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Abstract
Based on a simple metric and a simple partial order on term graphs, we develop two infinitary
calculi of term graph rewriting. We show that, similarly to infinitary term rewriting, the partial
order formalisation yields a conservative extension of the metric formalisation of the calculus. By
showing that the resulting calculi simulate the corresponding well-established infinitary calculi of
term rewriting in a sound and complete manner, we argue for the appropriateness of our approach
to capture the notion of infinitary term graph rewriting.
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1 Introduction

Term graph rewriting provides an efficient technique for implementing term rewriting by
avoiding duplication of terms and instead relying on pointers in order to refer to a term several
times [8]. Due to cycles, finite term graphs may represent infinite terms, and, correspondingly,
finite term graph reductions may represent transfinite term reductions. Kennaway et al. [16]
showed that finite term graph reductions simulate a restricted class of transfinite term
reductions, called rational reductions, in a sound and complete manner via the unravelling
mapping U (·) from term graphs to terms. More precisely, given a term graph rewriting
system R and a finite term graph g, we have for each finite term graph reduction g →∗R h,
a rational term reduction U (g)�U(R) U (h) (soundness), and conversely, for each rational
term reduction U (g)�U(R) t, there is a term graph reduction g →∗R h and a rational term
reduction t �U(R) U (h) (completeness). Since term graph reduction steps may contract
several term redexes simultaneously, the completeness result has to be formulated in this
weaker form. Note, however, that this completeness property subsumes completeness of
normalising reductions: for each rational reduction U (g)�U(R) t to a normal form t, there
is a reduction g →∗R h with U (h) = t.

In this paper, we aim to resolve the asymmetry in the comparison of term rewriting
and term graph rewriting by studying transfinite term graph reductions. To this end, we
develop two infinitary calculi of term graph rewriting by generalising the notions of strong
convergence on terms, based on a metric [15] resp. partial order [4], to term graphs. Instead of
the complicated structures that we have used in our previous approach to weak convergence
on term graphs [5], we adopt a rather simple and intuitive metric resp. partial order [6].

After summarising the basic theory of infinitary term rewriting (Section 2) and the
fundamental concepts concerning term graphs (Section 3), we present a metric and a partial
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order on term graphs (Section 4). Based on these two structures, we define the notions of
strong m-convergence resp. strong p-convergence and show that – akin to term rewriting –
both coincide on total term graphs and that strong p-convergence is normalising (Section 5).

In Section 6, we present the main result of this paper: strongly p-converging term graph
reductions are sound and complete w.r.t. strongly p-converging term reductions in the sense
of Kennaway et al. [16] explained above.

This result comes with some surprise, though, as Kennaway et al. [16] argued that infinitary
term graph rewriting cannot adequately simulate infinitary term rewriting. In particular, they
present a counterexample for the completeness of an informally defined infinitary calculus of
term graph rewriting. This counterexample indeed shows that strongly m-converging term
graph reductions are not complete for strongly m-converging term reductions.

However, using the correspondence between strong p-convergence and m-convergence, we
can derive soundness of the metric calculus from the soundness of the partial order calculus.
Moreover, we prove that the metric calculus is still complete for normalising reductions.
We thus argue that strong m-convergence, too, can be adequately simulated by term graph
rewriting. In fact, in their original work on term graph rewriting [8], Barendregt et al. showed
completeness only for normalising reductions in order to argue for the adequacy of acyclic
finite term graph rewriting for simulating finite term rewriting.

Due to space restrictions, we could not include all proofs in the main body of this paper.
All missing proofs can be found in the companion report [7].

2 Infinitary Term Rewriting

We assume familiarity with the basic theory of term rewriting [19], ordinal numbers, orders
and topological spaces [14]. Below, we give an outline of infinitary term rewriting [15, 4].

We denote ordinal numbers by lower case Greek letters α, β, γ, λ, ι. A sequence S of
length α in a set A, written (aι)ι<α, is a function from α to A with ι 7→ aι for all ι ∈ α. We
write |S| for the length α of S. If α is a limit ordinal, S is called open; otherwise it is called
closed. Given two sequences S, T , we write S · T to denote their concatenation and S ≤ T
(resp. S < T ) if S is a (proper) prefix of T . The prefix of T of length β ≤ |T | is denoted T |β .
For a set A, we write A∗ to denote the set of finite sequences over A. For a finite sequence
(ai)i<n ∈ A∗, we also write 〈a0, a1, . . . , an−1〉. In particular, 〈〉 denotes the empty sequence.

We consider the sets T ∞(Σ) and T (Σ) of (possibly infinite) terms resp. finite terms over
a signature Σ. Each symbol f has an associated arity ar(f), and we write Σ(n) for the set of
symbols in Σ with arity n. For rewrite rules, we consider the signature ΣV = Σ ] V that
extends the signature Σ with a set V of nullary variable symbols. For terms s, t ∈ T ∞(Σ)
and a position π ∈ P(t) in t, we write t|π for the subterm of t at π, t(π) for the symbol in t
at π, and t[s]π for the term t with the subterm at π replaced by s.

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature Σ and a set R
of term rewrite rules of the form l→ r with l ∈ T ∞(ΣV) \ V and r ∈ T ∞(ΣV) such that all
variables occurring in r also occur in l. If the left-hand side of each rule in a TRS R is finite,
then R is called left-finite. Every TRS R defines a rewrite relation →R as usual: s→R t iff
there is a position π ∈ P(s), a rule ρ : l → r ∈ R, and a substitution σ such that s|π = lσ

and t = s[rσ]π. We write s→π,ρ t in order to indicate the applied rule ρ and the position π.
The subterm s|π is called a redex and is said to be contracted to rσ.

The metric d on T ∞(Σ) that is used in the setting of infinitary term rewriting is defined
by d(s, t) = 0 if s = t and d(s, t) = 2−k if s 6= t, where k is the minimal depth at which s
and t differ. The pair (T ∞(Σ),d) is known to form a complete ultrametric space [2].
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A reduction in a term rewriting system R, is a sequence S = (tι →πι tι+1)ι<α of reduction
steps in R. The reduction S is called strongly m-continuous if limι→λ tι = tλ and the depths
of contracted redexes (|πι|)ι<λ tend to infinity, for each limit ordinal λ < α. A reduction S
is said to strongly m-converge to t, written S : t0 �m R t, if it is strongly m-continuous and
either S is closed with t = tα or S is open with t = limι→α tι and the depths of contracted
redexes (|πι|)ι<α tend to infinity.

I Example 2.1. Consider the rule ρ : Y x→ x (Y x) defining the fixed point combinator Y
in an applicative language. If we use an explicit function symbol @ instead of juxtaposition
to denote application, ρ reads @(Y, x)→ @(x,@(Y, x)). Given a term t, we get the reduction

S : Y t→ρ t (Y t)→ρ t (t (Y t))→ρ t (t (t (Y t)))→ρ . . .

which strongly m-converges to the infinite term t (t (. . . )).
As another example, consider the rule ρ′ : f(x)→ f(g(x)) and its induced reduction

T : h(c, f(c))→ρ′ h(c, f(g(c)))→ρ′ h(c, f(g(g(c))))→ h(c, f(g(g(g(c)))))→ρ′ . . .

Although the underlying sequence of terms converges in the metric space (T ∞(Σ),d), viz. to
the infinite term h(c, f(g(g(. . . )))), the reduction T does not strongly m-converges since the
depth of the contracted redexes does not tend to infinity but instead stays at 1.

The partial order ≤⊥ is defined on partial terms, i.e. terms over signature Σ⊥ = Σ ] {⊥},
with ⊥ a nullary symbol. It is characterised as follows: s ≤⊥ t iff t can be obtained from s

by replacing each occurrence of ⊥ by some partial term. The pair (T ∞(Σ⊥),≤⊥) forms a
complete semilattice [13]. A partially ordered set (A,≤) is called a complete partial order
(cpo) if it has a least element and every directed subset D of A has a least upper bound (lub)⊔
D in A. If, additionally, every non-empty subset B of A has a greatest lower bound (glb)d
B, then (A,≤) is called a complete semilattice. This means that for complete semilattices

the limit inferior lim infι→α aι =
⊔
β<α

(d
β≤ι<α aι

)
of a sequence (aι)ι<α is always defined.

In the partial order approach to infinitary rewriting, convergence is defined by the limit
inferior. Since we are considering strong convergence, the positions πι at which reductions
take place are taken into consideration as well. In particular, we consider, for each reduction
step tι →πι tι+1 at position πι, the reduction context cι = tι[⊥]πι , i.e. the starting term with
the redex at πι replaced by ⊥. To indicate the reduction context cι of a reduction step, we
also write tι →cι tι+1. A reduction S = (tι →cι tι+1)ι<α is called strongly p-continuous if
lim infι<λ cι = tλ for each limit ordinal λ < α. The reduction S is said to strongly p-converge
to a term t, written S : t0 �p R t, if it is strongly p-continuous and either S is closed with
t = tα, or S is open with lim infι<α cι = t. If S : t0 �p R t and t as well as all tι with ι < α

are total, i.e. contained in T ∞(Σ), then we say that S strongly p-converges to t in T ∞(Σ).
The distinguishing feature of the partial order approach is that, since the partial order

on terms forms a complete semilattice, each continuous reduction also converges. It provides
a conservative extension to strong m-convergence that allows rewriting modulo meaningless
terms [4] by rewriting terms to ⊥ if they are divergent according to the metric calculus.

I Example 2.2. Reconsider S and T from Example 2.1. S has the same convergence
behaviour in the partial order setting, viz. S : Y t�p t (t (. . . )). However, while the reduction
T does not strongly m-converge, it does strongly p-converge, viz. T : h(c, f(c))�p h(c,⊥).

The relation between m- and p-convergence illustrated in the examples above is charac-
teristic: strong p-convergence is a conservative extension of strong m-convergence.

I Theorem 2.3 ([4]). For every reduction S in a TRS the following equivalence holds:

S : s�m R t iff S : s�p R t in T ∞(Σ).

RTA’12
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In the remainder of this paper, we shall develop a generalisation of both strong m- and
p-convergence to term graphs that maintains the above correspondence, and additionally
simulates term reductions in a sound and complete way.

3 Graphs and Term Graphs

The notion of term graphs that we employ in this paper is taken from Barendregt et al. [8].

I Definition 3.1 (graphs). Let Σ be a signature. A graph over Σ is a tuple g = (N, lab, suc)
consisting of a set N (of nodes), a labelling function lab : N → Σ, and a successor function
suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each node n ∈ N , i.e. a node labelled with
a k-ary symbol has precisely k successors. If suc(n) = 〈n0, . . . , nk−1〉, then we write suci(n)
for ni. Moreover, we use the abbreviation arg(n) for the arity ar(lab(n)) of n in g.

I Definition 3.2 (paths, reachability). Let g = (N, lab, suc) be a graph and n,m ∈ N . A
path in g from n to m is a finite sequence π ∈ N∗ such that either π is empty and n = m, or
π = 〈i〉 · π′ with 0 ≤ i < arg(n) and the suffix π′ is a path in g from suci(n) to m. If there
exists a path from n to m in g, we say that m is reachable from n in g.

I Definition 3.3 (term graphs). Given a signature Σ, a term graph g over Σ is a tuple
(N, lab, suc, r) consisting of an underlying graph (N, lab, suc) over Σ whose nodes are all
reachable from the root node r ∈ N . The class of all term graphs over Σ is denoted G∞(Σ).
We use the notation Ng, labg, sucg and rg to refer to the respective components N ,lab, suc
and r of g. Given a graph or a term graph h and a node n in h, we write h|n to denote the
sub-term graph of h rooted in n, which consists of all nodes reachable from n in h.

Paths in a graph are not absolute but relative to a starting node. In term graphs, however,
we have a distinguished root node from which each node is reachable. Paths relative to the
root node are central for dealing with term graphs modulo isomorphism:

I Definition 3.4 (positions, depth, trees). Let g ∈ G∞(Σ) and n ∈ Ng. A position of n in g
is a path in the underlying graph of g from rg to n. The set of all positions in g is denoted
P(g); the set of all positions of n in g is denoted Pg(n). A position π ∈ Pg(n) is called
minimal if no proper prefix π′ < π is in Pg(n). The set of all minimal positions of n in g
is denoted Pmg (n). The depth of n in g, denoted depthg(n), is the minimum of the lengths
of the positions of n in g. For a position π ∈ P(g), we write nodeg(π) for the unique node
n ∈ Ng with π ∈ Pg(n), g(π) for its symbol labg(n), and g|π for the sub-term graph g|n.
The term graph g is called a term tree if each node in g has exactly one position.

Note that the labelling function of graphs – and thus term graphs – is total. In contrast,
Barendregt et al. [8] considered open (term) graphs with a partial labelling function such
that unlabelled nodes denote holes or variables. This partiality is reflected in their notion of
homomorphisms in which the homomorphism condition is suspended for unlabelled nodes.

Instead of a partial node labelling function, we chose a syntactic approach that is more
flexible and closer to the representation in terms. Variables, holes and “bottoms” are labelled
by a distinguished set of constant symbols and the notion of homomorphisms is parametrised
by a set of constant symbols ∆ for which the homomorphism condition is suspended:

I Definition 3.5 (∆-homomorphisms). Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈ G∞(Σ).
A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following holds:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < arg(n) (successor)
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A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function φ : Ng → Nh that is
homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆ and satisfies φ(rg) = rh.

Note that, in contrast to Barendregt et al. [8], we require that root nodes are mapped to
root nodes. This additional requirement makes our generalised notion of homomorphisms
more akin to that of Barendsen [9]: for ∆ = ∅, we obtain his notion of homomorphisms.

Nodes labelled with a symbol from ∆ can be thought of as holes in the term graphs,
which can be filled with other term graphs. For example, if we have a distinguished set of
variable symbols V ⊆ Σ(0), we can use V-homomorphisms to formalise the matching of a
term graph against a term graph rule, which requires the instantiation of variables.

Note that ∆-homomorphisms are unique [5], i.e. there is at most one ∆-homomorphism
from one term graph to another. Consequently, whenever there are two ∆-homomorphisms
φ : g →∆ h and ψ : h →∆ g, they are inverses of each other, i.e. ∆-isomorphisms. If two
term graphs are ∆-isomorphic, we write g ∼=∆ h.

For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h resp. φ : g →σ h

instead of φ : g →∆ h and call φ a homomorphism resp. a σ-homomorphism. The same
convention applies to ∆-isomorphisms.

Since we are studying modes of convergence over term graphs, we want to reason modulo
isomorphism. The following notion of canonical term graphs will allow us to do that:

I Definition 3.6 (canonical term graphs). A term graph g is called canonical if n = Pg(n)
for each n ∈ Ng. The set of all canonical term graphs over Σ is denoted G∞C (Σ).

For each term graph g, we can give a unique canonical term graph C(g) isomorphic to g:

NC(g) = {Pg(n) |n ∈ N } rC(g) = Pg(r)

labC(g)(Pg(n)) = lab(n) sucC(g)i (Pg(n)) = Pg(suci(n)) for all n ∈ N, 0 ≤ i < arg(n)

As we have shown previously [5], this indeed yields a canonical representation of term graphs,
viz. g ∼= h iff C(g) = C(h) for all term graphs g, h.

Note that the set of nodes NC(g) above forms a partition of the set of positions in g. We
write ∼g for the equivalence relation on P(g) that is induced by this partition. That is,
π1 ∼g π2 iff nodeg(π1) = nodeg(π2). The structure of a term graph g is uniquely determined
by its set of positions P(g), the labelling g(·) : π 7→ g(π), and the equivalence ∼g. We will
call such a triple (P(g), g(·),∼g) a labelled quotient tree. Labelled quotient trees uniquely
represent term graphs up to isomorphism. In other words: labelled quotient trees uniquely
represent canonical term graphs. For a more axiomatic treatment of labelled quotient tree
that studies these relationships, we refer to our previous work [5].

We can characterise ∆-homomorphisms in terms of labelled quotient trees:

I Lemma 3.7 ([5]). Given g, h ∈ G∞(Σ), there is a φ : g →∆ h iff for all π, π′ ∈ P(g),

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Intuitively, (a) means that h has at least as much sharing of nodes as g has, whereas (b)
means that h has at least the same non-∆-symbols as g.

Given a term tree g, the equivalence ∼g is the identity relation IP(g) on P(g), i.e. π1 ∼g π2
iff π1 = π2. There is an obvious one-to-one correspondence between canonical term trees
and terms: a term t ∈ T ∞(Σ) corresponds to the canonical term tree given by the labelled
quotient tree (P(t), t(·), IP(t)). We thus consider the set of terms T ∞(Σ) as the subset of
term trees in G∞C (Σ).

With this correspondence in mind, we define the unravelling of a term graph g, denoted
U (g), as the unique term t such that there is a homomorphism φ : t→ g.

RTA’12
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I Example 3.8. Consider the term graphs g2 and h0 illustrated in Figure 1. The unravelling
of g2 is the term @(f,@(f,@(Y, f))) whereas the unravelling of the cyclic term graph h0 is
the infinite term @(f,@(f, . . . )).

4 Two Simple Modes of Convergence for Term Graphs

In a previous attempt to generalise the modes of convergence of term rewriting to term
graphs, we developed a metric and a partial order on term graphs that were both rather
complicated [5]. While the resulting notions of weak convergence have a correspondence
similar to that for terms (cf. Theorem 2.3), they are also limited as we explain below. In this
paper, we shall use a much simpler and more intuitive approach that we recently developed [6],
and which we summarise briefly below.

Like for terms, we move to a signature Σ⊥ = Σ ] {⊥} to define a partial order on term
graphs. Term graphs over signature Σ⊥ are also referred to as partial whereas term graphs
over Σ are referred to as total. In order to generalise the partial order ≤⊥ on terms to term
graphs, we make use of the observation that ⊥-homomorphisms characterise the partial
order ≤⊥: given two terms s, t ∈ T ∞(Σ⊥), we have s ≤⊥ t iff there is a ⊥-homomorphism
φ : s →⊥ t. In our previous work, we have used a restricted form of ⊥-homomorphisms
in order to define a partial order on term graphs [5]. In this paper, however, we simply
take ⊥-homomorphism as the definition of the partial order on term graphs. The simple
partial order ≤S

⊥ on G∞C (Σ⊥) is defined as follows: g ≤S
⊥ h iff there is a ⊥-homomorphism

φ : s→⊥ t. Hence, we get the following characterisation, according to Lemma 3.7:

I Corollary 4.1. Let g, h ∈ G∞C (Σ⊥). Then g ≤S
⊥ h iff, for all π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′ (b) g(π) = h(π) if g(π) ∈ Σ.

With this partial order on term graphs, we indeed get a complete semilattice:

I Theorem 4.2 ([6]). The pair (G∞C (Σ⊥),≤S
⊥) forms a complete semilattice. In particular,

the limit inferior of a sequence (gι)ι<α is given by the labelled quotient tree (P,∼, l):

P =
⋃

β<α
{π ∈ P(gβ) | ∀π′ < π∀β ≤ ι < α : gι(π′) = gβ(π′)}

∼ = (P × P ) ∩
⋃

β<α

⋂
β≤ι<α

∼gι

l(π) =
{
gβ(π) if ∃β < α∀β ≤ ι < α : gι(π) = gβ(π)
⊥ otherwise

for all π ∈ P

In order to generalise the metric d on terms to term graphs, we need to formalise what
it means for two term graphs to be “equal” up to a certain depth. To this end, we define
for each term graph g ∈ G∞(Σ⊥) and d ∈ N the simple truncation g†d as the term graph
obtained from g by relabelling each node at depth d with ⊥ and (thus) removing all nodes
at depth greater than d. The distance d†(g, h) between two term graphs g, h ∈ G∞(Σ) is
then defined as 0 if g ∼= h and otherwise as 2−d with d the greatest d ∈ N with g†d ∼= h†d.
This definition indeed yields a complete ultrametric space:

I Theorem 4.3 ([6]). The pair (G∞C (Σ),d†) forms a complete ultrametric space. In particular,
the limit of each Cauchy sequence (gι)ι<α is given by the labelled quotient tree (P, l,∼):

P = lim inf
ι→α

P(gι) =
⋃
β<α

⋂
β≤ι<α

P(gι) ∼ = lim inf
ι→α

∼gι =
⋃
β<α

⋂
β≤ι<α

∼gι

l(π) = gβ(π) for some β < α with gι(π) = gβ(π) for each β ≤ ι < α for all π ∈ P
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The metric space that we have previously studied [5] was similarly defined in terms of a
truncation. However, we used a much more complicated notion of truncation that would
retain certain nodes of depth greater than d.

Similarly to the corresponding modes of convergence on terms, we have that if a sequence
of total term graphs (gι)ι<α converges in the metric space (G∞C (Σ⊥),d†), then limι→α gι =
lim infι→α gι. However, unlike in the setting of terms, the converse is not true! That is, if
lim infι→α gι is a total term graph, then it is not necessarily equal to limι→α gι – in fact,
(gι)ι<α might not even converge at all. As a consequence, we are not able to obtain a
correspondence in the vein of Theorem 2.3 for weak convergence. In the next section, we will
show that we do, however, obtain such a correspondence for strong convergence.

Note that the more restrictive partial order and metric space that we have studied in
our previous work [5] does yield the above described correspondence for weak convergence.
However, this result comes at the expense of generality and intuition: the convergence
behaviour illustrated in Figure 1c, which is intuitively expected and also captured by the
partial order ≤S

⊥ and the metric d�, is not possible in these more restrictive structures [6].

5 Infinitary Term Graph Rewriting

In this paper, we adopt the term graph rewriting framework of Barendregt et al. [8]. In order
to represent placeholders in rewrite rules, this framework uses variables – in a manner much
similar to term rewrite rules. To this end, we consider a signature ΣV = Σ ] V that extends
the signature Σ with a set V of nullary variable symbols.

I Definition 5.1 (term graph rewriting systems).
(i) Given a signature Σ, a term graph rule ρ over Σ is a triple (g, l, r) where g is a graph

over ΣV and l, r ∈ Ng such that all nodes in g are reachable from l or r. We write ρl
resp. ρr to denote the left- resp. right-hand side of ρ, i.e. the term graph g|l resp. g|r.
Additionally, we require that for each variable v ∈ V there is at most one node n in g
labelled v and that n is different but still reachable from l.

(ii) A term graph rewriting system (GRS) R is a pair (Σ, R) with Σ a signature and R a
set of term graph rules over Σ.

The notion of unravelling straightforwardly extends to term graph rules: let ρ be a term
graph rule with ρl and ρr its left- resp. right-hand side term graph. The unravelling of
ρ, denoted U (ρ) is the term rule U (ρl) → U (ρr). The unravelling of a GRS R = (Σ, R),
denoted U (R), is the TRS (Σ, {U (ρ) | ρ ∈ R}).

I Example 5.2. Figure 1a shows two term graph rules which both unravel to the term rule
ρ : Y x → x (Y x) from Example 2.1. Note that sharing of nodes is used both to refer to
variables in the left-hand side from the right-hand side, and in order to simulate duplication.

Without going into all details of the construction, we describe the application of a rewrite
rule ρ with root nodes l and r to a term graph g in four steps: at first a suitable sub-term
graph of g rooted in some node n of g is matched against the left-hand side of ρ. This
matching amounts to finding a V-homomorphism φ from the left-hand side ρl to the sub-term
graph in g rooted in n, the redex. The V-homomorphism φ allows us to instantiate variables
in the rule with sub-term graphs of the redex. In the second step, nodes and edges in ρ that
are not in ρl are copied into g, such that each edge pointing to a node m in ρl is redirected
to φ(m). In the next step, all edges pointing to the root n of the redex are redirected to the
root n′ of the contractum, which is either r or φ(r), depending on whether r has been copied

RTA’12
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(a) Term graph rules that unravel to Y x → x (Y x).
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(c) A strongly m-convergent term graph reduction over ρ1.

Figure 1 Implementation of the fixed point combinator as a term graph rewrite rule.

into g or not (because it is reachable from l in ρ). Finally, all nodes not reachable from the
root of (the now modified version of) g are removed.

With h the result of the above construction, this induces a pre-reduction step ψ : g 7→n,ρ,n′

h from g to h. In order to indicate the underlying GRS R, we also write ψ : g 7→R h.
The definition of term graph rewriting in the form of pre-reduction steps is very operational

in style. The result of applying a rewrite rule to a term graph is constructed in several
steps by manipulating nodes and edges explicitly. While this is beneficial for implementing a
rewriting system, it is problematic for reasoning on term graphs modulo isomorphism, which
is necessary for introducing notions of convergence. In our case, however, this does not cause
any harm since the construction of the result term graph of a pre-reduction step is invariant
under isomorphism. This observation justifies the following definition of reduction steps:

I Definition 5.3. Let R = (Σ, R) be GRS, ρ ∈ R and g, h ∈ G∞C (Σ) with n ∈ Ng and
m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction step, written φ : g →n,ρ,m h, if
there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h′ with C(g′) = g, C(h′) = h, n = Pg′(n′), and
m = Ph′(m′). Similarly to pre-reduction steps, we write φ : g →R h or φ : g → h for short.

In other words, a reduction step is a canonicalised pre-reduction step. Figures 1b and 1c
show various (pre-)reduction steps derived from the rules in Figure 1a.

5.1 Reduction Contexts
The idea of strong convergence is to conservatively approximate the convergence behaviour
somewhat independently from the actual rules that are applied. Strong m-convergence
in TRSs requires that the depth of the redexes tends to infinity thereby assuming that
anything at the depth of the redex or below is potentially affected by a reduction step. Strong
p-convergence, on the other hand, uses a better approximation that only assumes that the
redex is affected by a reduction step – not however other subterms at the same depth. To
this end strong p-convergence uses a notion of reduction contexts – essentially the term
minus the redex – for the formation of limits. In this section, we shall devise a corresponding
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notion of reduction contexts on term graphs and argue for its adequacy for formalising strong
p-convergence. The following definition provides the basic construction that we shall use:

I Definition 5.4. Let g ∈ G∞(Σ⊥) and n ∈ Ng. The local truncation of g at n, denoted
g\n, is obtained from g by labelling n with ⊥ and removing all outgoing edges from n as
well as all nodes that thus become unreachable from the root.

I Lemma 5.5. For each g ∈ G∞(Σ⊥) and n ∈ Ng, the local truncation g\n has the following
labelled quotient tree (P, l,∼):

P = {π ∈ P(g) | ∀π′ < π : π′ 6∈ Pg(n)}
∼ = ∼g ∩ P × P

l(π) =
{
g(π) if π 6∈ Pg(n)
⊥ if π ∈ Pg(n)

for all π ∈ P

As a corollary of Lemma 5.5 and Corollary 4.1 we obtain the following:

I Corollary 5.6. For each g ∈ G∞(Σ⊥) and n ∈ Ng, we have g\n ≤S
⊥ g.

It is also possible – although cumbersome – to show that, given a reduction step g →n h

at node n, the local truncation g\n is isomorphic to the term graph that is obtained from h

by essentially relabelling the positions Pg(n) occurring in h with ⊥. For this term graph,
denoted h\[Pg(n)], we then also have h\[Pg(n)] ≤S

⊥ h. By combining this with Corollary 5.6,
we eventually obtain the following fundamental property of reduction contexts:

I Proposition 5.7. Given a reduction step g →n h, we have g\n ≤S
⊥ g, h.

This means that the local truncation at the root of the redex is preserved by reduction steps
and is therefore an adequate notion of reduction context for strong p-convergence [3].

5.2 Strong Convergence
Now that we have an adequate notion of reduction contexts, we can define strong p-convergence
on term graphs analogously to strong p-convergence on terms. For strong m-convergence, we
simply take the same notion of depth that we already used for the definition of the simple
truncation g†d and thus the simple metric d†.

I Definition 5.8. Let R = (Σ, R) be a GRS.
(i) The reduction context c of a graph reduction step φ : g →n h is the term graph C(g\n).

We write φ : g →c h to indicate the reduction context of a graph reduction step.
(ii) Let S = (gι →nι gι+1)ι<α be a reduction in R. S is strongly m-continuous in R if

limι→λ gι = gλ and (depthgι(nι))ι<λ tends to infinity for each limit ordinal λ < α. S
strongly m-converges to g in R, denoted S : g0 �m R g, if it is strongly m-continuous and
either S is closed with g = gα or S is open with g = limι→α gι and (depthgι(nι))ι<α
tending to infinity.

(iii) Let S = (gι →cι gι+1)ι<α be a reduction in R⊥ = (Σ⊥, R). S is strongly p-continuous
in R if lim infι→λ cι = gλ for each limit ordinal λ < α. S strongly p-converges to g
in R, denoted S : g0 �p R g, if it is strongly p-continuous and either S is closed with
g = gα or S is open with g = lim infι→α cι.

Note that we have to extend the signature ofR to Σ⊥ for the definition of strong p-convergence.
However, we can obtain the total fragment of strong p-convergence if we restrict ourselves
to total term graphs: a reduction (gι →R⊥ gι+1)ι<α strongly p-converging to g is called
strongly p-converging to g in G∞C (Σ) if g as well as each gι is total, i.e. an element of G∞C (Σ).
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I Example 5.9. Figure 1c illustrates an infinite reduction derived from the rule ρ1 in Figure 1a.
Note that the reduction rule is applied to sub-term graphs at increasingly large depth. Since
additionally, gi†(i+ 1) ∼= gω†(i+ 1) for all i < ω, i.e. limi→ω gi = gω, the reduction strongly
m-converges to the term graph gω. Moreover, since each node in gω eventually appears in a
reduction context and remains stable afterwards, we have lim infi→ω gι = gω. Consequently,
the reduction also strongly p-converges to gω.

The rest of this section is concerned with proving that the above correspondence in convergence
behaviour – similarly to infinitary term rewriting (cf. Theorem 2.3) – is characteristic: strong
p-convergence in G∞C (Σ) coincides with strong m-convergence.

Since the partial order ≤S
⊥ forms a complete semilattice on G∞C (Σ⊥) according to The-

orem 4.2, we know that strong p-continuity coincides with strong p-convergence:

I Proposition 5.10. Each strongly p-continuous reduction in a GRS is strongly p-convergent.

The two lemmas below form the central properties that link strong m- and p-convergence:

I Lemma 5.11. Let (gι →nι gι+1)ι<α be an open reduction in a GRS R⊥. If S strongly
p-converges to a total term graph, then (depthgι(nι))ι<α tends to infinity.

I Lemma 5.12. Let (gι →nι gι+1)ι<α be an open reduction strongly p-converging to g in a
GRS R⊥. If (gι)ι<α is Cauchy and (depthgι(nι))ι<α tends to infinity, then g ∼= limι→α gι.

The following property, which relates strong m-convergence and -continuity, follows from
the fact that our definition of strong m-convergence on term graphs instantiates the abstract
notion of strong m-convergence from our previous work [3]:

I Lemma 5.13. Let S = (gι →nι gι+1)ι<α be an open strongly m-continuous reduction in a
GRS. If (depthgι(nι))ι<α tends to infinity, then S is strongly m-convergent.

Proof. Special case of Proposition 5.5 from [3]; cf. [10, Thm. B.2.5] for the correct proof. J

Now we have everything in place to prove that strong p-convergence conservatively extends
strong m-convergence.

I Theorem 5.14. Let R be a GRS and S a reduction in R⊥. We then have that

S : g �m R h iff S : g �p R h in G∞C (Σ).

Proof. Let S = (gι →nι gι+1)ι<α be a reduction in R⊥. We prove the “only if” direction by
induction on α. The case α = 0 is trivial. If α is a successor ordinal, then the statement
follows immediately from the induction hypothesis.

Let α be a limit ordinal. As S : g �m R gα, we know that S|γ : g �m R gγ for all γ < α.
Hence, we can apply the induction hypothesis to obtain that S|γ : g �p R gγ for each γ < α.
Thus, S is strongly p-continuous, which means, by Proposition 5.10, that S strongly p-
converges to some term graph h′. As S strongly m-converges, we know that (gι)ι<α is Cauchy
and that (depthgι(nι))ι<α tends to infinity. Hence, we can apply Lemma 5.12 to obtain that
h′ = limι→α gι = h, i.e. S : g �p R h. The “in G∞C (Σ)” part follows from S : g �m R h.

We will also prove the “if” direction by induction on α: again, the case α = 0 is trivial
and the case that α is a successor ordinal follows immediately from the induction hypothesis.

Let α be a limit ordinal. As S is strongly p-convergent in G∞C (Σ), we know that
S|γ : g �p R gγ in G∞C (Σ) for all γ < α. Thus, we can apply the induction hypothesis to
obtain that S|γ : g �m R gγ for each γ < α. Hence, S is strongly m-continuous. As S strongly
p-converges in G∞C (Σ), we know from Lemma 5.11 that (depthgι(nι))ι<α tends to infinity.
With the strong m-continuity of S, this yields, according to Lemma 5.13, that S strongly
m-converges to some h′. By Lemma 5.12, we conclude that h′ = h, i.e. S : g �m R h. J
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5.3 Normalisation of Strong p-convergence
In this section we shall show that – similarly to TRSs [4] – GRSs are normalising w.r.t.
strong p-convergence. As for terms, this is a distinguishing feature of strong p-convergence.
For example, the term graph rule (that unravels to) c → c, for some constant c, yields a
system in which c has no normal form w.r.t. strong m-convergence (or finite reduction or
weak p-/m-convergence). If we consider strong p-convergence however, repeatedly applying
the rule to c yields the normalising reduction c�p ⊥. Term graphs which can be infinitely
often contracted at the root – such as c – are called root-active:

I Definition 5.15. Let R be a GRS over Σ and g ∈ G∞C (Σ⊥). Then g is called root-active if,
for each reduction g �p R g′, there is a reduction g′ �p R h to a redex h in R. The term graph
g is called root-stable if, for each reduction g �p R h, h is not a redex in R.

Similar to the construction of Böhm normal forms [18], the strategy for rewriting a term
graph into normal form is to rewrite root-active sub-term graphs to ⊥ and non-root-active
sub-term graphs to root-stable terms. The following lemma will allow us to do that:

I Lemma 5.16. Let R be a GRS over Σ and g ∈ G∞C (Σ⊥).
(i) If g is root-active, then there is a reduction g �p R ⊥.
(ii) If g is not root-active, then there is a reduction g �p R h to a root-stable term graph h.
(iii) If g is root-stable, then so is every term graph h with a reduction g �p R h.

In the following, we need to generalise the concatenation of sequences. To this end, we
make use of the fact that the prefix order ≤ on sequences forms a cpo and thus has lubs for
directed sets: let (Sι)ι<α be a sequence of sequences in a common set. The concatenation
of (Sι)ι<α, written

∏
ι<α Sι, is recursively defined as the empty sequence 〈〉 if α = 0,(∏

ι<α′ Sι
)
· Sα′ if α = α′ + 1, and

⊔
γ<α

∏
ι<γ Sι if α is a limit ordinal.

The following lemma shows that we can use the reductions from Lemma 5.16 in order to
turn the sub-term graphs of a term graph into root-stable form level by level:

I Lemma 5.17. Let R be a GRS over Σ, g ∈ G∞C (Σ⊥) and d < ω such that g|n is root-stable
for all n ∈ Ng with depthg(n) < d. Then there is a reduction Sd : g �p R h such that h|n is
root-stable for each n ∈ Ng with depthg(n) ≤ d.

Proof. There are only finitely many nodes in g at depth d, say, n0, n1, . . . , nk. Let πi be
a minimal position of ni in g for each i ≤ k. For each i ≤ k, we construct a reduction
Ti : gi �p R gi+1 with g0 = g. Since all sub-term graphs at depth < d are root stable, each
step in Ti takes place at depth ≥ d and thus πi+1 is still a position in gi+1 of a node at
depth d. If gi|πi is root-active, then Lemma 5.16 yields a reduction gi|πi �p R ⊥. Let Ti be
the embedding of this reduction into gi at position πi. Hence, gi+1|πi = ⊥ is root-stable.
If gi|πi is not root-active, then Lemma 5.16 yields a reduction gi|πi �p R g′i to a root-stable
term graph g′i. Let Ti be the embedding of this reduction into gi at position πi. Hence,
gi+1|πi = g′i is root-stable.

Define Sd : =
∏
i≤k Ti. Since, by Lemma 5.16, root-stability is preserved by strongly

p-converging reductions, we can conclude that Sd : g �p R gk+1 such that all sub-term graphs
at depth at most d in gk+1 are root-stable. J

Note that the assumption that all sub-term graphs at depth < d are root-stable is crucial.
Otherwise, reductions within sub-term graphs at depth d may take place at depth < d!

Finally, the strategy for rewriting a term graph into normal form is to simply iterate the
reductions that are given by Lemma 5.17 above.
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I Theorem 5.18. Every GRS R is normalising w.r.t. strongly p-converging reductions. That
is, for each partial term graph g, there is a reduction g �p R h to a normal form h in R.

Proof. Given a partial term graph g0, take the reductions Sd : gd �p gd+1 from Lemma 5.17
for each d ∈ N and construct S =

∏
d<ω Sd. By Proposition 5.10, we have S : g0 �p gω for

some gω. As, by Lemma 5.16, root-stability is preserved by strongly p-converging reductions,
and each reduction Sd increases the depth up to which sub-term graphs are root-stable, we
know that each sub-term graph of gω is root-stable, i.e. gω is a normal form. J

The ability of strong p-convergence to normalise any term graph will be a crucial
component of the proof of completeness of infinitary term graph rewriting.

6 Soundness and Completeness of Infinitary Term Graph Rewriting

In this section, we will study the relationship between GRSs and the corresponding TRSs
they simulate. In particular, we will show the soundness of GRSs w.r.t. strong convergence
and a restricted form of completeness. To this end we make use of the isomorphism between
terms and canonical term trees as outlined at the end of Section 3.

I Proposition 6.1. The unravelling U (g) of a term graph g ∈ G∞(Σ) is given by the labelled
quotient tree (P(g), g(·), IP(g)).

Proof. Since IP(g) is a subrelation of∼g, we know that (P(g), g(·), IP(g)) is a labelled quotient
tree and thus uniquely determines a term t. By Lemma 3.7, there is a homomorphism from t

to g. Hence, U (g) = t. J

Before we start investigating the correspondences between term rewriting and term graph
rewriting, we need to transfer the notions of left-linearity and orthogonality to GRSs:

I Definition 6.2. Let R = (Σ, R) be a GRS. A rule ρ ∈ R is called left-linear resp. left-finite
if its left-hand side ρl is a term tree resp. a finite term graph. The GRS R is called left-linear
resp. left-finite if all its rules are left-linear resp. left-finite. The GRS R is called orthogonal
if it is left-linear and the TRS U (R) is non-overlapping.

Note that the unravelling U (R) of a GRS R is left-linear if R is left-linear, that U (R) is
left-finite if R is left-linear and left-finite, and that U (R) is orthogonal if R is orthogonal.

We have to single out a particular kind of redex that manifests a peculiar behaviour:

I Definition 6.3. A redex of a rule (g, l, r) is called circular if l and r are distinct but the
matching V-homomorphism φ maps them to the same node, i.e. l 6= r but φ(l) = φ(r).

Kennaway et al. [16] show that circular redexes only reduce to themselves:

I Proposition 6.4. For every circular ρ-redex g|n, we have g 7→n,ρ g.

However, contracting the unravelling of a circular redex also yields the same term:

I Lemma 6.5. For every circular ρ-redex g|n, we have U (g)→π,U(ρ) U (g) for all π ∈ Pg(n).

Proof. Since there is a circular ρ-redex, we know that the right-hand side root rρ is reachable
but different from the left-hand side root lρ of ρ. Hence, there is a non-empty path π̂ from lρ

to rρ. Because g|n is a circular ρ-redex, the corresponding matching V-homomorphism maps
both lρ and rρ to n. Since ∆-homomorphisms preserve paths, we thus know that π̂ is also a



P. Bahr 81

path from n to itself in g. In other words, π ∈ Pg(n) implies π · π̂ ∈ Pg(n). Consequently,
for each π ∈ Pg(n), we have that U (g) |π = U (g) |

π·π̂.
Since there is a path π̂ from lρ to rρ, the unravelling U (ρ) of ρ is of the form s → s|

π̂
.

Hence, we know that each application of U (ρ) at a position π in some term t replaces the
subterm at π with the subterm at π · π̂ in t, i.e. t→π,U(ρ) t[t|π·π̂]π.

Combining the two findings above, we obtain that

U (g)→π,U(ρ) U (g) [U (g) |
π·π̂]π = U (g) [U (g) |π]π = U (g) for all π ∈ Pg(n) J

The following two properties due to Kennaway et al. [16] show how single term graph
reduction steps relate to term reductions in the corresponding unravelling.1

I Proposition 6.6. Given a left-linear GRS R and a term graph g in R, it holds that g is a
normal form in R iff U (g) is a normal form in U (R).

I Theorem 6.7. Let R be a left-linear, left-finite GRS with a reduction step g →n,ρ h. Then
S : U (g)�m U(R) U (h) such that the depth of every redex contracted in S is greater or equal to
depthg(n). In particular, if the ρ-redex g|n is not circular, then S is a complete development
of the set of redex occurrences Pg(n) in U (g).

In the following, we will generalise the above soundness theorem to strongly p-converging
term graph reductions. We will then use the correspondence between strong m-convergence
and strong p-convergence in G∞C (Σ) to transfer that result to stronglym-converging reductions.

At first, we can observe that the limit inferior commutes with the unravelling:

I Proposition 6.8. For each sequence (gι)ι<α in the partially ordered set (G∞C (Σ⊥),≤S
⊥), we

have that U (lim infι→α gι) = lim infι→α U (gι).

Proof. This is an immediate consequence of Theorem 4.2 and Proposition 6.1. J

In order to prove soundness w.r.t. strong p-convergence, we need to turn the statement
about the depth of redexes in Theorem 6.7 into a statement about the corresponding reduction
contexts. To this end, we make use of the fact that the semilattice structure of ≤S

⊥ admits
greatest lower bounds for non-empty sets of term graphs:

I Proposition 6.9 ([6]). In the partially ordered set (G∞C (Σ⊥),≤S
⊥) every non-empty set G

has a greatest lower bound
d
G given by the following labelled quotient tree (P, l,∼):

P =
{
π ∈

⋂
g∈G
P(g)

∣∣∣∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f
}

l(π) =
{
f if ∀g ∈ G : f = g(π)
⊥ otherwise

∼ =
⋂

g∈G
∼g ∩ P × P

In particular, the glb of a set of term trees is again a term tree.

We can then prove the following proposition that relates the reduction context of a term
graph reduction step with the reduction contexts of the corresponding term reduction:

I Proposition 6.10. For each reduction step g →c h in a left-linear, left-finite GRS R, there is
a non-empty reduction S = (tι →cι tι+1)ι<α with S : U (g)�p U(R) U (h) and U (c) =

d
ι<α cι.

1 The original results are on finite term graphs. However, for the correspondence of normal forms, this
restriction is not necessary, and for the soundness, only the finiteness of left-hand sides is crucial.
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Proof. By Theorem 6.7, there is a reduction S : U (g) �m U(R) U (h). At first we assume
that the redex g|n contracted in g →n h is not a circular redex. Hence, S is a complete
development of the set of redex occurrences Pg(n) in U (g). By Theorem 2.3, we then
obtain S : U (g)�p U(R) U (h). From Lemma 5.5 and Proposition 6.1 it follows that U (g\n)
is obtained from U (g) by replacing each subterm of U (g) at a position in Pmg (n), i.e. a
minimal position of n, by ⊥. Since each step tι →πι tι+1 in S contracts a redex at a
position πι that has a prefix in Pmg (n), we have, by Proposition 6.9 and Corollary 4.1, that
U (g\n) ≤S

⊥
d
ι<α tι[⊥]πι =

d
ι<α cι. Moreover, for each π ∈ Pmg (n) there is a step at ιπ < α

in S that takes place at π. From Proposition 6.9, it is thus clear that U (g\n) =
d
π∈Pmg (n) cιπ ,

which means that U (g\n) ≥S
⊥

d
ι<α cι. Due to the antisymmetry of ≤S

⊥, we thus know that
U (g\n) =

d
ι<α cι. Then U (c) =

d
ι<α cι follows from the fact that c ∼= g\n.

If the ρ-redex g|n contracted in g →ρ,n h is a circular redex, then g = h according
to Proposition 6.4. However, by Lemma 6.5, each U (ρ)-redex at positions in Pg(n) in
U (g) reduces to itself as well. Hence, we get a reduction U (g)�p U(ρ) U (h) via a complete
development of the redexes at the minimal positions Pmg (n) of n in g. The equality U (c) =d
ι<α cι then follows as for the first case above. J

In order to prove the soundness of strongly p-converging term graph reductions, we need
the following technical lemma, which can be proved easily:

I Lemma 6.11. Let (aι)ι<α be a sequence in a complete semilattice (A,≤) and (γι)ι<δ a
strictly monotone sequence in the ordinal α such that

⊔
ι<δ γι = α. Then

lim infι→α aι = lim infβ→δ
(d

γβ≤ι<γβ+1
aι

)
.

I Theorem 6.12. Let R be a left-linear, left-finite GRS. If g �p R h, then U (g)�p U(R) U (h).

Proof. Let S = (gι →cι gι+1)ι<α be a reduction strongly p-converging to gα in R. By
Proposition 6.10, there is, for each γ < α, a reduction Tγ : U (gγ)�p U(R) U (gγ+1) such that

l
ι<|Tγ |

cι = U (cγ), where (cι)ι<|Tγ | is the sequence of reduction contexts in Tγ . (∗)

Define for each δ ≤ α the concatenation Uδ =
∏
ι<δ Tι. We will show that Uδ : U (g0)�p U(R)

U (gδ) for each δ ≤ α by induction on δ. The theorem is then obtained from the case δ = α.
The case δ = 0 is trivial, and the case δ = δ′ + 1 follows from the induction hypothesis.
For the case that δ is a limit ordinal, let Uδ = (tι →c′

ι
tι+1)ι<β . For each γ < β we find

some δ′ < δ with Uδ|γ < Uδ′ . By induction hypothesis, we can assume that Uδ′ is strongly
p-continuous. Thus, the proper prefix Uδ|γ strongly p-converges to tγ . This shows that each
proper prefix Uδ|γ of Uδ strongly p-converges to tγ . Hence, Uδ is strongly p-continuous.

In order to show that Uδ : U (g0)�p U(R) U (gδ), it remains to be shown that lim infι→β c′ι =
U (gδ). Since S is strongly p-converging, we know that lim infι→δ cι = gδ. By Proposition 6.8,
we thus have lim infι→δ U (cι) = U (gδ). By (∗) and the construction of Uδ, there is a strictly
monotone sequence (γι)ι<δ with γ0 = 0 and

⊔
ι<δ γι = β such that U (cι) =

d
γι≤γ<γι+1

c′γ
for all ι < δ. Thus, we can complete the proof as follows:

U (gδ) = lim infι→δ U (cι) = lim infι→δ
(d

γι≤γ<γι+1
c′γ

)
Lem. 6.11= lim infι→β c′ι J

By combining the soundness result above with the normalisation of strong p-convergence,
we obtain the following completeness result:

I Theorem 6.13. Given an orthogonal, left-finite GRS R, we obtain for each reduction
U (g)�p U(R) t, a reduction g �p R h such that t�p U(R) U (h).
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Proof. Let U (g) �p U(R) t. By Theorem 5.18 there is a normalising reduction g �p R h.
According to Theorem 6.12, g �p R h implies U (g)�p U(R) U (h). By Proposition 6.6, U (h)
is a normal form in U (R). Since orthogonal, left-finite TRSs are confluent w.r.t. strong
p-convergence [4], the reduction U (g) �p U(R) U (h) together with U (g) �m U(R) t yields a
reduction t�p U(R) U (h). J

The results above make strongly p-converging term graph reductions sound and complete for
strongly p-converging term reductions in the sense of adequacy of Kennaway et al. [16].

The notion of adequacy of Kennaway et al. [16] does not only comprise soundness and
completeness but also demands that the unravelling U (·) is surjective and both preserves and
reflects normal forms. For infinitary term graph rewriting, surjectivity of U (·) is trivial since
each term is the image of itself under U (·) and the preservation and reflection of normal
forms is given for left-linear GRSs by Proposition 6.6.

From the soundness result for strong p-convergence, we can straightforwardly derive a
corresponding result for strong m-convergence:

I Theorem 6.14. Let R be a left-linear, left-finite GRS. If g �m R h, then U (g)�m U(R) U (h).

Proof. Given a reduction S : g �m R h, we know, by Theorem 5.14, that S : g �p R h in
G∞C (Σ). According to Theorem 6.12, we then find a reduction U (g) �p U(R) U (h). Since,
g, h are total, so are U (g) ,U (h). Hence, by Corollary 7.15 of [4], we obtain a reduction
U (g)�m U(R) U (h). J

Similar to the proof of Theorem 6.13, we can derive a weakened completeness property
for strong m-convergence:

I Theorem 6.15. Given an orthogonal, left-finite GRS R that is normalising w.r.t. strongly
m-converging reductions, we find for each normalising reduction U (g)�m U(R) t a reduction
g �m R h such that t = U (h).

Proof. Let U (g)�m U(R) t with t a normal form in U (R). As R is normalising w.r.t. strongly
m-converging reductions, there is a reduction g �m R h with h a normal form in R. According
to Theorem 6.14, we then find a reduction U (g)�m U(R) U (h). By Proposition 6.6, U (h) is a
normal form in U (R). Since U (R) is left-finite and orthogonal, we know that, according to
Theorem 7.15 in [17], R has unique normal forms w.r.t. �m . Consequently, t = U (h). J

While the above theorem is restricted to normalising GRSs, we conjecture that this restriction
is not needed: as soon as we have a compression lemma for strong p-convergence, completeness
of normalising strong m-convergence follows from the completeness of strong p-convergence.

Yet, as mentioned in the in the introduction, the restriction to normalising reductions is
crucial. The counterexample that Kennaway et al. [16] give for their informal notion of term
graph convergence in fact also applies to our notion of strong m-convergence.

7 Conclusions

By generalising the metric and partial order based notions of convergence from terms to term
graphs, we have obtained two infinitary term graph rewriting calculi that simulate infinitary
term rewriting adequately. Not only do these results show the appropriateness of our notions
of infinitary term graph rewriting. They also refute the claim of Kennaway et al. [16] that
infinitary term graph rewriting cannot adequately simulate infinitary term rewriting.

Since reasoning over the rather operational style of term graph rewriting is tedious, we
tried to simplify the proofs using labelled quotient trees. In future work, it would be helpful
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to characterise term graph rewriting itself in this way or to adopt a more declarative approach
to term graph rewriting [12, 11, 1].

We think that, in this context, strong p-convergence may help to bridge the differences
between the operational style of Barendregt et al. [8] and the declarative formalisms [12, 11, 1],
which arise from the different way of contracting circular redexes. While in the operational
approach that we adopted here, circular redexes are contracted to themselves, they are
contracted to ⊥ in the abovementioned declarative approaches. However, since circular
redexes are root-active, they can be rewritten to ⊥ in a strongly p-converging reduction.
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