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Goals

What is this about?

o finding appropriate notions of converging term graph reductions

@ generalising convergence for term reductions

Infinitary term graph rewriting — what is it for?

@ common formalism to study correspondences between infinitary term
rewriting and finitary term graph rewriting

@ infinitary term graph rewriting to model lazy evaluation
» infinitary term rewriting only covers non-strictness
» however: lazy evaluation = non-strictness + sharing
@ towards infinitary lambda calculi with letrec
» Ariola & Blom. Skew confluence and the lambda calculus with letrec.
» the calculus is non-confluent
> but there is a notion of infinite normal forms
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@ Introduction
@ Background
@ Goals
@ Obstacles

© Modes of Convergence on Term Graphs
@ Metric Approach
@ Partial Order Approach

© Infinitary Term Graph Rewriting
@ Metric vs. Partial Order Approach
@ Soundness & Completeness Properties

@ Bonus Material
@ Other Approaches to Convergence
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» Most important issue: How to deal with sharing?

@ It should simulate infinitary term rewriting in a sound & complete
manner.
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Completeness of Infinitary Term Graph Rewriting?
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Metric Infinitary Term Rewriting

Complete metric on terms

@ terms are endowed with a complete metric in order to formalise the
convergence of infinite reductions.

@ metric distance between terms:
d(S, t) — 2—sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d
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Metric Infinitary Term Rewriting

Complete metric on terms

@ terms are endowed with a complete metric in order to formalise the
convergence of infinite reductions.

@ metric distance between terms:
d(S, t) — 2—sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Weak convergence via metric d

@ convergence in the metric space (7°°(X),d)

@ depth of the differences between the terms has to tend to infinity

Strong Convergence via redex depth

Also the depth of redexes has to tend to infinity.
°
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Towards a Metric on Term Graphs

We want to generalise the metric on terms
d(S, t) _ 2—sim(s,t)

sim(s, t) = minimum depth d s.t. s and t differ at depth d

Alternative characterisation of sim(s, t) via truncation

Truncation t|d of a term t at depth d:

tj0= 1
f(t,....t)|d+1=Ff(t1]d,..., tx|d)

Then sim(s, t) = maximum depth d s.t. s|d = t|d.

11
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A Metric on Term Graphs

Depth of a node

= length of a shortest path from the root to the node.
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The truncation gfd is obtained from g by
o relabelling all nodes at depth d with 1, and

@ removing all nodes that thus become unreachable from the root.
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A Metric on Term Graphs

Depth of a node

= length of a shortest path from the root to the node.

Truncation of term graphs
The truncation gid is obtained from g by
o relabelling all nodes at depth d with 1, and

@ removing all nodes that thus become unreachable from the root.

The simple metric on term graphs

di(g, h) = 2-Smi(eN)

Where sim{(g, h) = maximum depth d s.t. gtd = htd.

12
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Example
I from ro
Term graph rule that l /—/ \1:
unravels to X rom
from(x) — x :: from(s(x)) \}
from —— = ——=s %  ooooom -
| / \ / \ 7\
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Properties of the Metric Space

e d; coincides with d on 7°°(X).
e (Gg°(X),dy) is a complete metric space.

° (gg(z),df) is the metric completion of (gC(Z)adT)'

o Limits in (GZ°(X),d;) are preserved by unravelling
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Properties of the Metric Space

e d; coincides with d on 7°°(X).

e (Gg°(X),dy) is a complete metric space.

o (Gg°(X),d;) is the metric completion of (Ge(X), dt).
o Limits in (Gg°(X),d;) are preserved by unravelling:

U im g,-> - )g&(&')

in (G&°(%), dy) in (7%°(%),d)

14
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@ Partial Order Approach
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Partial Order Infinitary Term Rewriting

Partial order on terms

@ partial terms: terms with additional constant L (read as “undefined”)
@ partial order < reads as: “is less defined than”

e <, is a complete semilattice (= cpo + glbs of non-empty sets)
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Partial Order Infinitary Term Rewriting

Partial order on terms

@ partial terms: terms with additional constant L (read as “undefined”)
@ partial order < reads as: “is less defined than”

e <, is a complete semilattice (= cpo + glbs of non-empty sets)

Convergence

o formalised by the limit inferior:

Iipligftbz |_| I_l t,

@ intuition: event e terms

@ weak convergence: limit inferior of th&germs of the reduction

@ strong convergence: limit inferior of the contexts of the reduction

16 ®
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Partial-Order Convergence vs. Metric Convergence

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:
@ S:s&tinT>(X) iff S: st (weak convergence)
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Partial-Order Convergence vs. Metric Convergence

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:
@ S:s&tinT>(X) iff S: st (weak convergence)
@ S: 5B tinT>(X) iff S:sDt. (strong convergence)

Theorem (normalisation & confluence)

Every orthogonal TRS is infinitarily normalising and infinitarily confluent
w.r.t. strong p-convergence.

18
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A Partial Order on Term Graphs — How?

Specialise on terms

o Consider terms as term trees (i.e. term graphs with tree structure)
@ How to define the partial order < on term trees?

@ We need a means to substitute 'L's.
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A Partial Order on Term Graphs — How?

Specialise on terms

o Consider terms as term trees (i.e. term graphs with tree structure)
@ How to define the partial order < on term trees?

@ We need a means to substitute 'L's.

1 -homomorphisms ¢: g — | h

@ homomorphism condition suspended on | -nodes
@ allow mapping of |-nodes to arbitrary nodes

@ same mechanism that formalises matching in term graph rewriting

19
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A 1-Homomorphism
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1 -Homomorphisms as a Partial Order

Proposition (_L-homomorphisms characterise <, on terms)
Foralls,t € T®(X,): s<,t iff Jp:s—,t
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1 -Homomorphisms as a Partial Order

Proposition (_L-homomorphisms characterise <, on terms)
Foralls,t € T®(X,): s<,t iff Jp:s—,t

Definition (Simple partial order gi on term graphs)

For all g,h € GX(X ), let g <% h iff there is some ¢: g — | h.

Theorem

The pair (GX(X L), <3) forms a complete semilattice.

Alas, <% has some quirks!

@ introduces sharing

f
S
@ total term graphs not necessarily / \ <1 ﬁ )
maximal w.r.t. gi c c
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Properties of the Partial Order

o <% coincides with <3 on T°°(Z ).

o (G(XL),<3) is a complete semi-lattice.

o (G(X.1),<3) is the ideal completion of (Ge(X1),<3).
o Limits in (G(X 1), <3) are preserved by unravelling

22




UNIVERSITY OF COPENHAGEN Department of Computer Science

Properties of the Partial Order

o <% coincides with <3 on T°°(Z ).

o (G(XL),<3) is a complete semi-lattice.

o (G(X.1),<3) is the ideal completion of (Ge(X1),<3).
o Limits in (G(X 1), <%) are preserved by unravelling:

U <Ii[1l>i£f g,-> = Iim}igf U (gi)

22




UNIVERSITY OF COPENHAGEN Department of Computer Science

Properties of the Partial Order

o <% coincides with <3 on T°°(Z ).

o (G(XL),<3) is a complete semi-lattice.

o (G(X.1),<3) is the ideal completion of (Ge(X1),<3).
o Limits in (G(X 1), <%) are preserved by unravelling:

U\l _)igf g,-) = Iipl}igf U (gi)

n (G°(X1), <3)

22




UNIVERSITY OF COPENHAGEN Department of Computer Science

Properties of the Partial Order

o <% coincides with <3 on T°°(Z ).

o (G(XL),<3) is a complete semi-lattice.

o (G(X.1),<3) is the ideal completion of (Ge(X1),<3).
o Limits in (G(X 1), <%) are preserved by unravelling:

Ul _>i£f g,-) = |I£¢N\Ll(g’,)

n (G&(X1),<3) in (T°°(X1),<1)

22
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Partial Order Convergence on Term Graphs

Convergence

@ Weak conv.: limit inferior of the term graphs along the reduction.

@ Strong conv.: limit inferior of the contexts along the reduction.
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Convergence

@ Weak conv.: limit inferior of the term graphs along the reduction.

@ Strong conv.: limit inferior of the contexts along the reduction.

Term graph obtained by relabelling the root node of the redex with L (and
removing all nodes that become unreachable).
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S:s& tin T(X) = S: st
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Metric vs. Partial Order Approach — Strong Conv.

Recall the situation on terms

For every reduction S in a TRS

S:s& tin T(X) = S:s™t.
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Soundness — Metric Convergence
Theorem (Kennaway et al., 1994)

o Given: a step g —, h in a left-linear, left-finite GRS R.
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Soundness — Metric Convergence
Theorem (Kennaway et al., 1994)

o Given: a step g —, h in a left-linear, left-finite GRS R.

© Then: S: U(g) ™yr) U (h) such that the depth of every redex
reduced in S is greater or equal to depth,(n).

Theorem (Soundness)
For every left-linear, left-finite GRS R we have

g™g h = U (g) By U (h).
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Soundness — Partial Order Convergence
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Failure of Completeness for Metric Convergence
We have a rule n(x,y) = n+1(x,y) for each n e N.
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¢ 1 1 2 2 2
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Completeness for Partial Order Convergence

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g 2> h to a normal form h.
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w.r.t. strong p-convergence in U (R).
UR) s t

u()

IR
0q

33




UNIVERSITY OF COPENHAGEN Department of Computer Science

Completeness for Partial Order Convergence

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g 2> h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

UR) s t
u()
R g



UNIVERSITY OF COPENHAGEN Department of Computer Science

Completeness for Partial Order Convergence

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g 2> h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

UR) s t
Ui
normalising
R Lo e » h



UNIVERSITY OF COPENHAGEN

Department of Computer Science

Completeness for Partial Order Convergence

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g 2> h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

SOEEES
UR) s t Ty
u) ue
normalising [
R A e » h



UNIVERSITY OF COPENHAGEN

Department of Computer Science

Completeness for Partial Order Convergence

Theorem (Infinitary normalisation)

For each term graph g, there is a reduction g 2> h to a normal form h.

Theorem (Completeness)

Strong p-convergence in an orthogonal, left-finite GRS R is complete
w.r.t. strong p-convergence in U (R).

Proof.

souneie
UR) s Wik e
uf) U ()
normalising [
R A e » h



UNIVERSITY OF COPENHAGEN Department of Computer Science

Weak(er) Completeness for Metric Convergence

Theorem

Strong m-convergence in an orthogonal, left-finite GRS R that is
normalising w.r.t. strongly m-converging reductions is complete for
normalising reductions in U (R).
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The injective partial order §'J_

@ Avoid sharing by requiring injectivity of L-homomorphisms.
o Define: g SIL h iff 3 injective 1-homomorphism ¢: g — h.
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The Injective Partial Order is Almost Good Enough

Properties of S'l

o (GX(x1),<!) is a complete partial order.
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The Reason Strong Convergence Works

<! appears in the background

@ Reductionstepg -ch — ¢ S'L g, h
@ Reduction (g, —¢, 8i+1)ica = liminf, 4 ¢ S'J_ liminf, .o g

@ Reduction step g —, h with left-linear rule p and g S'J_ g
= g’ —, W for some b >!| h

/

Corollary (strong p-convergence implies weak p-convergence)

In a left-linear GRS g 2> h implies g <2+ h' for some h' >!| h.
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