
A Functional Language for Specifying Business Reports
Patrick Bahr

Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen, Denmark

paba@diku.dk

Abstract

We describe our work on developing a functional
domain specific language for specifying business
reports. The report specification language is part of
a novel enterprise resource planing system based
on the idea of a providing a lean core system that
is highly customisable via a variety of domain spe-
cific languages.

1 Introduction

Process-oriented event-driven transaction systems
(POETS) is a novel software architecture for en-
terprise resource planning (ERP) systems, intro-
duced by Henglein et al. [1]. Rather than storing
both transactional data and implicit process state
in a database, POETS employs a pragmatic sepa-
ration between (a) transactional data, that is what
has happened; (b) reports, that is what can be de-
rived from the transactional data; and (c) contracts,
that is which transactions are expected in the fu-
ture. Moreover, rather than using general purpose
programming languages to specify business pro-
cesses, POETS utilises declarative domain-specific
languages (DSLs) to customise the different as-
pects of a system. The use of DSLs not only en-
ables explicit formalisation of business processes,
it also minimises the gap between requirements and
a running system.

A simplified overview over the POETS architec-
ture is presented in Figure 1. At the heart of the sys-
tem is the event log, which is an append-only list of
transactions. Transactions represent relevant events
that may occur, such as a payment by a customer, a
delivery of goods by a shipping agency, or a move-
ment of items into an inventory. This does not only
satisfies the legal requirement for ERP systems to
archive all transaction data that is relevant for au-
diting but also makes it possible to compute reports
incrementally as shown by Nissen and Larsen [3].

2 The Report Language

The purpose of the report engine is to provide a
structured view of the data base that is constituted
by the system’s event log. This structured view of
the data in the event log comes in the form of a
report, a collection of condensed structured infor-
mation compiled from the event log. Conceptually,
a report is compiled from the event log by a func-
tion of type EventLog→ Report, a report function.
The report language provides a means to specify
such a report function in a declarative manner.

The report language is – much like the query
fragment of SQL – a functional language with-
out side effects. It only provides operations to
non-destructively manipulate and combine values.
Since the system’s storage is based on a shallow
event log – basically a list of event representations
– the report language has to provide operations to
relate, filter and aggregate pieces of information.
Moreover, as the data stored in the event log is in-
herently heterogeneous – containing data of differ-
ent kind – the report language needs to offer a com-
prehensive type system that allows to safely operate
in this setting.

The entire system is based on a common basis
of base types consisting of strings, Booleans, in-
tegers, lists etc. Apart from that the system offers
user-defined record types with an inheritance sys-
tem based on nominal subtyping. To this end, PO-
ETS also offers an ontology language that is used to
describe record types, their fields and their interde-
pendence. The central record type is Event, which
represents the events that are registered in the event
log. In fact, as far as the report language is con-
cerned, the event log is a value of type [Event].

Every interaction with the running system is re-
flected with a corresponding value of (a subtype of)
type Event in the event log. The simplest exam-
ple is the interface to the report engine itself. It
allows to add, modify and remove reports. Each
such operation is reflected by an event of type

1

paba@diku.dk

Functional Language for Specifying Business Reports Patrick Bahr

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

Figure 1: Bird’s-eye view of the POETS architecture [1].

CreateReport, UpdateReport, and DeleteReport,
respectively. The former two are subtypes of
PutReport, which in turn is – like DeleteReport
– a subtype of ReportEvent.

This allows us to write the following simple re-
port function that creates the report which lists the
names of all active (i.e. not deleted) reports:

reportNames : [String]
reportNames = [pr.name |

cr : CreateReport← events,
pr : PutReport = head [ur |

ur : ReportEvent← events,
ur.name ≡ cr.name]]

Every report function implicitly has as its first
argument the event log of type [Event] – a list of
events – bound to the name events. The syntax
of the report language – and to large parts also its
semantics – is based on Haskell [2]. The central
data structure is that of lists. In order to formulate
operations on lists concisely, we use list compre-
hensions [4] as seen in the above example. A list
comprehension of the form [e | c] denotes a list
containing elements of the form e generated by c,
where c is a sequence of generators and filters.

As we have mentioned, access to type infor-
mation and its propagation to subsequent com-
putations is essential due to the fact that the
event log is a list of heterogeneously typed ele-
ments – events of different kinds. The generator
cr : CreateReport← events iterates through ele-
ments of the list events binding each element to the
variable cr. The typing cr : CreateReport restricts
this iteration to elements of type CreateReport.
This type information is propagated through the
subsequent generators and filters of the list compre-
hension. In the filter ur.name ≡ cr.name, we use

the fact that elements of type ReportEvents have a
field name of type String. When binding the first
element of the result of the nested list comprehen-
sion to the variable pr it is also checked whether
this element is in fact of type PutReport. Thus
we ignore reports that are marked as deleted via a
DeleteReport event.

The report language is based on the simply
typed lambda calculus extended with a polymor-
phic (non-recursive) let expression and a type case
expression. The core language is given by the fol-
lowing grammar:

e ::= x | c | λx.e | e1 e2 | let x = e in e′

| type x = e of {r→ e1; → e2}

where x ranges over variables, and c over constants
which includes integers, Booleans, tuple and list
constructors as well as operations on them like +,
if-then-else etc. In particular, we have a fold oper-
ation fold of type (α → β → β)→ β → [α]→ β .
This is the only operation of the report language
that permits recursive computations on lists. List
comprehensions are mere syntactic sugar and can
be reduced to fold and let expressions as for exam-
ple in Haskell [2].

The extended list comprehension of the report
language that allow filtering according to run time
type information depend on type case expressions
of the form type x = e of {r→ e1; → e2}. In
such a type case expression, an expression e of
some record type re gets evaluated to record value
v which is then bound to a variable x. The record
type r that the record value v is matched against can
be any subtype of re. The further evaluation of the
type case expression depends on the type rv of the
record value v. This type can be any subtype of re.

2

Functional Language for Specifying Business Reports Patrick Bahr

If rv≤ r, the evaluation proceeds with e1, otherwise
with e2. Binding e to a variable x allows to use the
stricter type r in the expression e1.

Although, the subtyping discipline that we use
is nominal, the type system also allows the pro-
grammer to use record types as if the subtyping
was purely structural. This is needed in order to
allow the sharing of field names between distinct
record types. To this end, we use type constraints
of the form α. f : τ which intuitively states that α

is a record type with a field f of type τ . Field se-
lectors are merely postfix operators. For example
the .name field selector in the example is of type
α.name : β ⇒ α → β .

Another important aspect of POETS in general
and the report language in particular is the main-
taining of references and the access of the data
they refer to. This becomes necessary as certain
pieces of information, e.g. customer information,
are attached to a unique entity with lifecycle, e.g.
a customer. To this end, POETS allow to create
an entity with a unique id – a reference. Subse-
quently, information attached to this entity can be
updated and eventually, the entity can be removed
altogether. All these changes are, of course, re-
flected in the event log and can thus be examined by
a report function. Nevertheless, due to the impor-
tance of references, the report language offers dedi-
cated dereferencing operations that allow quick and
typesafe access to the data associated with entities.

While the type system is important in order to
avoid obvious specification errors, it is also impor-
tant to ensure a fast execution of the thus obtained
functional specifications. This is, of course, a gen-
eral issue for querying systems. In our system, it is,
however, of even greater importance since shifting
the structure of the data – from the data store to the
domain of queries – means that queries operate on
the complete data set of the data base and thus each
report has to be recomputed after each transaction.
In other words, if treated naı̈vely, the conceptual
simplification provided by the flat event log has to
be paid via much more expensive computations.

This issue can be addressed by transforming a
given report function f into an incremental func-
tion f ′ which updates a previously computed report
according to the changes that have occurred since
the report was computed before. That is, given an

event log l and an update to it l⊕e, we require that
f (l⊕ e) = f ′(f (l),e). The new report f (l⊕ e) is
obtained by updating the previous report f (l) ac-
cording to the changes e. In the case of the event
log, we have a list structure. Changes only oc-
cur monotonically, by adding new elements to it:
Given an event log l and a new event e, the new
event log is e# l, where # is the list constructor of
type α → [α]→ [α].

Here it is crucial that we have restricted the re-
port language such that operations on lists are lim-
ited to the higher-order function fold. The funda-
mental idea of incrementalising report functions is-
based on the following equation:

fold f e (x#xs) = f x (fold f e (xs))

Based on this idea, we are able to make the com-
putation of most reports independent of the size of
the event log but only dependent of the changes to
the event log and the previous report [3]. Unfortu-
nately, if we have for example list comprehensions
containing more than one generator, we get report
functions with nested folds. In order to properly in-
crementalise such functions, we need to move from
list structures to multisets. This is, however, only
rarely a practical restriction since most aggregation
functions are based on commutative binary opera-
tions and are thus oblivious to ordering.

References
[1] Fritz Henglein, Ken Friis Larsen, Jakob Grue Si-

monsen, and Christian Stefansen. POETS: Process-
oriented event-driven transaction systems. Journal
of Logic and Algebraic Programming, 78(5):381–
401, May 2009.

[2] Simon Marlow. Haskell 2010 Language Report,
2010.

[3] Michael Nissen and Ken Friis Larsen. FunSETL
— Functional Reporting for ERP Systems. In Olaf
Chitil, editor, IFL ’07, pages 268–289, 2007.

[4] Philip Wadler. Comprehending monads. Mathemat-
ical Structures in Computer Science, 2(04):461–
493, 1992.

3

	Introduction
	The Report Language

