
Domain-Specific Languages
for Enterprise Systems

Jesper Andersen2 Patrick Bahr1

Fritz Henglein1 Tom Hvitved1

1University of Copenhagen, Department of Computer Science

2Configit A/S, Copenhagen

ISoLA ’14, 8th October, 2014



Enterprise Resource Planning (ERP) Systems

Goal: integrate several software components that are essential for
managing a business.

ERP systems integrate

I Financial Management

I Supply Chain Management

I Manufacturing Resource
Planning

I Human Resource Management

I Customer Relationship
Management

I . . .

2 / 17



Enterprise Resource Planning (ERP) Systems

Goal: integrate several software components that are essential for
managing a business.

ERP systems integrate

I Financial Management

I Supply Chain Management

I Manufacturing Resource
Planning

I Human Resource Management

I Customer Relationship
Management

I . . .

2 / 17



Traditional ERP Systems

Three tier architecture

I client

I application server

I relational database

Shortcomings

I database combines transactional data & implicit process state

I processes are implemented in general purpose language

I semantic gap between specification and implementation

I large monolithic systems

I hard to maintain

3 / 17



Traditional ERP Systems

Three tier architecture

I client

I application server

I relational database

Shortcomings

I database combines transactional data & implicit process state

I processes are implemented in general purpose language

I semantic gap between specification and implementation

I large monolithic systems

I hard to maintain

3 / 17



Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

Goal: POETS reflects the ontological architecture for requirements

4 / 17



Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

Goal: POETS reflects the ontological architecture for requirements

4 / 17



Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events

updates

query results

Goal: POETS reflects the ontological architecture for requirements

4 / 17



Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

Goal: POETS reflects the ontological architecture for requirements

4 / 17



Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

Goal: POETS reflects the ontological architecture for requirements

4 / 17



Entering POETS
Process-oriented event-driven transaction systems

compact core system • customisable via DSLs • simple data model

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add/delete report
modify report
query report

Event
log

events updates

query results

Goal: POETS reflects the ontological architecture for requirements

4 / 17



The Language of POETS
Examples and Demo

1. Ontology language

data model

2. Contract language

business processes

3. Report language

high-level data

Example: a bike shop

5 / 17



The Language of POETS
Examples and Demo

1. Ontology language data model

2. Contract language business processes

3. Report language high-level data

Example: a bike shop

5 / 17



The Language of POETS
Examples and Demo

1. Ontology language data model

2. Contract language business processes

3. Report language high-level data

Example: a bike shop

5 / 17



Ontology of a Bike Shop

OrderLine is Data.
OrderLine has an Item.
OrderLine has Money called unitPrice.
OrderLine has a Real called vatPercentage.

Item is a Resource.
Item has an ItemType.
Item has a Real called quantity.

Bicycle is an ItemType.
Bicycle has a String called model.

6 / 17



The Process of Selling a Bike

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)
where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)
where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

7 / 17



Demo

8 / 17



Adding a Repair Service

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)
where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)
where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

9 / 17



Adding a Repair Service

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)
where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)
where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

9 / 17



Adding a Repair Service (cont.)

clause repair(items : [Item], customer : 〈Customer〉,
deadline : Duration)〈me : 〈Me〉〉 =

when RequestRepair(sender s, receiver r, items i)
where s ≡ customer ∧ r ≡ me ∧ subset i items
due within deadline
remaining newDeadline

then
〈me〉 Repair(sender s, receiver r, items its)
where s ≡ me ∧ r ≡ customer ∧ i ≡ its
due within 5D
remaining newDeadline’

then
repair(items, customer, newDeadline 〈−〉 5D 〈+〉 newDeadline’)〈me〉

10 / 17



Demo

11 / 17



Reports

report : CashFlowStatement
report = let

payments = [payment | payment : Payment ← transactions]
mRevenues = [payment | payment ← payments, isMe (payment.receiver)]
mExpenses = [payment | payment ← payments, isMe (payment.sender)]

in
CashFlowStatement{
revenues = mRevenues,
expenses = mExpenses,
revenueTotal = sumPayments mRevenues,
expenseTotal = sumPayments mExpenses}

transactions : [Transaction]
transactions = [tr.transaction | tr : TransactionEvent ← events]

12 / 17



Demo

13 / 17



Implementation

I server & DSLs implemented in Haskell

I client software for Android

I case studies

complete source code & documentation available online:

https://bitbucket.org/jespera/poets/

14 / 17

https://bitbucket.org/jespera/poets/


Contributions

I database = log + reports

I multiparty contracts with real-time constraints

I full recoverability and auditability (data and specification)

I safe run-time changes of data model, contracts and reports

15 / 17



Domain-Specific Languages
for Enterprise Systems

Jesper Andersen2 Patrick Bahr1

Fritz Henglein1 Tom Hvitved1

1University of Copenhagen, Department of Computer Science

2Configit A/S, Copenhagen

ISoLA ’14, 8th October, 2014



The Complete Picture

Contract Engine

- manage templates
- manage contracts
- retrieve contracts
- register transactions

Report Engine

- manage reports
- query reports

Entity Store

- manage entities

Rule Engine

- manage rules
- apply rules

Event
log

Data Model

- manage data definitions
- retrieve data definitions

information pushed information pulled

17 / 17


