
Generalising Tree Traversals to DAGs
Exploiting Sharing without the Pain

Patrick Bahr
Department of Computer Science

University of Copenhagen
paba@di.ku.dk

Emil Axelsson
Department of Computer Science and Engineering

Chalmers University of Technology
emax@chalmers.se

Abstract
We present a recursion scheme based on attribute grammars that
can be transparently applied to trees and acyclic graphs. Our recur-
sion scheme allows the programmer to implement a tree traversal
and then apply it to compact graph representations of trees instead.
The resulting graph traversals avoid recomputation of intermediate
results for shared nodes – even if intermediate results are used in
different contexts. Consequently, this approach leads to asymptotic
speedup proportional to the compression provided by the graph rep-
resentation. In general, however, this sharing of intermediate results
is not sound. Therefore, we complement our implementation of the
recursion scheme with a number of correspondence theorems that
ensure soundness for various classes of traversals. We illustrate the
practical applicability of the implementation as well as the comple-
menting theory with a number of examples.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—
Program and Recursion Schemes

Keywords attribute grammars, sharing, graph traversal, Haskell

1. Introduction
Functional programming languages such as Haskell excel at ma-
nipulating tree-structured data. Using algebraic data types, we can
define functions over trees in a natural way by means of pattern
matching and recursion. As an example, we take the following def-
inition of binary trees with integer leaves, and a function to find the
set of leaves at and below a given depth in the tree:

data IntTree = Leaf Int | Node IntTree IntTree

leavesBelow :: Int → IntTree → Set Int
leavesBelow d (Leaf i)
| d 6 0 = Set .singleton i
| otherwise = Set .empty

leavesBelow d (Node t1 t2) =
leavesBelow (d − 1) t1 ∪ leavesBelow (d − 1) t2

[Copyright notice will appear here once ’preprint’ option is removed.]

One shortcoming of tree structures is that they are unable to
represent sharing of common subtrees, which occur, for example,
when a compiler substitutes a shared variable by its definition. The
following tree has a shared node a that appears twice:

t = let a = Node (Node (Leaf 2) (Leaf 3)) (Leaf 4)
in Node a a

Unfortunately, a function like leavesBelow is unable to observe
this sharing, and thus needs to traverse the shared subtree in t twice.

In order to represent and take advantage of sharing, one could
instead use a directed graph representation, such as the structured
graphs of Oliveira and Cook [32]. However, such a change of repre-
sentation would force us to express leavesBelow by traversing the
graph structure instead of by plain recursion over the Node con-
structors. If we are only interested in graphs as a compact represen-
tation of trees, this is quite a high price to pay. In an ideal world,
one should be able to leave the definition of leavesBelow as it is,
and be able to run it on both trees and graphs.

Oliveira and Cook [32] define a fold operation for structured
graphs which makes it possible to define structurally recursive
functions as algebras that can be applied to both trees and graphs.
However, leavesBelow is a context-dependent function that passes
the depth parameter down the recursive calls. Therefore, an imple-
mentation as a fold – namely by computing a function from context
to result – would not be able to exploit the sharing present in the
graph: intermediate results for shared nodes still have to be recom-
puted for each context in which they are used. Moreover, it is not
possible to use folds to transform a graph without losing sharing.

This paper presents a method for running tree traversals on di-
rected acyclic graphs (DAGs), taking full account of the sharing
structure. The traversals are expressed as attribute grammars (AGs)
using Bahr’s representation of tree automata in Haskell [5]. The
underlying DAG structure is completely transparent to the AGs,
which means that the same AG can be run on both trees and DAGs.
The main complication arises for algorithms that pass an accu-
mulating parameter down the tree. In a DAG this may lead to a
shared node receiving conflicting values for the accumulating pa-
rameter. Our approach is to resolve such conflicts using a separate
user-provided function. For example, in leavesBelow , the resolu-
tion function for the depth parameter would be min , since we only
need to consider the deepest occurrence of each shared subtree. As
we will show, this simple insight extends to many tree traversals of
practical relevance.

The paper makes the following contributions:

• We present an implementation of AGs in Haskell that allows us
to write tree traversals such that they can be applied to compact
DAG representations of trees as well.

• We extend AGs with rewrite functions to implement tree trans-
formations that preserve sharing if applied to DAGs.

1 2014/11/7

• We prove a number of general correspondence theorems that
relate the semantics of AGs on trees to their semantics on cor-
responding DAG representations. These correspondence results
allow us to prove the soundness of our approach for various
classes of traversals.

• Our implementation and the accompanying theory covers an
important class of algorithms, where an inherited attribute
maintains a variable environment. This makes our method suit-
able for certain syntactic analyses, for instance in a compiler.
We demonstrate this fact on a type inference implementation.

The rest of the paper is organised as follows: Section 2 presents
embedded domain-specific languages, which are an important mo-
tivation for this work. Section 3 introduces recursion schemes
based on AGs, and section 4 shows how to run AGs on DAGs.
Section 5 gives the semantics and theoretical results for reason-
ing about AGs on trees and DAGs. Some proofs were elided or
abridged to save space. The full proofs are presented in the accom-
panying technical report [6]. Likewise, the exact implementation
of the recursion schemes is omitted. It is instead available in an ac-
companying repository: https://github.com/emilaxelsson/
ag-graph.

2. Running Example
To illustrate the ideas in this paper, we will use the following simple
expression language:

data Exp = LitB Bool -- Boolean literal
| LitI Int -- Integer literal
| Eq Exp Exp -- Equality
| Add Exp Exp -- Addition
| If Exp Exp Exp -- Condition
| Var Name -- Variable
| Iter Name Exp Exp Exp -- Iteration

type Name = String

Most constructs in Exp have a straightforward meaning. For exam-
ple, the following is a conditional expression that corresponds to
the Haskell expression if x ≡ 0 then 1 else 2:

If (Eq (Var "x") (LitI 0)) (LitI 1) (LitI 2)

However, Iter requires some explanation. This is a looping
construct that corresponds to the following Haskell function:

iter :: Int → s → (s → s)→ s
iter 0 s b = s
iter n s b = iter (n − 1) (b s) b

The expression iter n s b applies the b function n times starting
in state s . The corresponding expression Iter "x" n s b (where
n, s, b :: Exp) works in the same way. However, since we do not
have functions in the Exp language, the first argument of Iter is
a variable name, and this name is bound in the the body b. For
example, the Haskell expression iter 5 1 (λs → s + 2) is
represented as

Iter "s" (LitI 5) (LitI 1) (Add (Var "s") (LitI 2))

2.1 Type Inference
A typical example of a function over expressions that has an in-
teresting flow of information is simple type inference, defined in
Figure 1. The first argument is the environment – a mapping from
bound variables to their types. Most of the cases just check the
types of the children and return the appropriate type. The environ-
ment is passed unchanged to the recursive calls, except in the Iter
case, where the bound variable is added to the environment. The

data Type = BoolType | IntType deriving (Eq)
type Env = Map Name Type

typeInf :: Env → Exp → Maybe Type
typeInf env (LitB) = Just BoolType
typeInf env (LitI) = Just IntType
typeInf env (Eq a b)
| Just ta ← typeInf env a
, Just tb ← typeInf env b
, ta ≡ tb = Just BoolType

typeInf env (Add a b)
| Just IntType ← typeInf env a
, Just IntType ← typeInf env b = Just IntType

typeInf env (If c t f)
| Just BoolType ← typeInf env c
, Just tt ← typeInf env t
, Just tf ← typeInf env f
, tt ≡ tf = Just tt

typeInf env (Var v) = lookEnv v env
typeInf env (Iter v n i b)
| Just IntType ← typeInf env n
, ti ′@(Just ti) ← typeInf env i
, Just tb ← typeInf (insertEnv v ti ′ env) b
, ti ≡ tb = Just tb

typeInf = Nothing

insertEnv :: Name → Maybe Type → Env → Env
insertEnv v Nothing env = env
insertEnv v (Just t) env = Map.insert v t env

lookEnv :: Name → Env → Maybe Type
lookEnv = Map.lookup

Figure 1: Type inference for example EDSL.

only case where the environment is used is in the Var case, where
the type of the variable is obtained by looking it up in the environ-
ment.

Note that typeInf has many similarities with leavesBelow from
the introduction: It is defined using recursion over the tree construc-
tors; it passes an accumulating parameter down the recursive calls;
it synthesises a result from the results of the recursive calls. Natu-
rally, it also has the same problems as leavesBelow when applied
to an expression with shared sub-expressions: It will repeatedly in-
fer types for shared sub-expressions each time they occur.

This issue can be resolved by adding a let binding construct to
Exp in order to explicitly represent shared sub-expressions. The
type inference algorithm can then be extended to make use of this
sharing information. However, let bindings tend to get in the way
of syntactic simplifications, which is why optimising compilers
often try to inline let bindings in order to increase the opportunities
for simplification. In general, it is not possible to inline all let
bindings, as this can lead to unmanageably large ASTs. This leaves
the compiler with the tricky problem of inlining enough to trigger
the right simplifications, but not more than necessary so that the
AST does not explode.

Ideally, one would like to program syntactic analyses and trans-
formations without having to worry about sharing, especially if the
sharing is only used to manage the size of the AST. The method
proposed in this paper makes it possible to traverse expressions as
if all sharing was inlined, yet one does not have to pay the price

2 2014/11/7

https://github.com/emilaxelsson/ag-graph
https://github.com/emilaxelsson/ag-graph

A

B

D E

C

(a) Attribute propagation.

A

B

D E

C

(b) Tree traversal.

Figure 2: Propagation of attribute values by an attribute grammar.

of duplicated sub-expressions, since the internal representation of
expressions is an acyclic graph.

3. Attribute Grammars
In this section we describe the representation and implementation
of attribute grammars in Haskell. The focus of our approach is put
on a simple representation of this recursion scheme that at the same
time allows us to easily move from tree-structured data to graph-
structured data. To this end, we represent tree-structured data as
fixed points of functors:

data Tree f = In (f (Tree f))

For instance, to represent the type Exp, we define a corresponding
functor ExpF below, which gives us the type Tree ExpF isomor-
phic to Exp (modulo non-strictness):

data ExpF a = LitB Bool | LitI Int | Var Name
| Eq a a | Add a a | If a a a
| Iter Name a a a

Apart from requiring functors such as ExpF to be instances of
Functor , we also require them to be instances of the Traversable
type class. This will keep the representation of our recursion
scheme on trees simple and is indeed necessary in order to im-
plement it on DAGs. Haskell is able to provide such instances
automatically via its deriving clause.

An attribute grammar (AG) consists of a number of attributes
and a collection of semantic functions that compute these attributes
for each node of the tree. One typically distinguishes between in-
herited attributes, which are computed top-down, and synthesised
attributes, which are computed bottom-up. For instance, if we were
to express the type inference algorithm typeInf as an AG, it would
consist of an inherited attribute that is the environment and a syn-
thesised attribute that is the inferred type.

Figure 2a illustrates the propagation of attribute values of an AG
in a tree. The arrows facing upwards and downwards represent the
propagation of synthesised and inherited attributes, respectively.
Due to this propagation, the semantic functions that compute the
attribute values for each node n have access to the attribute values
in the corresponding neighbourhood of n. For example, to compute
the inherited attribute value that is passed down from B to D,
the semantic function may use the inherited attributes from A
and the synthesised attributes from D and E. This scheme allows
for complex interdependencies between attributes. Provided that
there are no cyclic dependencies, a traversal through the tree that
computes all attribute values of each node can be executed as
illustrated in Figure 2b.

3.1 Synthesised Attributes
We defer the formal treatment of AGs until section 5 and focus
on the implementation in Haskell for now. We start with the sim-
pler case, namely synthesised attributes. The computation of syn-
thesised attributes follows essentially the same structure as a fold,
i.e. the following recursion scheme:

type Algebra f c = f c → c

fold :: Functor f ⇒ Algebra f c → Tree f → c
fold alg (In t) = alg (fmap (fold alg) t)

The algebra of a fold describes how the value of type c for a node
in the tree is computed given that it has already been computed for
its children.

AGs go beyond this recursion scheme: they allow us to use
not only values of the attribute of type c being defined but also
other attributes, which are computed by other semantic functions.
To express that an attribute of type c is part of a larger collection of
attributes, we use the following type class

class c ∈ as where
pr :: as → c

Intuitively, c ∈ as means that c is a component of as , and gives
the corresponding projection function. We can give instance dec-
larations accordingly, which gives us for example that a ∈ (a, b)
with the projection function pr = fst . Using closed type fami-
lies [13], the type class ∈ can be defined such that it works on
arbitrarily nested product types, but disallows ambiguous instances
such as Int ∈ (Int , (Bool , Int)) for which multiple projections
exist. But there are also simpler implementations of ∈ that only use
type classes [5].

We can thus represent the semantic function for a synthesised
attribute of type s as follows:

type Syn f as s = (s ∈ as)⇒ as → f as → s

To compute the attribute of type s we can draw from the complete
set of attributes of type as at the current node as well as its children.

For example, the following excerpt gives one case for the syn-
thesised type attribute of type inference (cf. the reference imple-
mentation in Figure 1):

typeInf S :: Syn ExpF as (Maybe Type)
typeInf S (Add a b)
| Just IntType ← pr a
, Just IntType ← pr b = Just IntType

...

However, instead of the above Syn type, we shall use a more
indirect representation, which will turn out to be beneficial for the
representation of inherited attributes, and later for rewrite func-
tions. It is based on the isomorphism below, which follows from
the Yoneda Lemma for all functors f and types as , s:

(∀a.(a → as)→ (f a → s)) ∼= f as → s

It allows us to define the type Syn f as s alternatively as follows:

∀ a.(s ∈ as)⇒ as → (a → as)→ f a → s

We further transform this type by turning the first two arguments
of type as and a → as into implicit parameters [29], which
provides an interface closer to that of AG systems:

type Syn f as s = ∀ a.(?below :: a → as, ?above :: as,
s ∈ as)⇒ f a → s

Combining the implicit parameters with projection gives us two
convenient helper functions for writing semantic functions:

above :: (?above :: as, i ∈ as)⇒ i
above = pr (?above)

below :: (?below :: a → as, s ∈ as)⇒ a → s
below a = pr (?below a)

The complete definition of the synthesised type attribute for
type inference is given in Figure 3. The function typeInf I is the
semantic function for the inherited environment attribute. It will

3 2014/11/7

typeInf S :: (Env ∈ as)⇒ Syn ExpF as (Maybe Type)
typeInf S (LitB) = Just BoolType
typeInf S (LitI) = Just IntType
typeInf S (Eq a b)
| Just ta ← typeOf a
, Just tb ← typeOf b
, ta ≡ tb = Just BoolType

typeInf S (Add a b)
| Just IntType ← typeOf a
, Just IntType ← typeOf b = Just IntType

typeInf S (If c t f)
| Just BoolType ← typeOf c
, Just tt ← typeOf t
, Just tf ← typeOf f
, tt ≡ tf = Just tt

typeInf S (Var v) = lookEnv v above
typeInf S (Iter v n i b)
| Just IntType ← typeOf n
, Just ti ← typeOf i
, Just tb ← typeOf b
, ti ≡ tb = Just tb

typeInf S = Nothing

typeInf I :: (Maybe Type ∈ as)⇒ Inh ExpF as Env
typeInf I (Iter v n i b) = b 7→ insertEnv v ti above

where ti = typeOf i
typeInf I = ∅

Figure 3: Semantic functions for synthesised and inherited at-
tributes of type inference.

be explained in the following subsection. The code uses a conve-
nient helper function for querying the synthesised type of a sub-
expression:

typeOf :: (?below :: a → as,Maybe Type ∈ as)⇒
a → Maybe Type

typeOf = below

3.2 Inherited Attributes
The representation of semantic functions defining inherited at-
tributes is slightly more complicated, which is to say that there
is no representation that is both elegant and convenient to use. We
need to represent a mapping that assigns attribute values to the
children of a node. The most convenient way to represent such
mappings in Haskell is in the form of a finite mapping provided by
the type constructor Map.

Thus, given a node of type f a , where type a represents child
positions of the node, we assign inherited attribute values of type
i to each child node by providing a mapping of type Map a i .
This gives us the following representation of semantic functions
for inherited attributes:

type Inh f as i = ∀ a.(?below :: a → as, ?above :: as,
i ∈ as,Ord a)⇒ f a → Map a i

Note that we have to add the constraint Ord a , since the operations
to construct finite mappings require this.

The above type does not ensure that the returned mapping is
complete, i.e. that each child is assigned a value. However, this
situation provides the opportunity to allow so-called copy rules.
Such copy rules are a common convenience feature in AG systems
and state when inherited attributes are simply propagated to a child.

In our case, we copy an inherited attribute value to a child if no
assignment is made in the mapping of the semantic function.

To make it convenient to construct mappings as the result of
semantic functions for inherited attributes, we define infix operators
7→ and &, which allow us to construct singleton mappings x 7→ y
and take the union m & n of two mappings. Moreover, we use ∅ to
denote the empty mapping.

The semantic function for the inherited environment attribute of
type inference is given by typeInf I in Figure 3. The only interest-
ing case is Iter , in which the local variable is inserted into the envi-
ronment. The environment is only updated for the sub-expression b
(because it only scopes over the body of the loop). Hence, the other
sub-expressions (n and i) will get an unchanged environment by
the abovementioned copy rule. Similarly, for all other constructs in
the EDSL, the environment is copied unchanged.

3.3 Combining Semantic Functions to Attribute Grammars
Now that we have Haskell representations for semantic functions,
we need combinators that allow us to combine them to form com-
plete AGs.

At first, we define combinators that combine two semantic func-
tions to obtain a semantic function that computes the attributes of
both of them. For synthesised attributes, this construction is simple:

(⊗) :: Syn f as s1 → Syn f as s2 → Syn f as (s1, s2)
(sp ⊗ sq) t = (sp t , sq t)

The implementation for inherited attributes is more difficult
as we have to honour the copy rule. That is, given two semantic
functions i and j , where i assigns an attribute value for a given
child node but j does not, the product of i and j must assign an
attribute value consisting of the value given by i and a copy for
the second attribute. We elide the details of the implementation and
instead give only the type of the corresponding combinator:

(~) :: Functor f ⇒
Inh f as i1 → Inh f as i2 → Inh f as (i1, i2)

Finally, a complete AG is given by a semantic function of type
Syn f (s, i) s and another one of type Inh f (s, i) i . That is,
taken together the two semantic functions define the full attribute
space (s, i). Moreover, we have to provide an initial value of the
inherited attribute of type i in order to run the AG on an input
tree of type Tree f . In general, the initial value of the inherited
attributes does not have to be fixed but may depend on (some of)
the synthesised attributes. These constraints are summarised in the
type of the function that implements the run of an AG:

runAG :: Traversable f ⇒ Syn f (s, i) s →
Inh f (s, i) i → (s → i)→ Tree f → s

We are now able to define type inference as a run of the AG
defined in Figure 3:

typeInf :: Env → Tree ExpF → Maybe Type
typeInf env = runAG typeInf S typeInf I (λ → env)

In this example, the initialisation function for the inherited attribute
is simply a constant function that returns the environment. In the
next section, we shall see an example that uses the full power of the
initialisation function.

3.4 Example: Richard Bird’s repmin
A classic example of a tree traversal with interesting information
flow is Bird’s repmin problem [8]. The problem is as follows: given
a tree with integer leaves, compute a new tree of the same shape
but where all leaves have been replaced by the minimal leaf in
the original tree. Bird shows how this can be achieved by a single
traversal in a lazy functional language.

4 2014/11/7

To code repmin as an AG, we first define a functor correspond-
ing to the tree type from section 1:

data IntTreeF a = Leaf Int | Node a a

Next, we introduce two attributes:

newtype MinS = MinS Int deriving (Eq ,Ord)
newtype MinI = MinI Int

MinS is the synthesised attribute representing the smallest integer
in a subtree, and MinI is the inherited attribute which is going to be
the smallest integer in the whole tree. We also define a convenience
function for accessing the MinI attribute:

globMin :: (?above :: as,MinI ∈ as)⇒ Int
globMin = let MinI i = above in i

The semantic function for the MinS attribute is as follows:

minS :: Syn IntTreeF as MinS

minS (Leaf i) = MinS i
minS (Node a b) = min (below a) (below b)

The MinI attribute should be the same throughout the whole
tree, so we define a function that just copies the inherited attribute:

minI :: Inh IntTreeF as MinI

minI = ∅

Finally, we need to be able to synthesise a new tree that depends
on the globally smallest integer available from the MinI attribute:

rep :: (MinI ∈ as)⇒ Syn IntTreeF as (Tree IntTreeF)
rep (Leaf i) = In (Leaf globMin)
rep (Node a b) = In (Node (below a) (below b))

Now we have all the parts needed to define repmin:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = snd ◦ runAG (minS ⊗ rep) minI init

where init (MinS i ,) = MinI i

The init function uses the synthesised smallest integer as the initial
inherited attribute value.

3.5 Informal Semantics
Instead of reproducing the implementation of runAG here, we
shall informally describe the semantics of an AG and describe in
which way runAG implements this semantics. The formal seman-
tics is given in section 5.

The semantic functions of an AG describe how to compute
the value of an attribute at a node n using the attributes in the
“neighbourhood” of n. For synthesised attributes, this neighbour-
hood consists of n itself and its children, whereas for inherited at-
tributes, it consists of n, its siblings, and its parent. Running the AG
on a tree t amounts to computing, for each attribute a, the mapping
ρa : N → Da from the set of nodes of t to the set of values of a. In
other words, the tree is decorated with the computed attribute val-
ues. We call the collection of all these mappings ρa a run of the AG
on t. In general, there may not be a unique run (including no run at
all), since there can be a cyclic dependency between the attributes.
However, if there is no such cyclic dependency, runAG will ef-
fectively construct the unique run of the AG on the input tree, and
return the product of all synthesised attribute values at the root of
the tree.

Figure 2b illustrates how runAG may compute the run of a
given AG by a traversal through the tree. Such a traversal is, how-
ever, not statically scheduled in advance but rather dynamically ex-
ploiting Haskell’s lazy semantics.

A B

C

v1 v2

(a) Abstract problem.

Iter "x"

LitI 10 Add

Var "x"Iter "y"

LitI 5 Add
{x 7→ Int,
y 7→ Int}

{x 7→ Int}

(b) Example: type inference.

Figure 4: Confluence of inherited attributes.

4. Attribute Grammars on DAGs
Our goal is to apply algorithms intended to work on trees without or
with only little change to DAGs such that we can exploit the sharing
for performance gains. The key observation that allows us to do this
is the fact that AGs are unaware of the underlying representation
they are working on. Semantic functions simply compute attributes
of a node using attribute values in the neighbourhood of the node.
The informal semantics of AGs on trees given in section 3.5 is
equally applicable to DAGs.

This straightforward translation of the semantics to DAGs, how-
ever, will rarely yield a well-defined run. The problem is that in the
presence of sharing – i.e. there is a node with more than one in-
coming edge – the semantic function for an inherited attribute may
overlap: it assigns potentially different values to the same attribute
at the same node. Figure 4a illustrates the problem: the semantic
function for the inherited attribute computes for each of the two
nodes A and B the value v1 resp. v2 of the inherited attribute that
should be passed down to the child node of A resp. B. However,
A and B share the same child, C, which therefore receives both
values for the inherited attribute.

The easiest way to deal with this situation is to traverse the
sub-DAG reachable from C multiple times – once for each of the
conflicting attribute values v1 and v2. This is what happens if we
would implement traversals as folds in the style of Oliveira and
Cook [32]. But our goal is to avoid such recomputation.

A simple special case is if we know that v1 and v2 are always
the same. That happens, for example, if inherited attributes are
only copied downwards as in the repmin example from section 3.4.
However, for the type inference AG, this is clearly not the case. One
example that shows the problem is the DAG in Figure 4b, where the
shared variable "x" is used in two different environments.

Nonetheless, for type inference, as for many other AGs of inter-
est, we can still extend the semantics to DAGs in a meaningful way
by providing a commutative, associative operator⊕ on inherited at-
tributes that combines confluent attribute values. In the illustration
in Figure 4a, the inherited attribute at C is then assigned the value
v1 ⊕ v2. For the type inference AG, a (provably) sensible choice
for ⊕ is the intersection of environments (cf. section 4.3). In Fig-
ure 4b, intersecting the environments of the node Var "x" yields
the environment {x 7→ Int}.

This observation allows us to efficiently run AGs on DAGs. Our
implementation provides a corresponding variant of runAG :

runAGDag :: Traversable f ⇒ (i → i → i)→
Syn f (s, i) s → Inh f (s, i) i → (s → i)→ Dag f → s

The interface differs in two points from runAG : (1) it takes DAGs
as input and (2) it takes a binary operator of type i → i → i , which
is to be used to combine confluent attributes as described above.

For instance, we may use the type inference AG to implement
type inference on DAGs as follows:

5 2014/11/7

typeInf G :: Env → Dag ExpF → Maybe Type
typeInf G env = runAGDag intersection

typeInf S typeInf I (λ → env)

We will not go into the details of the implementation of
runAGDag . Instead we refer to the informal semantics that we
have given above as well as the formal semantics given in section 5

But we shall briefly explain how DAGs of type Dag f are
represented. We represent DAGs with explicit nodes and edges,
with nodes represented by integers:

type Node = Int

Edges are represented as finite mappings from Node into f Node .
In this way, each node is mapped to all its children, but also its
labelling. In addition, each node has a designated root node. This
gives the following definition of Dag as a record type:

data Dag f = Dag {root :: Node,
edges :: IntMap (f Node)}

Note that acyclicity is not explicitly encoded in this definition of
DAGs. Instead, we rely on the combinators to construct such DAGs
to ensure or check for acyclicity.

Following Gill [20], we provide a function that observes the
implicit sharing of a tree of type Tree f and turns it into a DAG
of type Dag f :

reifyDag :: Traversable f ⇒ Tree f → IO (Dag f)

As a final example, we turn the repmin function from sec-
tion 3.4 into a function repminG that works on DAGs.

repminG :: Dag IntTreeF → Tree IntTreeF
repminG = snd ◦ runAGDag const (minS ⊗ rep) minI init

where init (MinS i ,) = MinI i

The only additional definition we have to provide is the function
to combine inherited attribute values, for which we choose const ,
i.e. we arbitrarily pick one of the values. The rationale behind this
choice is that the value of inherited attribute – computed by minI

– is globally the same since it is copied. The formal justification for
this choice is given in section 4.1 below.

The type of repminG indicates that it is not quite the function
we had hoped for: it returns a tree rather than a DAG. We defer
addressing this issue until section 4.5.

4.1 Trees vs. DAGs
The most important feature of our approach is that we can express
the semantics of an AG on DAGs in terms of the semantics on trees.
This is achieved by two correspondence theorems that relate the
semantics of AGs on DAGs to the semantics on trees. The theorems
are discussed and proved in section 5. But we present them here
informally and illustrate their applicability to the examples that we
have seen so far.

To bridge the gap between the tree and the DAG semantics of
AGs, we use the notion of unravelling (or unsharing) of a DAG g
to a tree U (g), which is the uniquely determined tree U (g) that
is bisimilar to g. Since we only consider finite acyclic graphs g,
the unravelling U (g) is always a finite tree. The correspondence
theorems relate the result of running an AG on a DAG g to the
result of running it on the unravelling of g. The practical relevance
of these theorems stems from the fact that reifyDag turns a tree t
into a DAG g that unravels to t.

The first and simplest correspondence result is applicable to all
so-called copying AGs, which are AGs that copy all their inherited
attributes. That is, in concrete terms, the semantic function of each
inherited attribute returns the empty mapping ∅. Such AGs are by
no means trivial, since inherited attributes may still be initialised
as a function on the synthesised attributes. The repmin AG is, for

A

B

1 2 3 4

(a) A DAG g.

A

B1 B2

1
2 3

4

(b) Unravelling of g.

Iter "x"

LitI 0

Var "x"

Iter "x"

(c) Example DAG.

Figure 5: Cyclic dependency in non-circular AG on DAGs.

example, copying. The following correspondence theorem is thus
applicable to repmin:

Theorem 1 (sketch). Given a copying AG G, a binary operator
⊕ on inherited attributes with x ⊕ y ∈ {x, y} for all x, y, and a
DAG g, we have thatG terminates on U (g) with result r iff (G,⊕)
terminates on g with result r.

The above theorem is immediately applicable to the repmin AG.
We obtain that repminG applied to a DAG g yields the same result
as repmin applied to U (g). That is, we get the same result for
repmin t and fmap repminG (reifyDag t).

Before we discuss the second correspondence theorem we have
to consider the termination behaviour of AGs on trees vs. DAGs.

4.2 Termination of Attribute Grammars
While AGs are quite flexible in the interdependency between at-
tributes they permit – which in general may lead to cyclic depen-
dencies and thus non-termination – they come with a tool set to
check for circular dependencies. Already when Knuth [25, 26] in-
troduced AGs, he gave an algorithm to check for circular depen-
dencies and proved that absent such circularity AGs terminate.

This result also applies to our AGs. And the example AGs
we have considered this far are indeed non-circular – runAG
will terminate for them (given any finite tree as input). Somewhat
surprisingly this property does not carry over to acyclic graphs.

The essence of the phenomenon that causes this problem is
illustrated in Figure 5. Figure 5a shows a simple DAG consisting
of two nodes, and Figure 5b its unravelling to a tree. The double
arrows illustrate the flow of information from a run of an AG.
The numbers indicate the order in which the information flows:
we first pass information from A to B1 (via the inherited attribute)
then from B1 back to A (via the synthesised attribute) and then
similarly to and from B2. This is a common situation, which one
e.g. finds in type inference. The underlying AG is non-circular, and
the numbering indicates the order in which attributes are computed
and then propagated.

However, in a DAG the two children of A may very well be
shared, i.e. represented by a single node B. This causes a cyclic
dependency, which can be observed in Figure 5a: information flow
(2) can only occur after (1) and (3), as only then all the information
coming to B has been collected. But (3) itself depends on (2).

Cyclic dependencies can easily occur with the type inference
AG. In the DAG in Figure 5c the lower Iter loop computes the
initial state of the upper Iter loop, and both loops use the variable
"x" for the state. The variable node inherits two environments –
one from each of the Iter nodes – which are resolved by inter-
section. Thus, the type of the variable depends on the environment
from the upper loop, which depends on the type of the lower loop,
which in turn depends on the type of the variable.

Semantically, the non-termination manifests itself in the lack of
a unique run. While the type inference AG has a unique run on the
unravelling of this DAG, there are exactly two distinct runs on the
DAG itself: one in which the Var "x" node is given the synthesised
attribute value Nothing and another one in which it is given the

6 2014/11/7

Add

Iter "x"

LitI 10

Iter "x"

LitB False

Var "x"

{x 7→
B
ool}

{x
7→
In
t}

Figure 6: DAG that is not well-scoped.

value Just IntType . We discuss how to resolve this issue in the
next section.

Note that this issue cannot occur for the repmin example. The
repmin AG is non-circular and thus terminates on trees. By virtue
of Theorem 1, it thus terminates on DAGs as well.

4.3 Correspondence by Monotonicity
Relating the semantics of the type inference AG on trees to its
semantics on DAGs is much more difficult – even if the issue of
termination is sorted out. In general, for these kinds of AGs, we do
not have a simple equality relation as we have for copying AGs.
In fact, it should be expected that type inference on a DAG is
more restrictive than on its unravelling: a node that is shared in a
DAG can only be assigned a single type, whereas its corresponding
copies in the unravelling may have different types.

However, we can prove the following property: if the type infer-
ence AG infers a type t for a DAG g, then it infers the same type
t for U (g). This soundness property follows immediately from a
more general monotonicity correspondence theorem.

In order to apply this theorem, we have to find, for each attribute
a, a quasi-order . on the values of attribute a, such that each
semantic function f is monotone w.r.t. these quasi-orders. That is,
given two sets of inputs A and B, with B bigger than A, also
the result of f applied to B is bigger than f applied to A. We
say that an AG is monotone w.r.t. ., if each semantic function is.
Moreover, we require the binary operator ⊕ on inherited attributes
be decreasing w.r.t. the order ., i.e. x⊕ y . x, y.

Theorem 2 (sketch). Let G be a non-circular AG, ⊕ an associa-
tive, commutative operator on inherited attributes, and . such that
G is monotone and ⊕ is decreasing w.r.t. .. If (G,⊕) terminates
on a DAG g with result r, thenG terminates on U (g) with result r′

such that r . r′.

Note that due to the symmetry of Theorem 2, we also know that
if ⊕ is increasing, i.e. x, y . x⊕ y, then we have that r′ . r. We
obtain this corollary by simply considering the inverse of ..

Let’s see how the above theorem applies to the type inference
AG. The order . on Env is the usual order on partial mappings
(i.e. the subset order on the DAG of partial mappings); . on
Maybe Type is the least quasi-order with Nothing . t for all t ::
Maybe Type; and . on Set Name is the subset order. With these
orders all semantic functions are monotone, and the operator ⊕ =
intersection is decreasing. We thus get the soundness property by
applying Theorem 2: if type inference on a DAG g returns r then it
returns r′ on U (g) with r . r′. In particular, if r = Just t then
also r′ = Just t .

The DAG in Figure 6 is an example where r = Nothing and
r ′ = Just t . The problem is that the variable "x" is shared be-
tween two contexts in which it has different types. That is, inter-
secting the environments yields the empty environment. However,
the above phenomenon as well as non-termination can only occur if
the DAG is not well-scoped in the following sense: a DAG is well-
scoped if no variable node is shared among different binders, or
shared between a bound and free occurrence. This restriction rules
out the DAG in Figure 6 as well as the one in Figure 5c.

Given this well-scopedness property, we can show that type
inference on a well-scoped DAG g produces the same result as on
its unravelling U (g) – provided it terminates. It only remains to
be shown that whenever the result r on g is Nothing , then also
the result r′ on U (g) is Nothing . The full version of Theorem 2,
as we will see in section 5.4, is much stronger than stated above:
we have the relation . between a run on a DAG and a run on its
unravelling not only for the final results r and r′ but for each node
and each attribute. That means if we get a type t for a sub-DAG
of g, then we also get the type t for the corresponding subtree
of U (g). Consequently, if we got a type for U (g) but not for g
itself, then the reason could not be a type mismatch. It can only
be because a variable was not found in the environment. That,
however, can never happen because of well-scopedness. Hence,
also r′ = Nothing .

We still have to deal with the issue of termination, though.
Semantically, non-termination means that there may be either no
run or multiple different runs on DAGs. While monotonicity does
not prove termination in general, it can help us to at least establish
the existence of runs:

Proposition 1 (sketch). Given G, ⊕, and . as in Theorem 2 such
that . is well-founded on inherited attributes, then (G,⊕) has a
run on any DAG.

Proposition 1 immediately applies to the type inference AG.
Thus it remains to be shown that runs are unique. As we have seen
in Figure 5c, this is not true in general. However, restricted to well-
scoped DAGs it is: if there were two distinct runs on a DAG g, then
the runs can only differ on shared nodes, since runs on U (g) are
unique. Moreover, the type attribute depends only on type attributes
of child nodes, except in the case of variables. Hence, there must
be a variable node to which the two runs assign different types.
However, well-scopedness makes this impossible.

Thus, we can conclude that typeInf G on a well-scoped DAG g
behaves as typeInf on its unravelling U (g).

It is always possible to make a DAG well-scoped by means
of alpha-renaming. However, note that renaming on a DAG may
lead to duplication. For example, renaming one of the loops in
Figure 6 would require introducing a new variable node. As a safe
approximation, in particular when using reifyDag , making sure
that all binders introduce distinct variable names guarantees that
the DAG is well-scoped.1

Finally, it is important to note that monotonicity is not an intrin-
sic property of AGs, but depends on the choice of ..2 In particular,
we may choose one order . for using Theorem 2 and another one
for proving termination using Proposition 1.

4.4 Observing the Sharing
In this paper, we have only looked at AGs for which we want
to get the same result when running on a DAG and running on
its unravelling. That is, we have only cared about DAGs as a
compact representation of trees, and we want to get the same result
regardless of how the tree is represented.

However, there are cases where we actually want to give mean-
ing to the sharing in the DAG. One such case is when estimating
signal delays in digital circuits. The time it takes for an output of
a logic gate to switch depends on how many other gates are con-
nected to it – i.e. its load. A higher load leads to slower switching.

As a simple example, let us for a while assume that the
IntTreeF functor defined in section 3.4 represents digital circuits.
Leaf can represent inputs and Node can be a NAND gate (any n-ary
Boolean function can be computed by a network of NAND gates).

1 See Rename.hs in the accompanying repository.
2 For example, any AG is monotone w.r.t the full relation.

7 2014/11/7

type Circuit = Dag IntTreeF

To implement delay analysis as an AG, we start by defining
attributes for delay and load:

newtype Delay = Delay Int deriving (Eq ,Ord ,Num)
newtype Load = Load Int deriving (Eq ,Ord ,Num)

The delay attribute can be computed by summing the maximum
input delay, some intrinsic gate delay and a load-dependent term:

gateDelay :: (Load ∈ as)⇒ Syn IntTreeF as Delay
gateDelay (Leaf) = Delay 0
gateDelay (Node a b) = max (below a) (below b)

+ Delay 10 + Delay l
where Load l = above

In this simplified delay analysis, we interpret load as the number of
connected gates, so the load attribute that is propagated down is 1
for both inputs:

gateLoad :: Inh IntTreeF as Load
gateLoad (Node a b) = a 7→ 1 & b 7→ 1
gateLoad = ∅

The delay analysis is completed by running the AG on a circuit
DAG using (+) as the resolution function:

delay :: Load → Circuit → Delay
delay l = runAGDag (+) gateDelay gateLoad (λ → l)

Note that the semantic function for the load attribute does not do
any interesting computation. Instead, it is the resolution function
that “counts” the number of connected gates for each node.

Since the above AG is monotone and + is increasing w.r.t. the
natural order on integers, Theorem 2 gives us the expected result
that the delay of a circuit DAG is greater than or equal to the delay
of its unravelling.

The circuit description system Wired [4] implements analyses
on circuit DAGs using a generic traversal scheme and semantic
functions similar to the ones above. It should be possible to give a
more principled implementation of these analyses in terms of AGs
using monotonicity as a proof principle.

4.5 Transforming and Constructing DAGs
The definition of repminG from the beginning of section 4 uses
runAGDag to run the repmin AG on DAGs. While repminG does
take DAGs as input, it produces trees as output. The reason for this
is that while the AG is oblivious to whether it runs on a DAG or a
tree, it does explicitly construct a tree as its output.

However, there is no reason why it should do so. The only as-
sumption that is made in constructing the synthesised tree attribute
is that its values can be combined using the constructors of the un-
derlying functor IntTreeF . However, this assumption is true for
both the type Tree IntTreeF and Dag IntTreeF . Indeed, by
drawing ideas from macro tree transducers [7, 15] our AG recur-
sion scheme can be generalised to preserve sharing in the result
of an AG computation. That is, if applied to trees the AG con-
structs trees and if applied to a DAG the AG constructs DAGs in
its attributes. An important property of this generalised recursion
scheme, which we call parametric AGs, is that both Theorem 1 and
Theorem 2 carry over to this generalisation.

For the sake of demonstration we shall only consider a simple
instance of this generalised recursion scheme. For more details we
refer the reader to the technical report [6]. The instance of paramet-
ric AGs that we consider consists of an ordinary AG together with
a simple “rewrite” function, which is used to transform the input
DAG. This intuition is encoded in the following type that can be
seen as a specialisation of Syn:

type Rewrite f as g = ∀ a.(?below :: a → as, ?above :: as)
⇒ f a → g a

The semantic function rep, which defines the repmin transforma-
tion, has to be modified only superficially to fit this type:

rep′ :: (MinI ∈ as)⇒ Rewrite IntTreeF as IntTreeF
rep′ (Leaf i) = Leaf globMin
rep′ (Node a b) = Node a b

Note that the parametric polymorphism of the type Rewrite al-
lows us to instantiate the construction performed by rep′ to both
trees and DAGs. Apart from this polymorphism, functions of this
type are no different from semantic functions for synthesised at-
tributes. Therefore, we can extend the function runAG such that it
takes a rewrite function as an additional semantic function:

runRewrite :: (Traversable f ,Functor g)⇒
Syn f (s, i) s → Inh f (s, i) i → Rewrite f (s, i) g →
(s → i)→ Tree f → Tree g

The definition of repmin can thus be reformulated as follows:

repmin :: Tree IntTreeF → Tree IntTreeF
repmin = runRewrite minS minI rep′ init

where init (MinS i) = MinI i

The corresponding variant for DAGs, not only takes DAGs as
input but also returns DAGs:

runRewriteDag :: (Traversable f ,Functor g)⇒
(i → i → i)→ Syn f (s, i) s → Inh f (s, i) i →
Rewrite f (s, i) g → (s → i)→ Dag f → Dag g

The definition of repminG is adjusted accordingly:

repminG :: Dag IntTreeF → Dag IntTreeF
repminG = runRewriteDag const minS minI rep′ init

where init (MinS i) = MinI i

Now repminG has the desired type – and the implementation
of runRewriteDag has the expected property that sharing of the
input DAG is preserved. However, repminG does not produce the
same result for a DAG g as repmin does for U (g). But it does
produce a DAG that unravels to the result of repmin , i.e. both are
equivalent modulo unravelling. This is an immediate consequence
of the corresponding variant of Theorem 1 for AGs with rewrite
functions [6]:

Theorem 3 (sketch). Given a copying rewriting attribute grammar
G, a binary operator⊕ on inherited attributes with x⊕y ∈ {x, y}
for all x, y, and a DAG g, we have that G terminates on U (g) with
result t iff (G,⊕) terminates on g with result h such that U (h) = t.

The type of Rewrite as given above is unnecessarily restrictive,
since it requires that each constructor from the input functor f
is replaced by a single constructor from the target functor g . In
general, a rewrite function may produce arbitrary layers built from
g . This generalisation can be expressed as follows, where Free g is
the free monad of g :

type Rewrite ′ f as g = ∀ a.(?below :: a → as, ?above :: as)
⇒ f a → Free g a

5. Semantics
We present the semantics of AGs on trees and DAGs. To keep
the presentation simple, we restrict ourselves to a set theoretic
semantics. For a formal treatment of parametric AGs as discussed
in section 4.5, we refer the reader to the technical report [6].

To give the semantics on DAGs, we have to restrict ourselves
to functors that are representable by finitary containers [1]. In the

8 2014/11/7

Haskell implementation, this assumption corresponds to the restric-
tion to functors that are instances of the Traversable type class.
Traversable functors (that satisfy the appropriate associated laws)
are known to be exactly representable by finitary containers [9].

Definition 1. A finitary container F is a pair (Sh, ar) consisting of
a set Sh of shapes, and an arity function ar : Sh→ N. Each finitary
container F gives rise to a functor Ext(F) : Set → Set, called the
extension of F , that maps each setX to the set of (dependent) pairs
(s, x), where s ∈ Sh and x ∈ Xar(s). By abuse of notation we also
write F for the functor Ext(F).

5.1 Trees and DAGs
Analogously to the way trees and DAGs are parametrised by a
functor in our Haskell implementation, we parametrise the corre-
sponding semantic notions by a finitary container. In the following,
we use the shorthand notation (si)i<l for a tuple (s0, . . . , sl−1) ∈
Πi<lSi.

Definition 2. The set of trees Tree(F) over a finitary container
F is the least fixed point of Ext(F). That is, each tree t is of the
form (s, (ti)i<l) with ti ∈ Tree(F) for all i < l. The set P (t) of
positions of t is the least set of finite sequences over N such that
〈〉 ∈ P (t) and if p ∈ P (tj), then 〈j〉 · p ∈ P (s, (ti)i<l). Given
a position p ∈ P (t), we define the subtree t|p of t at p as follows:
t|〈〉 = t and (s, (ti)i<l)|〈j〉·p = tj |p for all j < l.

For DAGs, we use a representation similar to the Haskell imple-
mentation, viz. a mapping from nodes to their child nodes.

Definition 3. A graph g = (N,E, r) over a finitary container F is
given by a finite setN of nodes, an edge function E : N → F (N),
and a root node r ∈ N . A graph g induces a reachability relation
g→, which is the least transitive relation

g→ such that n
g→ nj ,

whenever E(n) = (s, (ni)i<l). We write
g← for the inverse of

g→.
A graph g = (N,E, r) is called a DAG if (a) each node n ∈ N

is reachable from r, i.e. r
g→ n, and (b) g is acyclic, i.e.

g← is
well-founded. The set of all DAGs over F is denoted DAG(F).
Given a DAG g = (N,E, r) and a node n ∈ N , the sub-DAG
of g rooted in n, denoted g|n, is the DAG (N ′, E′, n), where
N ′ = {m ∈ N |n g→ m} is the set of nodes reachable from n
in g, and E′ is the restriction of E to N ′.

Note that as DAGs are finite,
g→ is well-founded iff

g← is well-
founded. Moreover, each tree t ∈ Tree(F) gives rise to a DAG
G (t) = (P (t) , E, 〈〉) ∈ DAG(F), where

E(p) = (s, (p · 〈i〉)i<l) if t|p = (s, (ti)i<l).

Conversely, each DAG g = (N,E, r) gives rise to a tree U (g),
called the unravelling of g, as follows:

U (g) = (s, (U (g|ni))i<l) if E(r) = (s, (ni)i<l)

The mapping U (·) : DAG(F) → Tree(F) is well-defined by the
principle of well-founded recursion with the well-founded relation
< given by: g < h iff g = h|n with n a node in h that is not the
root. Well-foundedness of < follows from the well-foundedness of
the reachability relation

g← for each DAG g ∈ DAG(F).
Similarly to positions in trees, we define paths in a DAG. Given

a DAG g = (N,V, r) and node n ∈ N , the set Pg (n) of paths to n
in g is inductively defined as the least set with (a) 〈〉 ∈ Pg (r), and
(b) if p ∈ Pg (n) and E(n) = (s, (ni)i<l), then p · 〈i〉 ∈ Pg (ni)
for all i < l. The set of all paths in a DAG g, denoted P (g), is
then simply the union

⋃
n∈N Pg (n). This union is a disjoint union,

i.e. for each path p ∈ P (g), there is a unique node n ∈ N such
that p ∈ Pg (n). We denote this unique node n as g [p]. We can
observe the close relationship between paths and positions in the
unravelling of DAGs: we have that P (g) = P (U (g)).

5.2 Attribute Grammars and Their Semantics
In the following we will work with families (Da)a∈I of sets and
families (fa)a∈I of functions fa : X → Da defined on them. To
work with them conveniently, we make use of the notation DA,
with A ⊆ I , for the set Πa∈ADa and fA for the function of type
X → DA that maps each x ∈ X to (fa(x))a∈A.

Definition 4. An attribute grammar (AG)G = (S, I,D, α, δ) over
a finitary container F = (Sh, ar) consists of:

• finite, disjoint sets S, I of synthesised resp. inherited attributes,
• a family D = (Da)a∈S∪I of attribute domains,
• a family α = (αa : DS → Da)a∈I of initialisation functions,
• a family δ = (δa)a∈S∪I of semantic functions, where

δa : F (DS)×DI → Da if a ∈ S
δa : Π((s,d),d)∈F (DS)×DI

Dar(s)
a if a ∈ I

In other words, δa maps each ((s, d), d) ∈ F (DS) × DI to
some e ∈ Da if a ∈ S and to some e ∈ Dar(s)

a if a ∈ I .

The semantics of an AG is defined in terms of runs on a tree or
a DAG. A run is simply a decoration of all nodes in the tree/DAG
with elements of the attribute domains that is consistent with the
semantic and initialisation functions.

Definition 5. Let G = (S, I,D, δ, α) be an AG on F and t ∈
Tree(F). A family ρ = (ρa)a∈S∪I of mappings ρa : P (t) → Da

is called a run of G on t if the following conditions are met:

• αa(ρS(〈〉)) = ρa(〈〉) for all a ∈ I
• For each p ∈ P (t) with t|p = (s, (ti)i<l), we have that

δa((s, (ρS(p·〈i〉))i<l), ρI(p)) =

{
ρa(p) if a ∈ S
(ρa(p · 〈i〉))i<l if a ∈ I

If there is a unique run ρ, we obtain the result ρS(〈〉) ∈ DS ,
which we denote by JGK (t).

For the semantic function δa of an inherited attribute a, we use
the notation δa,j for the function that returns the j-th component of
the result of δa. For example, we can reformulate the condition on
ρa from the above definition as follows:

δa,j((s, (ρS(p · 〈i〉))i<l), ρI(p)) = ρa(p · 〈j〉) for all j < l

In general an AG may have multiple runs or no run at all.
However, we can give sufficient conditions on AGs that ensure that
a given AG has exactly one run on any tree. One such condition is
that the semantic functions have no cyclic dependencies, which is
known as non-circularity in the literature on AGs.

We will not go into the details of deciding non-circularity and
instead refer to the algorithm of Knuth [25, 26]. An important con-
sequence of non-circularity is that we can schedule the construction
of the unique run of the AG on an input tree. In particular, given a
tree t ∈ Tree(F) and AG G = (S, I,D, δ, α) on F , there is a
well-founded order < on the set (S ∪ I)× P (t), which describes
in which order the run of G on t can be constructed. In the follow-
ing, when we say that an AG is non-circular, we assume that such
a well-founded order exists for any input tree.

The definition of a run on DAGs is more difficult as a node
in a DAG may have multiple parents, which leads to the situation
depicted in Figure 4, where a node may receive several inherited
attribute values. Our approach in this paper is to assume, for each
inherited attribute a, a binary operator ⊕a that combines attribute
values. In order to obtain well-defined notion of a run, we must in
general assume that ⊕a is associative and commutative, i.e. it does
not matter in which order inherited attributes are combined:

9 2014/11/7

Definition 6. Let G = (S, I,D, α, δ) be an AG on F , ⊕ =
(⊕a : Da × Da → Da)a∈I a family of associative and commu-
tative binary operators, and g = (N,E, r) ∈ DAG(F). A family
ρ = (ρa)a∈S∪I of mappings ρa : N → Da is called a run of G
modulo ⊕ on g if the following conditions are met:

• ρa(r) = αa(ρS(r)) for all a ∈ I
• For all n ∈ N with E(n) = (s, (ni)i<l) and a ∈ S, we have

ρa(n) = δa((s, (ρS(ni))i<l), ρI(n))

• For all n ∈ N and a ∈ I , we have

ρa(n) =
⊕

(m,j,s,(ni)i<l)∈M

δa,j((s, (ρS(ni))i<l), ρI(m))

– where M is the set of all tuples (m, j, s, (ni)i<l) such that
E(m) = (s, (ni)i<l) and nj = n, and the sum is w.r.t. ⊕a.

If there is a unique run ρ, we obtain the result ρS(r) ∈ DS , which
we denote by LG,⊕M(g).

Note that the definition of runs on DAGs generalises the defini-
tion of runs on trees in the sense that a run on a tree t is also a run
on the corresponding DAG G (t) and vice versa.

In the following three sections, we shall formally state and prove
the correspondence theorems that we used in section 4.

5.3 Copying Attribute Grammars
At first we consider the case of copying AGs, i.e. AGs whose
semantic functions for all inherited attributes simply copy the value
of the attribute from each node to all its child nodes:

Definition 7. An AGG = (S, I,D, α, δ) over F is called copying,
if δa,j((s, d), (eb)b∈I) = ea for all a ∈ I , (s, d) ∈ F (DS),
j < ar(s) and (eb)b∈I ∈ DI . A family (⊕a : Da×Da → Da)a∈I
of binary operators is called copying if d⊕ae ∈ {d, e} for all a ∈ I
and d, e ∈ Da.

Given such a setting as described above, we can show that, for
each run of an AG on a DAG g, we find an equivalent run of the AG
on U (g), and vice versa. Equivalence of runs is defined as follows:
given an AG G = (S, I,D, α, δ) over F , we say that a run ρ of G
on a DAG g ∈ DAG(F) and a run ρ′ of G on U (g) are equivalent
if ρ′a(p) = ρa(g [p]) for all a ∈ S ∪ I and p ∈ P (g).

Theorem 1. Given a copying AG G = (S, I,D, α, δ) over F ,
a copying ⊕ = (⊕a : Da × Da → Da)a∈I , and a DAG g =
(N,E, r) ∈ DAG(F), we have that for each run of G modulo ⊕
on g there is an equivalent run of G on U (g), and vice versa.

Proof sketch. Given a run ρ on g, we construct ρ′ on U (g) by
setting ρ′a(p) = ρa(g [p]). Conversely, given a run ρ on U (g), we
construct a run ρ′ on g by setting ρ′a(n) = ρa(p) for some p ∈
Pg (n). This is well-defined since ρa is constant for a ∈ I , and for
a ∈ S, we have ρa(p) = ρa(q) whenever U (g) |p = U (g) |q .

Corollary 1. Given G, ⊕, and g as in Theorem 1 such that G is
non-circular, we have that LG,⊕M(g) = JGK (U (g)).

Note that for copying AGs we do not need⊕ to be commutative
and associative to obtain a well-defined semantics on DAGs – as
long as ⊕ is copying, too.

5.4 Correspondence by Monotonicity
Next we show that if the attribute domains Da of an AG G are
quasi-ordered such that the semantic and initialisation functions are
monotone and⊕a are decreasing, then the result of any run ofG on
a DAG g is less than or equal to the result of the run of G on U (g).
We start by making the preconditions of this theorem explicit:

Definition 8. A family of binary operators (⊕a : Da × Da →
Da)a∈A on a family of quasi-ordered sets (Da,.a)a∈A is called
decreasing if d1 ⊕a d2 . d1, d2 for all a ∈ A and d1, d2 ∈ Da. A
function f : S → T between two quasi-ordered sets (S,.S) and
(T,.T) is called monotone if s1 .S s2 implies f(s1) .T f(s2)
for all s1, s2 ∈ S. An AG G = (S, I,D, α, δ) equipped with a
quasi-order .a on Da for each a ∈ S ∪ I , is called monotone if
each αa and δa is monotone, where the orders onDS , F (DS)×DI

andDn
S are defined pointwise according to (.a)a∈S∪I . That is, e.g.

.A on DA is defined by (da)a∈A .A (ea)a∈A iff da .a ea for
all a ∈ A, and . on F (DS)×DI is defined by ((s, (di)i<k), d) .
((t, (ei)i<l), e) iff s = t, di .S ei for all i < l and d .I e.

Theorem 2. Let G = (S, I,D, α, δ) be a non-circular AG, ⊕ =
(⊕a : Da ×Da → Da)a∈S∪I associative and commutative oper-
ators, and (.a)a∈S∪I quasi-orders such that G is monotone and
⊕ is decreasing w.r.t. (.a)a∈S∪I . Given a run ρ of G modulo ⊕
on a DAG g = (N,E, r) and the run ρ′ of G on U (g), we have
ρa(g [p]) .a ρ

′
a(p) for all a ∈ S ∪ I and p ∈ P (g).

Proof sketch. SinceG is non-circular, there is a well-founded order
< on (S∪I)×P (U (g)) compatible withG. The above inequation
can then be shown by well-founded induction using <.

Corollary 2. GivenG,⊕, (.a)a∈S∪I , and g as in Theorem 2, and
given that LG,⊕M(g) is defined, then LG,⊕M(g) .S JGK (U (g)).

Note that while we assume non-circularity of the AG – as in
Corollary 1 – LG,⊕M(g) may not be defined – unlike in Corollary 1.
Nonetheless, for the proof of Theorem 2 the assumption of non-
circularity is essential since it is the basis of the induction argument.
The issue of non-termination of AGs on DAGs was discussed in
section 4.2 exemplified with the DAG depicted in Figure 6.

Nevertheless, in case the AG is monotone w.r.t. well-founded
orders, we can at least prove the existence of runs on DAGs:

Proposition 1. Given G,⊕, and (.a)a∈S∪I as in Theorem 2 such
that .a is well-founded for every a ∈ I , then, on any DAG there is
a run of G modulo ⊕.

6. Related Work
Graph Representations The immediate practical applicability of
our recursion schemes is based on Gill’s idea of turning the implicit
sharing information in a Haskell expression into an explicit graph
representation [20]; thus making sharing visible. The twist of our
work is, however, that we provide recursion schemes that are – from
the outside – oblivious to sharing but – under the hood – exploit the
sharing information for efficiency.

Oliveira and Cook [32] introduced a purely functional represen-
tation of graphs, called structured graphs, using Chlipala’s para-
metric higher-order abstract syntax [12]. The recursion scheme
that Oliveira and Cook use is a fold generalised to (cyclic) graphs.
For a number of specialised instances, e.g. map on binary trees and
fold on streams, the authors provide laws for equational reasoning.
Oliveira and Löh [33] generalised structured graphs to indexed data
structures with particular focus on EDSLs. While AGs could be im-
plemented as a fold on structured graphs, doing so would incur a
performance penalty due to recomputation as soon as inherited at-
tributes are used. Moreover, the indirect representation of sharing in
structured graphs hinders a direct efficient implementation of AGs.

The Lightweight Modular Staging framework, by Rompf and
Odersky [36], allows its internal graph representation to be tra-
versed through a tree-like interface, and the implementation takes
care of the administration of avoiding duplication in the generated
code for shared nodes. However, as far as we can tell, there is no
support for using the tree interface to write algorithms such as our

10 2014/11/7

type inference, which avoids duplicated computations when shared
nodes are used in different contexts.

Buneman et al. [10] introduce a language UnQL for querying
graph-structured data. Queries are based on structural recursion,
which means that the user can view the data as a tree, regardless
of the underlying representation (which can even be cyclic). The
motivation behind UnQL is similar to ours; however, UnQL does
not appear to support propagation and merging of accumulating
parameters (inherited attributes) in recursive functions.

Tree and Graph Automata There is a strong relationship between
tree automata and attribute grammars, where bottom-up acceptors
correspond to synthesised attributes and top-down acceptors cor-
respond to inherited attributes. The difference is that automata are
used to characterise tree languages and devise decision procedures,
i.e. the automaton itself is the object of interest rather than the re-
sults of its computations. Our notion of rewriting attribute gram-
mars is derived from tree transducers [19], i.e. tree automata that
characterise tree transformations, and our representation of them in
Haskell is based on Hasuo et al. [21]. Our representation of AGs in
Haskell is directly taken from Bahr’s modular tree automata [5],
which are in turn derived from representations of tree automata
based on the work of Hasuo et al. [21].

While a number of generalisations of tree automata to graphs
have been studied, a unified notion of graph automata remains elu-
sive [35]. There are only specialised notions of graph automata for
particular applications, and our notion of AGs on DAGs falls into
this category as well. There are some automata models that come
close to our approach. However, they either cause recomputation in
case of conflicting top-down state (instead of providing a resolution
operator ⊕) [18, 30], restrict themselves to bottom-up state prop-
agation only [3, 11, 16], or assume that the in-degree of nodes is
fixed for each node label [23, 34]. Either approach is too restrictive
for the application we have demonstrated in this paper. Moreover,
none of these automata models allow for interdependency between
bottom-up and top-down state.

Kobayashi et al. [27] consider a much more general form of
compact tree representations than just DAGs: programs that pro-
duce trees. The authors study and implement tree transducers on
such compact tree representations. To this end, they consider gen-
eralised finite state transformations (GFSTs) [14], which subsume
both bottom-up and top-down transducers. However, GFSTs only
provide top-down state propagation. Bottom-up state propagation
has to be encoded inefficiently and is restricted to finite state spaces.

Attribute Grammars Viera et al. [39] were the first to give an em-
bedding of AGs in Haskell that allows the programmer to combine
semantic functions to construct AGs in a modular fashion. They
do not rely on a specific representation of trees as we do, but in-
stead make heavy use of Template Haskell in order to derive the
necessary infrastructure. As a result, their approach is applicable
to a wider variety of data types. At the same time, however, this
approach excludes transparent execution of thus defined AGs on
graph structures.

The idea to utilise the structure of attributes that happen to be
tree-structured – as our parametric AGs from section 4.5 do – also
appears in the literature on AGs, albeit with a different motivation:
so-called higher-order attribute grammars [40] permit the execu-
tion of the AG nested within those tree-structured attributes. By
composing parametric AGs sequentially similarly to the composi-
tion of tree transducers [19], we can achieve the same effect.

Higher-order attribute grammars implicitly introduce sharing
when duplicating higher-order attributes. Saraiva et al. [38] exploit
this sharing for their implementation of incremental attribute evalu-
ation. Their goal, however, is different from ours: the sharing struc-

ture makes equality tests, which are necessary for incremental eval-
uation, cheaper and increases cache hits.

Data Flow Analysis Despite the difference in their application,
there is some similarity between our correspondence theorems
for simple AGs and the soundness results for data flow analysis
(DFA) [2]. In particular, variants of Theorem 2 also appear in the
literature on DFA. In the context of DFA, these soundness results
are formulated as follows: the maximum fixpoint (MFP) is bounded
by the meet over all paths (MOP). The MFP roughly corresponds
to the run of an AG on a DAG, whereas the individual paths in the
MOP correspond to the run of an AG on a tree. However, there are
a number of differences.

First of all we only consider acyclic graphs, whereas DFA typi-
cally considers cyclic graphs. As a consequence, there are stronger
requirements for DFA, in particular, the ordering has to have fi-
nite height. Secondly, AGs perform bidirectional computations,
whereas DFA typically only considers unidirectional problems, i.e.
either forward or backwards analyses. There are DFA frameworks
that do support bidirectional analyses, however, they come with ad-
ditional restrictions, e.g. separability [24].

The differences become more pronounced if we consider the
parametric AGs outlined in section 4.5, which allow us to imple-
ment sharing-preserving graph transformations. The closest ana-
logue in the DFA literature is an approach that interleaves unidi-
rectional DFA with transformation steps [28]. However, we are not
aware of a DFA framework that combines bidirectional analyses
with graph transformations.

7. Discussion and Future Work
We have presented a technique that allows us to represent trees as
compact DAGs, yet process them as if they were trees. The distin-
guishing feature of our approach is that it avoids recomputation for
shared nodes even in the case of interdependent bottom-up and top-
down propagation of information. This approach is supported by
complementing correspondence theorems to prove the soundness
of the shift from trees to DAGs. In particular, correspondence by
monotonicity (Theorem 2) provides a widely applicable proof prin-
ciple since it is parametric in the quasi-order. We have presented
three examples for which correspondence by monotonicity gives
useful results: leavesBelow (cf. [6]), typeInf and gateDelay . The
typeInf algorithm follows a general pattern for simple syntax-
directed analyses for which monotonicity gives strong correspon-
dence properties. Another similar example, size inference, is given
in the file Size.hs in the accompanying repository.

A difficult obstacle in this endeavour is ensuring termination
of the resulting graph traversals. As we have shown, for some in-
stances, such as type inference, termination can only be guaranteed
if further assumptions are made on the structure of the input DAG.
A priority for future work is to find more general principles that
allow us to reason about termination on a higher level analogous to
the correspondence theorems we presented. We already made some
progress in this direction as Theorem 1, Theorem 3 and, to a lim-
ited degree, Proposition 1 allowed us to infer termination of graph
traversals. A potential direction for improvement is a stricter notion
of non-circularity that guarantees termination of AGs on DAGs. A
simple approximation of this could be for example a coarser notion
of dependency: if an attribute a depends on attribute b, then b may
not depend on a. The resulting notion of non-circularity would for
example prove that the AG corresponding to leavesBelow from the
introduction terminates on DAGs.

Another direction for future work is to extend the expressive
power of our recursion scheme:

11 2014/11/7

• Extend AGs with fixpoint iteration [17, 31, 37] to deal with
cyclic graphs and to implement analyses based on abstract in-
terpretation.

• Support a wider class of data types, e.g. mutually recursive data
types and GADTs. Both should be possible using well-known
techniques from the literature [22, 41].

• Support deep pattern matching in AGs. This can be done by
extending the AG and Rewrite type with a parameter that can
partially uncover nested subtrees. Deep patterns would make it
easier to express e.g. rewrite rules in a compiler.

The motivation behind this work is to make traversals over
trees with sharing more efficient. In the accompanying technical
report [6] we present results from our measurements on a set of
benchmarks. In summary, the benchmarks show that running algo-
rithms on DAGs is asymptotically more efficient than running on
trees when the DAG has a lot of sharing. They also show that the
overhead of running on DAGs when there is no sharing is less than
2× for trees of size 216, both for AGs and the generalised AGs pre-
sented in section 4.5. To achieve this, our implementation works
on a more efficient representation of DAGs that uses explicit point-
ers only if necessary, i.e. only for sharing. The essential idea is to
replace f inside the definition of Dag with Free f , where Free
is the free monad construction. That is, we interleave the tree and
the graph representation. As a consequence, the representation of
DAGs without sharing is essentially a tree. This fact can be ex-
ploited by using the tree implementation of AGs for DAGs without
sharing. The upshot of this implementation is that there is no over-
head of running AGs on DAGs without sharing.

Acknowledgements The first author is funded by the Danish
Council for Independent Research, Grant 12-132365. The second
author is funded by the Swedish Foundation for Strategic Research,
under grant RAWFP.

References
[1] M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In

FoSSaCS, 2003.
[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, tech-

niques, and tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986. ISBN 0-201-10088-6.

[3] S. Anantharaman, P. Narendran, and M. Rusinowitch. Closure proper-
ties and decision problems of dag automata. Inf. Process. Lett., 94(5):
231 – 240, 2005.

[4] E. Axelsson. Functional Programming Enabling Flexible Hardware
Design at Low Levels of Abstraction. PhD thesis, Chalmers University
of Technology, 2008.

[5] P. Bahr. Modular tree automata. In MPC, 2012.
[6] P. Bahr and E. Axelsson. Generalising Tree Traversals to DAGs:

Exploiting Sharing without the Pain. Available from authors’ web
site, 2014. Technical report with full proofs.

[7] P. Bahr and L. E. Day. Programming macro tree transducers. In WGP,
2013.

[8] R. Bird. Using circular programs to eliminate multiple traversals of
data. Acta Inform., 21(3):239–250, 1984.

[9] R. Bird, J. Gibbons, S. Mehner, J. Voigtländer, and T. Schrijvers. Un-
derstanding idiomatic traversals backwards and forwards. In Haskell,
2013.

[10] P. Buneman, M. Fernandez, and D. Suciu. UnQL: a query language
and algebra for semistructured data based on structural recursion. The
VLDB Journal, 9(1):76–110, 2000.

[11] W. Charatonik. Automata on DAG representations of finite trees.
Research report, Max-Planck-Institut für Informatik, March 1999.

[12] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In ICFP, 2008.

[13] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich.
Closed type families with overlapping equations. In POPL, 2014.

[14] J. Engelfriet. Bottom-up and top-down tree transformations — a
comparison. Mathematical systems theory, 9(2):198–231, 1975.

[15] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System
Sci., 31(1):71–146, 1985.

[16] B. Fila and S. Anantharaman. Running tree automata on trees and/or
dags. Technical report, LIFO, 2006.

[17] J. Fokker and S. D. Swierstra. Abstract interpretation of functional
programs using an attribute grammar system. In LDTA, 2009.

[18] A. Fujiyoshi. Recognition of directed acyclic graphs by spanning tree
automata. Theor. Comput. Sci., 411(38–39):3493 – 3506, 2010.

[19] Z. Fülöp and H. Vogler. Syntax-Directed Semantics: Formal Models
Based on Tree Transducers. Springer-Verlag New York, Inc., 1998.

[20] A. Gill. Type-safe observable sharing in Haskell. In Haskell, 2009.
[21] I. Hasuo, B. Jacobs, and T. Uustalu. Categorical views on computa-

tions on trees (extended abstract). In ICALP, 2007.
[22] P. Johann and N. Ghani. Foundations for structured programming with

GADTs. In POPL, 2008.
[23] T. Kamimura and G. Slutzki. Transductions of dags and trees. Math.

Syst. Theory, 15(1):225–249, 1981.
[24] U. P. Khedker and D. M. Dhamdhere. A generalized theory of bit

vector data flow analysis. ACM Trans. Program. Lang. Syst., 16(5):
1472–1511, 1994.

[25] D. Knuth. Semantics of context-free languages: Correction. Math.
Syst. Theory, 5(2):95–96, 1971.

[26] D. E. Knuth. Semantics of context-free languages. Theory Comput.
Syst., 2(2):127–145, 1968.

[27] N. Kobayashi, K. Matsuda, A. Shinohara, and K. Yaguchi. Functional
programs as compressed data. Higher-Order and Symbolic Computa-
tion, pages 1–46, 2013.

[28] S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses
and transformations. In POPL, pages 270–282, 2002.

[29] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit
parameters: dynamic scoping with static types. In POPL, 2000.

[30] M. Lohrey and S. Maneth. Tree automata and XPath on compressed
trees. In CIAA, 2006.

[31] A. Middelkoop. Inference with Attribute Grammars. PhD thesis,
Universiteit Utrecht, Feb. 2012.

[32] B. C. Oliveira and W. R. Cook. Functional programming with struc-
tured graphs. In ICFP, 2012.

[33] B. C. d. S. Oliveira and A. Löh. Abstract syntax graphs for domain
specific languages. In PEPM, 2013.

[34] D. Quernheim and K. Knight. Dagger: A toolkit for automata on
directed acyclic graphs. In FSMNLP, 2012.

[35] J.-C. Raoult. Problem #70: Design a notion of automata for graphs,
2005. URL http://rtaloop.mancoosi.univ-paris-diderot.
fr/problems/70.html. The RTA list of open problems.

[36] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled DSLs. In GPCE,
2010.

[37] M. Rosendahl. Abstract interpretation using attribute grammars. In
WAGA, 1990.

[38] J. Saraiva, D. Swierstra, and M. Kuiper. Functional incremental
attribute evaluation. In Compiler Construction, 2000.

[39] M. Viera, S. D. Swierstra, and W. Swierstra. Attribute grammars fly
first-class. In ICFP, 2009.

[40] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. In PLDI, 1989.

[41] A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic
programming with fixed points for mutually recursive datatypes. In
ICFP, 2009.

12 2014/11/7

http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/70.html
http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/70.html

	Introduction
	Running Example
	Type Inference

	Attribute Grammars
	Synthesised Attributes
	Inherited Attributes
	Combining Semantic Functions to Attribute Grammars
	Example: Richard Bird's repmin
	Informal Semantics

	Attribute Grammars on DAGs
	Trees vs. DAGs
	Termination of Attribute Grammars
	Correspondence by Monotonicity
	Observing the Sharing
	Transforming and Constructing DAGs

	Semantics
	Trees and DAGs
	Attribute Grammars and Their Semantics
	Copying Attribute Grammars
	Correspondence by Monotonicity

	Related Work
	Discussion and Future Work

