



# Infinitary Term Graph Rewriting

Patrick Bahr paba@diku.dk

University of Copenhagen Department of Computer Science

TCS and PAM Seminar VU University Amsterdam February 24, 2012



























































$$b \rightarrow c$$



#### **Goals**

#### What is this about?

- finding appropriate notions of converging term graph reductions
- generalising convergence for term reductions



#### **Goals**

#### What is this about?

- finding appropriate notions of converging term graph reductions
- generalising convergence for term reductions

#### Infinitary term graph rewriting – what is it for?

- common formalism to study correspondences between infinitary term rewriting and finitary term graph rewriting
- infinitary term graph rewriting to model lazy evaluation
  - infinitary term rewriting only covers non-strictness
  - ▶ however: lazy evaluation = non-strictness + sharing
- towards infinitary lambda calculi with letrec
  - ▶ Ariola & Blom. Skew confluence and the lambda calculus with letrec.
  - the calculus is non-confluent
  - but there is a notion of infinite normal forms



#### Outline

- Introduction
  - Background
  - Goals
  - Obstacles
- 2 Modes of Convergence on Term Graphs
  - Metric Approach
  - Partial Order Approach
- Infinitary Term Graph Rewriting
  - Metric vs. Partial Order Approach
  - Soundness & Completeness Properties
- Bonus Material
  - Other Approaches to Convergence



#### What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
  - ▶ But: there are many quite different generalisations.
  - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.



#### What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
  - But: there are many quite different generalisations.
  - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

#### Completeness w.r.t. term graph rewriting

#### What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
  - But: there are many quite different generalisations.
  - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

#### Completeness w.r.t. term graph rewriting



#### What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
  - ▶ But: there are many quite different generalisations.
  - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

#### Completeness w.r.t. term graph rewriting



#### What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
  - ▶ But: there are many quite different generalisations.
  - Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

#### Completeness w.r.t. term graph rewriting



#### What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
  - But: there are many quite different generalisations.
  - ► Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

#### Completeness w.r.t. term graph rewriting



#### What is the an appropriate notion of convergence on term graph?

- It should generalise convergence on terms.
  - But: there are many quite different generalisations.
  - ► Most important issue: How to deal with sharing?
- It should simulate infinitary term rewriting in a sound & complete manner.

#### Completeness w.r.t. term graph rewriting

An issue even for finitary acyclic term graph reduction!



For infinitary term graph rewriting even this property breaks!

We have a rule  $\underline{n}(x,y) \to n+1(x,y)$  for each  $n \in \mathbb{N}$ .

$$\underline{n}(x,y) \to \underline{n+1}(x,y)$$

We have a rule 
$$\underline{n}(x,y) \to \underline{n+1}(x,y)$$
 for each  $n \in \mathbb{N}$ .



[Kennaway et al., 1994]



We have a rule

$$\underline{n}(x,y) \to \underline{n+1}(x,y)$$

for each  $n \in \mathbb{N}$ .





[Kennaway et al., 1994]



We have a rule 
$$\underline{n}(x,y) \rightarrow \underline{n+1}(x,y)$$

for each  $n \in \mathbb{N}$ .



#### **Outline**

- Introduction
  - Background
  - Goals
  - Obstacles
- 2 Modes of Convergence on Term Graphs
  - Metric Approach
  - Partial Order Approach
- Infinitary Term Graph Rewriting
  - Metric vs. Partial Order Approach
  - Soundness & Completeness Properties
- Bonus Material
  - Other Approaches to Convergence



### Metric Infinitary Term Rewriting

#### Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\sin(s,t)}$$

sim(s, t) = minimum depth d s.t. s and t differ at depth d



### **Metric Infinitary Term Rewriting**

#### Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

sim(s, t) = minimum depth d s.t. s and t differ at depth d

#### Weak convergence via metric d

- ullet convergence in the metric space  $(\mathcal{T}^\infty(\Sigma), \mathbf{d})$
- depth of the differences between the terms has to tend to infinity



## Metric Infinitary Term Rewriting

#### Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

$$\mathbf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

sim(s, t) = minimum depth d s.t. s and t differ at depth d

#### Weak convergence via metric d

- ullet convergence in the metric space  $(\mathcal{T}^\infty(\Sigma),\mathbf{d})$
- depth of the differences between the terms has to tend to infinity

#### Strong Convergence via redex depth

Also the depth of redexes has to tend to infinity.















$$f(x) \rightarrow f(g(x))$$





$$f(x) \rightarrow f(g(x))$$

9

















































 $a \rightarrow g(a)$ 

#### **Towards a Metric on Term Graphs**

#### We want to generalise the metric on terms

$$\mathbf{d}(s,t) = 2^{-\mathsf{sim}(s,t)}$$

sim(s, t) = minimum depth d s.t. s and t differ at depth d

#### Alternative characterisation of sim(s, t) via truncation

Truncation t|d of a term t at depth d:

$$t|0 = \bot$$

$$f(t_1, \ldots, t_k)|d + 1 = f(t_1|d, \ldots, t_k|d)$$

Then sim(s, t) = maximum depth d s.t. s|d = t|d.



#### A Metric on Term Graphs

#### Depth of a node

= length of a shortest path from the root to the node.



#### A Metric on Term Graphs

#### Depth of a node

= length of a shortest path from the root to the node.

#### Truncation of term graphs

The truncation  $g^{\dagger}d$  is obtained from g by

- ullet relabelling all nodes at depth d with  $\bot$ , and
- removing all nodes that thus become unreachable from the root.



#### A Metric on Term Graphs

#### Depth of a node

= length of a shortest path from the root to the node.

#### Truncation of term graphs

The truncation  $g^{\dagger}d$  is obtained from g by

- relabelling all nodes at depth d with  $\perp$ , and
- removing all nodes that thus become unreachable from the root.

#### The simple metric on term graphs

$$\mathbf{d}_{\dagger}(g,h) = 2^{-\operatorname{sim}_{\dagger}(g,h)}$$

Where  $sim_{\dagger}(g, h) = maximum depth d s.t. g \dagger d \cong h \dagger d$ .



$$from(x) \rightarrow x :: from(s(x))$$







Term graph rule that unravels to  $from(x) \rightarrow x :: from(s(x))$ 



from ↓
0













- $\mathbf{d}_{\dagger}$  coincides with  $\mathbf{d}$  on  $\mathcal{T}^{\infty}(\Sigma)$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is a complete metric space.
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is the metric completion of  $(\mathcal{G}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$ .
- Limits in  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  are preserved by unravelling



- $\mathbf{d}_{\dagger}$  coincides with  $\mathbf{d}$  on  $\mathcal{T}^{\infty}(\Sigma)$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is a complete metric space.
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is the metric completion of  $(\mathcal{G}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$ .
- Limits in  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  are preserved by unravelling:

$$\mathcal{U}\left(\lim_{\iota o lpha} \, g_i
ight) = \lim_{\iota o lpha} \, \mathcal{U}\left(g_i
ight)$$



- $\mathbf{d}_{\dagger}$  coincides with  $\mathbf{d}$  on  $\mathcal{T}^{\infty}(\Sigma)$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is a complete metric space.
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is the metric completion of  $(\mathcal{G}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$ .
- ullet Limits in  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  are preserved by unravelling:

$$\mathcal{U}\left(\lim_{ o lpha} g_i
ight) = \lim_{\iota o lpha} \mathcal{U}\left(g_i
ight)$$
 in  $\left(\mathcal{G}^\infty_{\mathcal{C}}(\Sigma), \mathbf{d}_\dagger
ight)$ 



- $\mathbf{d}_{\dagger}$  coincides with  $\mathbf{d}$  on  $\mathcal{T}^{\infty}(\Sigma)$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is a complete metric space.
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  is the metric completion of  $(\mathcal{G}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$ .
- ullet Limits in  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma), \mathbf{d}_{\dagger})$  are preserved by unravelling:

$$\mathcal{U}\left(\lim_{ o lpha} g_i
ight) = \lim_{t o lpha} \mathcal{U}(g_i)$$
 in  $(\mathcal{G}^\infty_{\mathcal{C}}(\Sigma), \mathbf{d}_\dagger)$ 



#### **Outline**

- Introduction
  - Background
  - Goals
  - Obstacles
- 2 Modes of Convergence on Term Graphs
  - Metric Approach
  - Partial Order Approach
- Infinitary Term Graph Rewriting
  - Metric vs. Partial Order Approach
  - Soundness & Completeness Properties
- 4 Bonus Material
  - Other Approaches to Convergence



#### Partial order on terms

- ullet partial terms: terms with additional constant ot (read as "undefined")
- partial order  $\leq_{\perp}$  reads as: "is less defined than"
- $\bullet \leq_{\perp}$  is a complete semilattice (= cpo + glbs of non-empty sets)



#### Partial order on terms

- ullet partial terms: terms with additional constant ot (read as "undefined")
- partial order  $\leq_{\perp}$  reads as: "is less defined than"
- $\bullet \leq_{\perp}$  is a complete semilattice (= cpo + glbs of non-empty sets)

#### Convergence

formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_\iota = \bigsqcup_{\beta < \alpha} \prod_{\beta \le \iota < \alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction



#### Partial order on terms

- ullet partial terms: terms with additional constant ot (read as "undefined")
- partial order  $\leq_{\perp}$  reads as: "is less defined than"
- $\bullet \leq_{\perp}$  is a complete semilattice (= cpo + glbs of non-empty sets)

#### Convergence

• formalised by the limit inferior:

$$\liminf_{\iota \to \alpha} t_\iota = \bigsqcup_{\beta < \alpha} \prod_{\beta \le \iota < \alpha} t_\iota$$

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction



#### Partial order on terms

- ullet partial terms: terms with additional constant ot (read as "undefined")
- partial order  $\leq_{\perp}$  reads as: "is less defined than"
- $\bullet \leq_{\perp}$  is a complete semilattice (= cpo + glbs of non-empty sets)

#### Convergence

formalised by the limit inferior:

$$\liminf_{\iota o lpha} t_\iota = \bigsqcup_{\iota o lpha} \int_{lpha} t_\iota$$

term obtained by replacing

- intuition: eventu the redex with ⊥ e terms
- weak convergence: limit inferior of the terms of the reduction
- strong convergence: limit inferior of the contexts of the reduction















Reduction for  $f(x,y) \rightarrow \overline{f(y,x)}$ 





Reduction for  $f(x,y) \rightarrow \overline{f(y,x)}$ 





Reduction for  $f(x,y) \to f(y,x)$ 















Reduction for  $f(x,y) \rightarrow f(y,x)$ 



# Weak convergence





# Partial-Order Convergence vs. Metric Convergence

## Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

•  $S: s \stackrel{cp}{\longrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$  iff  $S: s \stackrel{dm}{\longrightarrow} t$ . (weak convergence)



# Partial-Order Convergence vs. Metric Convergence

## Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

```
• S: s \stackrel{cp}{\longrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma) iff S: s \stackrel{dm}{\longrightarrow} t. (weak convergence)
```

•  $S: s \xrightarrow{p} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$  iff  $S: s \xrightarrow{m} t$ . (strong convergence)



# Partial-Order Convergence vs. Metric Convergence

#### Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

```
• S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma) iff S: s \stackrel{m}{\hookrightarrow} t. (weak convergence)
```

•  $S: s \xrightarrow{p} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$  iff  $S: s \xrightarrow{m} t$ . (strong convergence)

#### Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent w.r.t. strong p-convergence.



## A Partial Order on Term Graphs – How?

#### Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order  $\leq_{\perp}$  on term trees?
- We need a means to substitute '⊥'s.



## A Partial Order on Term Graphs – How?

#### Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order  $\leq_{\perp}$  on term trees?
- We need a means to substitute '⊥'s.

#### $\perp$ -homomorphisms $\phi \colon g \to_{\perp} h$

- homomorphism condition suspended on ⊥-nodes
- allow mapping of ⊥-nodes to arbitrary nodes
- same mechanism that formalises matching in term graph rewriting



# **A** ⊥-Homomorphism





## **A** ⊥-Homomorphism





Proposition ( $\perp$ -homomorphisms characterise  $\leq_{\perp}$  on terms)

For all 
$$s,t\in\mathcal{T}^\infty(\Sigma_\perp)$$
:  $s\leq_\perp t$  iff  $\exists\phi\colon s\to_\perp t$ 



Proposition ( $\perp$ -homomorphisms characterise  $\leq_{\perp}$  on terms)

For all 
$$s,t\in\mathcal{T}^\infty(\Sigma_\perp)$$
:  $s\leq_\perp t$  iff  $\exists\phi\colon s\to_\perp t$ 

Definition (Simple partial order  $\leq_{\perp}^{S}$  on term graphs)

For all  $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$ , let  $g \leq^{\mathbf{S}}_{\perp} h$  iff there is some  $\phi \colon g \to_{\perp} h$ .



## Proposition ( $\perp$ -homomorphisms characterise $\leq_{\perp}$ on terms)

For all 
$$s,t\in\mathcal{T}^\infty(\Sigma_\perp)$$
:  $s\leq_\perp t$  iff  $\exists\phi\colon s\to_\perp t$ 

# Definition (Simple partial order $\leq^S_{\perp}$ on term graphs)

For all  $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$ , let  $g \leq^{\mathbf{S}}_{\perp} h$  iff there is some  $\phi \colon g \to_{\perp} h$ .

#### **Theorem**

The pair  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp})$  forms a complete semilattice.



Proposition ( $\perp$ -homomorphisms characterise  $\leq_{\perp}$  on terms)

For all 
$$s,t\in\mathcal{T}^\infty(\Sigma_\perp)$$
:  $s\leq_\perp t$  iff  $\exists\phi\colon s\to_\perp t$ 

Definition (Simple partial order  $\leq_{\perp}^{S}$  on term graphs)

For all  $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$ , let  $g \leq^{\mathbb{S}}_{\perp} h$  iff there is some  $\phi \colon g \to_{\perp} h$ .

#### Theorem

The pair  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp})$  forms a complete semilattice.

Alas,  $\leq_{\perp}^{S}$  has some quirks!



## Proposition ( $\perp$ -homomorphisms characterise $\leq_{\perp}$ on terms)

For all 
$$s,t\in\mathcal{T}^\infty(\Sigma_\perp)$$
:  $s\leq_\perp t$  iff  $\exists\phi\colon s\to_\perp t$ 

# Definition (Simple partial order $\leq_{\perp}^{S}$ on term graphs)

For all  $g, h \in \mathcal{G}^{\infty}(\Sigma_{\perp})$ , let  $g \leq^{\mathbb{S}}_{\perp} h$  iff there is some  $\phi \colon g \to_{\perp} h$ .

#### **Theorem**

The pair  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp})$  forms a complete semilattice.

## Alas, $\leq^{\mathsf{S}}_{\perp}$ has some quirks!

- introduces sharing
- total term graphs not necessarily maximal w.r.t.  $\leq_1^S$



- $\leq^{\mathsf{S}}_{\perp}$  coincides with  $\leq^{\mathsf{S}}_{\perp}$  on  $\mathcal{T}^{\infty}(\Sigma_{\perp})$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{S}}_{\perp})$  is a complete semi-lattice.
- $\bullet \ (\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp}) \text{ is the ideal completion of } (\mathcal{G}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp}).$
- ullet Limits in  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}),\leq^{S}_{\perp})$  are preserved by unravelling



- $\leq^{\mathsf{S}}_{\perp}$  coincides with  $\leq^{\mathsf{S}}_{\perp}$  on  $\mathcal{T}^{\infty}(\Sigma_{\perp})$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{S}}_{\perp})$  is a complete semi-lattice.
- $\bullet \ (\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp}) \text{ is the ideal completion of } (\mathcal{G}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp}).$
- Limits in  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp})$  are preserved by unravelling:

$$\mathcal{U}\left(\liminf_{\iota o lpha} \ g_i
ight) = \liminf_{\iota o lpha} \ \mathcal{U}\left(g_i
ight)$$



- $\bullet$   $\leq^S_{\perp}$  coincides with  $\leq^S_{\perp}$  on  $\mathcal{T}^{\infty}(\Sigma_{\perp})$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{S}}_{\perp})$  is a complete semi-lattice.
- $\bullet \ (\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp}) \text{ is the ideal completion of } (\mathcal{G}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp}).$
- ullet Limits in  $(\mathcal{G}^\infty_{\mathcal{C}}(\Sigma_\perp),\leq^{\mathsf{S}}_\perp)$  are preserved by unravelling:

$$\mathcal{U}\left( egin{array}{ll} \liminf_{ o lpha} \ g_i 
ight) = \liminf_{t o lpha} \ \mathcal{U}\left(g_i
ight) \ & ext{in } \left(\mathcal{G}^\infty_\mathcal{C}(\Sigma_\perp), \leq^{ extsf{S}}_\perp
ight) \end{array}$$



- $\bullet \leq^S_{\perp}$  coincides with  $\leq^S_{\perp}$  on  $\mathcal{T}^{\infty}(\Sigma_{\perp})$ .
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{S}}_{\perp})$  is a complete semi-lattice.
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp})$  is the ideal completion of  $(\mathcal{G}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{S}_{\perp})$ .
- ullet Limits in  $(\mathcal{G}^\infty_{\mathcal{C}}(\Sigma_\perp),\leq^{\mathsf{S}}_\perp)$  are preserved by unravelling:

$$\mathcal{U}\left( egin{array}{ll} \liminf_{t o lpha} \ \mathcal{U}\left( g_i 
ight) \ & \lim_{t o lpha} \left( \mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq_{\perp}^{\mathsf{S}} 
ight) \end{array} 
ight) \ & ext{in } \left( \mathcal{T}^{\infty}(\Sigma_{\perp}), \leq_{\perp} 
ight)$$



## Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.



## Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



#### Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



#### Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



#### Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



#### Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



#### Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



#### Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



#### Convergence

- Weak conv.: limit inferior of the term graphs along the reduction.
- Strong conv.: limit inferior of the contexts along the reduction.

#### Context

Term graph obtained by relabelling the root node of the redex with  $\perp$  (and removing all nodes that become unreachable).



## **Example**





## **Example**





### **Example**

## Reduction for $f(x,y) \rightarrow f(y,x)$





### **Example**

## Reduction for $f(x,y) \rightarrow f(y,x)$



#### Strong convergence





### **Example**

### Reduction for $f(x, y) \rightarrow f(y, x)$



### Strong convergence



### Weak convergence





### **Outline**

- Introduction
  - Background
  - Goals
  - Obstacles
- 2 Modes of Convergence on Term Graphs
  - Metric Approach
  - Partial Order Approach
- Infinitary Term Graph Rewriting
  - Metric vs. Partial Order Approach
  - Soundness & Completeness Properties
- 4 Bonus Material
  - Other Approaches to Convergence



## Metric vs. Partial Order Approach – Weak Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$



# Metric vs. Partial Order Approach - Weak Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$

#### On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$



# Metric vs. Partial Order Approach - Weak Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$

#### On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

$$\rightleftharpoons$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$



# Metric vs. Partial Order Approach – Weak Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$

#### On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$



 $S: s \stackrel{m}{\hookrightarrow} t.$ 



# Metric vs. Partial Order Approach - Weak Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$

#### On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$



 $S: s \stackrel{m}{\hookrightarrow} t.$ 

### Counterexample

$$f \longrightarrow c$$





•

# Metric vs. Partial Order Approach - Weak Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \stackrel{m}{\hookrightarrow} t.$$

#### On term graphs

For every reduction S in a GRS

$$S: s \stackrel{p}{\hookrightarrow} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$



 $S: s \stackrel{m}{\hookrightarrow} t.$ 

### Counterexample









# Metric vs. Partial Order Approach – Strong Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \stackrel{p}{\Rightarrow} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$



 $S: s \stackrel{m}{\Rightarrow} t.$ 



# Metric vs. Partial Order Approach – Strong Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \xrightarrow{p} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \xrightarrow{m} t.$$

#### On term graphs

For every reduction S in a GRS

$$S: s \xrightarrow{p} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$

$$S: s \stackrel{m}{\Rightarrow} t.$$



# Metric vs. Partial Order Approach – Strong Conv.

#### Recall the situation on terms

For every reduction S in a TRS

$$S: s \xrightarrow{p} t \text{ in } \mathcal{T}^{\infty}(\Sigma)$$

$$\iff$$

$$S: s \stackrel{m}{\rightarrow} t.$$

#### On term graphs

For every reduction S in a GRS

$$S: s \xrightarrow{p} t \text{ in } \mathcal{G}^{\infty}(\Sigma)$$



$$S: s \xrightarrow{m} t.$$



### **Outline**

- Introduction
  - Background
  - Goals
  - Obstacles
- 2 Modes of Convergence on Term Graphs
  - Metric Approach
  - Partial Order Approach
- Infinitary Term Graph Rewriting
  - Metric vs. Partial Order Approach
  - Soundness & Completeness Properties
- Bonus Material
  - Other Approaches to Convergence



### Theorem (Kennaway et al., 1994)

• Given: a step  $g \to_n h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .



- Given: a step  $g \to_n h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .
- Then:  $S: \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$  such that the depth of every redex reduced in S is greater or equal to  $\operatorname{depth}_g(n)$ .



- Given: a step  $g \to_n h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .
- Then:  $S: \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$  such that the depth of every redex reduced in S is greater or equal to  $\operatorname{depth}_g(n)$ .







- Given: a step  $g \to_n h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .
- Then:  $S: \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$  such that the depth of every redex reduced in S is greater or equal to  $\operatorname{depth}_g(n)$ .







- Given: a step  $g \to_n h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .
- Then:  $S: \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$  such that the depth of every redex reduced in S is greater or equal to  $\operatorname{depth}_g(n)$ .





### Theorem (Kennaway et al., 1994)

- Given: a step  $g \to_n h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .
- Then:  $S: \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$  such that the depth of every redex reduced in S is greater or equal to  $\operatorname{depth}_g(n)$ .



#### Theorem (Soundness)

For every left-linear, left-finite GRS  $\mathcal R$  we have

$$g \xrightarrow{m}_{\mathcal{R}} h \Longrightarrow \mathcal{U}(g) \xrightarrow{m}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

















#### Proposition

- Given: a step  $g \to_c h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .
- Then:  $\mathcal{U}(g) \xrightarrow{p}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$  and  $\mathcal{U}(c) = \prod_{\iota < \alpha} c_{\iota}$







### Proposition

- Given: a step  $g \rightarrow_c h$  in a left-linear, left-finite GRS  $\mathcal{R}$ .
- Then:  $\mathcal{U}(g) \xrightarrow{\mathcal{P}}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h)$  and  $\mathcal{U}(c) = \prod_{\iota < \alpha} c_{\iota}$

### Theorem (Soundness)

For every left-linear, left-finite GRS  ${\cal R}$  we have

$$g \xrightarrow{p}_{\mathcal{R}} h \Longrightarrow \mathcal{U}(g) \xrightarrow{p}_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h).$$

### Theorem (Kennaway et al., 1994)

For any orthogonal, left-finite, almost non-collapsing GRS  $\mathcal{R}$ , we have



### Theorem (Kennaway et al., 1994)

For any orthogonal, left-finite, almost non-collapsing GRS  $\mathcal{R}$ , we have

$$\begin{array}{c|c} \mathcal{U}(\mathcal{R}) & s & \xrightarrow{rational} & \\ \mathcal{U}(\cdot) & & \\ \mathcal{R} & g & \cdots \end{array}$$



### Theorem (Kennaway et al., 1994)

For any orthogonal, left-finite, almost non-collapsing GRS  $\mathcal{R}$ , we have





#### Theorem (Kennaway et al., 1994)

For any orthogonal, left-finite, almost non-collapsing GRS  $\mathcal{R},$  we have



### Corollary

For any orthogonal, left-finite GRS  $\mathcal{R}$ , we have



### Theorem (Kennaway et al., 1994)

For any orthogonal, left-finite, almost non-collapsing GRS  $\mathcal{R},\ we\ have$ 



### Corollary

For any orthogonal, left-finite GRS  $\mathcal{R}$ , we have



#### Theorem (Kennaway et al., 1994)

For any orthogonal, left-finite, almost non-collapsing GRS  $\mathcal{R},\ we\ have$ 



### Corollary

For any orthogonal, left-finite GRS  $\mathcal{R}$ , we have



# Failure of Completeness for Metric Convergence

We have a rule

$$\underline{n}(x,y) \to \underline{n+1}(x,y)$$

for each  $n \in \mathbb{N}$ .



Theorem (Infinitary normalisation)

For each term graph g, there is a reduction  $g \xrightarrow{p} h$  to a normal form h.



#### Theorem (Infinitary normalisation)

For each term graph g, there is a reduction  $g \xrightarrow{p} h$  to a normal form h.

### Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS  $\mathcal{R}$  is complete w.r.t. strong p-convergence in  $\mathcal{U}(\mathcal{R})$ .



### Theorem (Infinitary normalisation)

For each term graph g, there is a reduction  $g \xrightarrow{p} h$  to a normal form h.

### Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS  $\mathcal{R}$  is complete w.r.t. strong p-convergence in  $\mathcal{U}(\mathcal{R})$ .

#### Proof.

$$\begin{array}{c|c}
\mathcal{U}(\mathcal{R}) & \mathsf{s} & \longrightarrow \\
\mathcal{U}(\cdot) & \downarrow \\
\underline{\mathcal{R}} & \mathsf{g}
\end{array}$$

### Theorem (Infinitary normalisation)

For each term graph g, there is a reduction  $g \xrightarrow{p} h$  to a normal form h.

### Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS  $\mathcal{R}$  is complete w.r.t. strong p-convergence in  $\mathcal{U}(\mathcal{R})$ .

#### Proof.



## **Completeness for Partial Order Convergence**

#### Theorem (Infinitary normalisation)

For each term graph g, there is a reduction  $g \xrightarrow{p} h$  to a normal form h.

#### Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS  $\mathcal{R}$  is complete w.r.t. strong p-convergence in  $\mathcal{U}(\mathcal{R})$ .



# Completeness for Partial Order Convergence

### Theorem (Infinitary normalisation)

For each term graph g, there is a reduction  $g \xrightarrow{p} h$  to a normal form h.

#### Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS  $\mathcal{R}$  is complete w.r.t. strong p-convergence in  $\mathcal{U}(\mathcal{R})$ .



#### **Theorem**

Strong m-convergence in an orthogonal, left-finite GRS  $\mathcal{R}$  that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in  $\mathcal{U}(\mathcal{R})$ .



#### **Theorem**

Strong m-convergence in an orthogonal, left-finite GRS  $\mathcal R$  that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in  $\mathcal U(\mathcal R)$ .





#### **Theorem**

Strong m-convergence in an orthogonal, left-finite GRS  $\mathcal R$  that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in  $\mathcal U(\mathcal R)$ .

### Proof.

$$\begin{array}{c|c} \underline{\mathcal{U}\left(\mathcal{R}\right)} & \mathsf{s} & \longrightarrow & \mathsf{t} \\ \hline \\ \underline{\mathcal{U}\left(\cdot\right)} & & \\ \underline{\mathcal{R}} & \mathsf{g} & & \end{array}$$



#### **Theorem**

Strong m-convergence in an orthogonal, left-finite GRS  $\mathcal R$  that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in  $\mathcal U(\mathcal R)$ .

### Proof.





#### Theorem

Strong m-convergence in an orthogonal, left-finite GRS  $\mathcal R$  that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in  $\mathcal U(\mathcal R)$ .



#### **Theorem**

Strong m-convergence in an orthogonal, left-finite GRS  $\mathcal R$  that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in  $\mathcal U(\mathcal R)$ .



Theore

Strong re-convergence in an orthogonal, left-finite GRS  $\mathcal R$  that is normalising w.r.t. strongly m-converging reductions is complete for normalising reductions in  $\mathcal U(\mathcal R)$ .



### **Outline**

- Introduction
  - Background
  - Goals
  - Obstacles
- 2 Modes of Convergence on Term Graphs
  - Metric Approach
  - Partial Order Approach
- Infinitary Term Graph Rewriting
  - Metric vs. Partial Order Approach
  - Soundness & Completeness Properties
- Bonus Material
  - Other Approaches to Convergence



## Recall that $\leq_{\perp}^{S}$ allows change in sharing

- introduces sharing
- total term graphs not necessarily maximal w.r.t.  $\leq_1^S$





## Recall that $\leq_{\perp}^{S}$ allows change in sharing

- introduces sharing
- total term graphs not necessarily maximal w.r.t.  $\leq_1^S$



#### Example





### Recall that $\leq_{\perp}^{S}$ allows change in sharing

- introduces sharing
- total term graphs not necessarily maximal w.r.t.  $\leq_1^S$



#### Example



### The injective partial order $\leq_{\perp}^{l}$

ullet Avoid sharing by requiring injectivity of  $\bot$ -homomorphisms.

### Recall that $\leq_{\perp}^{S}$ allows change in sharing

- introduces sharing
- total term graphs not necessarily maximal w.r.t. ≤<sup>S</sup><sub>1</sub>



### Example



### The injective partial order $\leq^l_\perp$

- Avoid sharing by requiring injectivity of ⊥-homomorphisms.
- Define:  $g \leq^{\mathsf{I}} h$  iff  $\exists$  injective  $\bot$ -homomorphism  $\phi \colon g \to_{\bot} h$ .

## Properties of $\leq^{l}$

•  $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{l}_{\perp})$  is a complete partial order.



# Properties of $\leq^{l}$

- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{I}}_{\perp})$  is a complete partial order.
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{I}}_{\perp})$  is not a complete semilattice.



## Properties of $\leq^{l}$

- $\bullet \ (\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{I}}_{\perp}) \text{ is a complete partial order}.$
- $\bullet$   $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}),\leq^{l}_{\perp})$  is not a complete semilattice.

#### Counterexample



## Properties of $\leq^{l}$

- $(\mathcal{G}_{\mathcal{C}}^{\infty}(\Sigma_{\perp}), \leq^{\mathsf{I}}_{\perp})$  is a complete partial order.
- $(\mathcal{G}^{\infty}_{\mathcal{C}}(\Sigma_{\perp}), \leq^{\mathsf{I}}_{\perp})$  is not a complete semilattice.

#### Counterexample







37

### $\leq^{\mathsf{I}}_{\perp}$ appears in the background

• Reduction step  $g \to_c h \implies c \leq^{\mathsf{I}}_{\perp} g, h$ 



### $\leq^{\mathsf{I}}_{\perp}$ appears in the background

- Reduction step  $g \to_c h \implies c \leq^{\mathsf{I}}_{\perp} g, h$
- $\bullet \ \ \mathsf{Reduction} \ (g_\iota \to_{c_\iota} g_{\iota+1})_{\iota < \alpha} \quad \Longrightarrow \quad \ \mathsf{lim} \, \mathsf{inf}_{\iota \to \alpha} \, c_\iota \le^\mathsf{I}_\bot \, \mathsf{lim} \, \mathsf{inf}_{\iota \to \alpha} \, g_\iota$



### $\leq^{\mathsf{I}}_{\perp}$ appears in the background

- Reduction step  $g \to_c h \implies c \leq^{\mathsf{I}}_{\perp} g, h$
- $\bullet \ \ \mathsf{Reduction} \ (g_\iota \to_{c_\iota} g_{\iota+1})_{\iota < \alpha} \quad \Longrightarrow \quad \ \mathsf{lim} \, \mathsf{inf}_{\iota \to \alpha} \, c_\iota \le^\mathsf{L}_\bot \, \mathsf{lim} \, \mathsf{inf}_{\iota \to \alpha} \, g_\iota$
- Reduction step  $g \to_{\rho} h$  with left-linear rule  $\rho$  and  $g \leq^{\mathsf{I}}_{\perp} g' \Longrightarrow g' \to_{\rho} h'$  for some  $h' \geq^{\mathsf{I}}_{\perp} h$



### $\leq^{\mathsf{I}}_{\perp}$ appears in the background

- Reduction step  $g \to_c h \implies c \leq_{\perp}^{\mathsf{I}} g, h$
- $\bullet \ \ \mathsf{Reduction} \ (g_\iota \to_{c_\iota} g_{\iota+1})_{\iota < \alpha} \quad \Longrightarrow \quad \ \mathsf{lim} \, \mathsf{inf}_{\iota \to \alpha} \, c_\iota \le^\mathsf{L}_\bot \, \mathsf{lim} \, \mathsf{inf}_{\iota \to \alpha} \, g_\iota$
- Reduction step  $g \to_{\rho} h$  with left-linear rule  $\rho$  and  $g \leq_{\perp}^{\mathsf{I}} g' \implies g' \to_{\rho} h'$  for some  $h' \geq_{\perp}^{\mathsf{I}} h$

### Corollary (strong p-convergence implies weak p-convergence)

In a left-linear GRS  $g \xrightarrow{p} h$  implies  $g \xrightarrow{p} h'$  for some  $h' \ge^l_{\perp} h$ .

