61

−− List of all payments and their associated contract ID
payments : [(Int,Payment)]
payments = [(tr.contractId,payment) |

tr ← transactionEvents,
payment : Payment = tr.transaction]

−− List of all received payments and their associated contract ID
paymentsReceived : [(Int,Payment)]
paymentsReceived = filter (λp → ¬ (isMe p.2.sender) ∧ isMe p.2.receiver) payments

−− List of all payments made and their associated contract ID
paymentsMade : [(Int,Payment)]
paymentsMade = filter (λp → isMe p.2.sender ∧ ¬ (isMe p.2.receiver)) payments

cashReceived : [Money]
cashReceived = normaliseMoney (map (λp → p.2.money) paymentsReceived)

cashPaid : [Money]
cashPaid = normaliseMoney (map (λp → p.2.money) paymentsMade)

netCashFlow : [Money]
netCashFlow = subtractMoney cashReceived cashPaid

depreciation : [Money]
depreciation = [] −− For simplicity

fAssetAcq : [Money]
fAssetAcq = [] −− For simplicity

fixedAssets : [Money]
fixedAssets = subtractMoney fAssetAcq depreciation

inventory : [Money]
inventory =

let inventoryValue = [price |
item ← invAcq,
price = item.2{amount = item.2.amount × item.1.quantity}]

in
subtractMoney inventoryValue fifoCost

accReceivable : [Money]
accReceivable =

let paymentsDue = normaliseMoney [line.unitPrice{amount = amount} |
inv ← invoicesSent,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.item.quantity]

in
subtractMoney paymentsDue cashReceived

currentAssets : [Money]
currentAssets = addMoney inventory (addMoney accReceivable netCashFlow)

totalAssets : [Money]
totalAssets = addMoney fixedAssets currentAssets

accPayable : [Money]
accPayable =

let paymentsDue = [line.unitPrice{amount = amount} |
inv ← invoicesReceived,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.item.quantity]

in
subtractMoney paymentsDue cashPaid

vatPayable : [Money]
vatPayable = subtractMoney vatIncoming vatOutgoing

liabilities : [Money]

62

liabilities = addMoney accPayable vatPayable

ownersEq : [Money]
ownersEq = subtractMoney totalAssets liabilities

totalLiabPlusEq : [Money]
totalLiabPlusEq = addMoney liabilities ownersEq

report : BalanceSheet
report = BalanceSheet{

fixedAssets = fixedAssets,
currentAssets = CurrentAssets{

currentAssets = currentAssets,
inventory = inventory,
accountsReceivable = accReceivable,
cashPlusEquiv = netCashFlow},

totalAssets = totalAssets,
liabilities = Liabilities{

liabilities = liabilities,
accountsPayable = accPayable,
vatPayable = vatPayable},

ownersEquity = ownersEq,
totalLiabilitiesPlusEquity = totalLiabPlusEq}

CashFlowStatement

name: CashFlowStatement
description:

The Cash Flow Statement.
tags: external, financial

sumPayments : [Payment] → [Money]
sumPayments ps = normaliseMoney (map (λp → p.money) ps)

report : CashFlowStatement
report = let

payments = [payment | payment : Payment ← transactions]
mRevenues = [payment | payment ← payments, isMe (payment.receiver)]
mExpenses = [payment | payment ← payments, isMe (payment.sender)]

in
CashFlowStatement{

revenues = mRevenues,
expenses = mExpenses,
revenueTotal = sumPayments mRevenues,
expenseTotal = sumPayments mExpenses}

UnpaidInvoices

name: UnpaidInvoices
description:

A list of unpaid invoices.
tags: external, financial

−− Generate a list of unpaid invoices
unpaidInvoices : [UnpaidInvoice]
unpaidInvoices = [UnpaidInvoice{invoice = inv, remainder = remainder} |

invS ← invoicesSent,
inv = Invoice{

sender = invS.2.sender @,
receiver = invS.2.receiver @,
orderLines = invS.2.orderLines},

payments = [payment.money |
tr ← transactionEvents,
tr.contractId ≡ invS.1,
payment : Payment = tr.transaction],

63

remainder = subtractMoney (invoiceTotal inv) payments,
any (λm → m.amount > 0) remainder]

report : UnpaidInvoices
report = UnpaidInvoices{invoices = unpaidInvoices}

VATReport

name: VATReport
description:

The VAT report.
tags: external, financial

report : VATReport
report = VATReport{

outgoingVAT = vatOutgoing,
incomingVAT = vatIncoming,
vatDue = subtractMoney vatIncoming vatOutgoing}

Inventory

name: Inventory
description:

A list of items in the inventory available for sale (regardless of whether we
have paid for them).

tags: external, inventory

report : Inventory
report =

let itemsSold’ = map (λi → i{quantity = 0 − i.quantity}) itemsSold
in
−− The available items is the list of received items minus the list of reserved
−− or sold items
Inventory{availableItems = normaliseItems (itemsReceived ++ itemsSold’)}

TopNCustomers

name: TopNCustomers
description:

A list of customers who have spent must money in the given currency.
tags: external, financial, crm

customers : [〈Customer〉]
customers = [c | c : 〈Customer〉 ← map (λe → e.1) entities]

totalPayments : Currency → 〈Customer〉 → Real
totalPayments c cu = sum [d |

p : Payment ← transactions,
p.sender ≡ cu ∨ p.receiver ≡ cu,
p.money.currency ≡ c,
d = if p.sender ≡ cu then p.money.amount else 0 − p.money.amount]

customerStatistics : Currency → [CustomerStatistics]
customerStatistics c = [CustomerStatistics{customer = cu, totalPaid = p} |

cu ← customers,
p = Money{currency = c, amount = totalPayments c cu}]

topN : Int → [CustomerStatistics] → [CustomerStatistics]
topN n cs = take n (sortBy (λcs1 cs2 → cs1.totalPaid > cs2.totalPaid) cs)

report : Int → Currency → TopNCustomers
report n c = TopNCustomers{customerStatistics = topN n (customerStatistics c)}

64

C.3 Contracts

C.3.1 Prelude

// Arithmetic
fun floor x = let n = ceil x in if n > x then n − 1 else n
fun round x = let n1 = ceil x in let n2 = floor x in if n1 + n2 > 2 × x then n2 else n1
fun max a b = if a > b then a else b
fun min a b = if a > b then b else a

// List functions
fun filter f = foldr (λx b → if f x then x # b else b) []
fun map f = foldr (λx b → (f x) # b) []
val length = foldr (λx b → b + 1) 0
fun null l = l ≡ []
fun elem x = foldr (λy b → x ≡ y ∨ b) false
fun all f = foldr (λx b → b ∧ f x) true
fun any f = foldr (λx b → b ∨ f x) false
val reverse = foldl (λa e → e # a) []
fun append l1 l2 = foldr (λe a → e # a) l2 l1

// Lists as sets
fun subset l1 l2 = all (λx → elem x l2) l1
fun diff l1 l2 = filter (λx → ¬ (elem x l2)) l1

C.3.2 Domain-Specific Prelude

// Check if ’lines’ are in stock by invoking the ’Inventory’ report
fun inStock lines =

let inv = (reports.inventory ()).availableItems
in
all (λl → any (λi → (l.item).itemType ≡ i.itemType ∧ (l.item).quantity ≤ i.quantity) inv) lines

// Check that amount ’m’ equals the total amount in m’s currency of a list of sales lines
fun checkAmount m orderLines =

let a = foldr (λx acc →
if (x.unitPrice).currency ≡ m.currency then

(x.item).quantity × (100 + x.vatPercentage) × (x.unitPrice).amount + acc
else

acc) 0 orderLines
in
m.amount × 100 ≡ a

// Remove sales lines that have the currency of ’m’
fun remainingOrderLines m = filter (λx → (x.unitPrice).currency 6≡ m.currency)

// A reference to the designated entity that represents the company
val me = reports.me ()

C.3.3 Contract Templates

Purchase

name: purchase
type: Purchase
description: "Set up a purchase"

clause purchase(lines : [OrderLine])〈me : 〈Me〉, vendor : 〈Vendor〉〉 =
〈vendor〉 Delivery(sender s, receiver r, items i)

where s ≡ vendor ∧ r ≡ me ∧ i ≡ map (λx → x.item) lines
due within 1W

then
when IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ vendor ∧ r ≡ me ∧ sl ≡ lines
due within 1Y

then

65

payment(lines, vendor, 14D)〈me〉

clause payment(lines : [OrderLine], vendor : 〈Vendor〉, deadline : Duration)
〈me : 〈Me〉〉 =

if null lines then
fulfilment

else
〈me〉 BankTransfer(sender s, receiver r, money m)

where s ≡ me ∧ r ≡ vendor ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, vendor, newDeadline)〈me〉

contract = purchase(orderLines)〈me, vendor〉

Sale

name: sale
type: Sale
description: "Set up a sale"

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)

where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

clause payment(lines : [OrderLine], me : 〈Me〉, deadline : Duration)
〈customer : 〈Customer〉〉 =

if null lines then
fulfilment

else
〈customer〉 Payment(sender s, receiver r, money m)

where s ≡ customer ∧ r ≡ me ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, me, newDeadline)〈customer〉

clause repair(items : [Item], customer : 〈Customer〉, deadline : Duration)
〈me : 〈Me〉〉 =

when RequestRepair(sender s, receiver r, items i)
where s ≡ customer ∧ r ≡ me ∧ subset i items
due within deadline
remaining newDeadline

then
〈me〉 Repair(sender s, receiver r, items i’)

where s ≡ me ∧ r ≡ customer ∧ i ≡ i’
due within 5D

and
repair(items, customer, newDeadline)〈me〉

contract = sale(orderLines)〈me, customer〉

66

	Introduction
	Outline and Contributions

	Revised POETS Architecture
	Data Model
	Types
	Values
	Type Checking
	Ontology Language
	Predefined Ontology

	Event Log
	Entity Store
	Report Engine
	The Report Language
	Incrementalisation
	Lifecycle of Reports

	Contract Engine
	Contract Templates
	Contract Instances
	The Contract Language

	Use Case: µERP
	Data Model
	Reports
	Contracts
	Bootstrapping the System

	Implementation Aspects
	External Interface
	Domain-Specific Languages

	Conclusion
	Future Work

	Predefined Ontology
	Data
	Event
	Transaction
	Report
	Contract

	Static and Dynamic Semantics of the Report Language
	Types, Type Constraints and Type Schemes
	Built-in Symbols
	Type System
	Operational Semantics

	µERP Specification
	Ontology
	Data
	Transaction
	Report
	Contract

	Reports
	Prelude Functions
	Domain-Specific Prelude Functions
	Internal Reports
	External Reports

	Contracts
	Prelude
	Domain-Specific Prelude
	Contract Templates

