
Domain-Specific Languages

for Enterprise Systems

Jesper Andersen2, Patrick Bahr1, Fritz Henglein1, and Tom Hvitved1

1 Department of Computer Science, University of Copenhagen, Universitetsparken 5,
2100 Copenhagen, Denmark

{bahr,henglein,hvitved}@diku.dk
2 Configit A/S, Kristianiagade 7, 2100 Copenhagen, Denmark

ja@configit.com

Abstract. The process-oriented event-driven transaction systems (PO-
ETS) architecture introduced by Henglein et al. is a novel software archi-
tecture for enterprise resource planning (ERP) systems. POETS employs
a pragmatic separation between (i) transactional data, that is, what has
happened; (ii) reports, that is, what can be derived from the transactional
data; and (iii) contracts, that is, which transactions are expected in the
future. Moreover, POETS applies domain-specific languages (DSLs) for
specifying reports and contracts, in order to enable succinct declarative
specifications as well as rapid adaptability and customisation. In this pa-
per we present an implementation of a generalised and extended variant
of the POETS architecture. The extensions amount to a customisable
data model based on nominal subtyping; support for run-time changes
to the data model, reports and contracts, while retaining full auditabil-
ity; and support for referable data that may evolve over time, also while
retaining full auditability as well as referential integrity. Besides the re-
vised architecture, we present the DSLs used to specify data definitions,
reports, and contracts respectively. Finally, we illustrate a use case sce-
nario, which we implemented in a trial for a small business.

1 Introduction

Enterprise Resource Planning (ERP) systems are comprehensive software sys-
tems used to integrate and manage business activities in enterprises. Such ac-
tivities include—but are not limited to—financial management (accounting),
production planning, supply chain management and customer relationship man-
agement. ERP systems emerged as a remedy to heterogeneous systems, in which
data and functionality are spread out—and duplicated—amongst dedicated sub-
systems. Instead, an ERP system it built around a central database, which stores
all information in one place.

Traditional ERP systems such as Microsoft Dynamics NAV1, Microsoft Dy-
namics AX2, and SAP3 are three-tier architectures with a client, an application

1 http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx.
2 http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx.
3 http://www.sap.com.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 73–95, 2014.
© Springer-Verlag Berlin Heidelberg 2014

http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx
http://www.sap.com

74 J. Andersen et al.

Contract engine

Running
contracts

start contract
register event
end contract

Report engine

Report
definitions

add report
delete report
get report
query report

Event
log

events upd
ate

s

query results

Fig. 1. Bird’s-eye view of the POETS architecture (diagram copied from [6])

server, and a centralised relational database system. The central database stores
information in tables, and the application server provides the business logic,
typically coded in a general purpose, imperative programming language.

The process-oriented event-driven transaction systems (POETS) architecture
introduced by Henglein et al. [6] is a qualitatively different approach to ERP sys-
tems. Rather than storing both transactional data and implicit process state in a
database, POETS employs a pragmatic separation between transactional data,
which is persisted in an event log, and contracts, which are explicit representa-
tions of business processes, stored in a separate module. Moreover, rather than
using general purpose programming languages to specify business processes, PO-
ETS utilises a declarative domain-specific language (DSL) [1]. The use of a DSL
not only enables compositional construction of formalised business processes, it
minimises the semantic gap between requirements and a running system, and it
facilitates treating processes as data for analysis. Henglein et al. take it as a goal
of POETS that “[...] the formalized requirements are the system” [6, page 382].

The bird’s-eye view of the POETS architecture is presented in Figure 1. At the
heart of the system is the event log, which is an append-only list of transactions.
Transactions represent “things that take place” such as a payment by a customer,
a delivery of goods by a shipping agency, or a movement of items in an inventory.
The append-only restriction serves two purposes. First, it is a legal requirement
in ERP systems that transactions, which are relevant for auditing, are retained.
Second, the report engine utilises monotonicity of the event log for optimisation,
as shown by Nissen and Larsen [19].

Besides the radically different software architecture, POETS distinguishes it-
self from existing ERP systems by abandoning the double-entry bookkeeping
(DEB) accounting principle [28] in favour of the Resources, Events, and Agents
(REA) accounting model of McCarthy [13].

1.1 Outline and Contributions

The motivation for our work is to assess the POETS architecture in terms of a
prototype implementation. During the implementation process we have added

Domain-Specific Languages for Enterprise Systems 75

features for dynamically managing values and entities to the original architec-
ture. Moreover, in the process we found that the architecture need not be tied
to the REA ontology—indeed to ERP systems—but can be viewed as a dis-
crete event modelling framework. Its adequacy for other domains remains future
research, however.

Our contributions are as follows:

– We present a generalised and extended POETS architecture (Section 2) that
has been fully implemented.

– We present domain-specific languages for data modelling (Section 2.1), re-
port specification (Section 2.4), and contract specification (Section 2.5).

– We illustrate small use case that we have implemented in our system as part
of a trial for a small business (Section 3).

The POETS server system has been implemented in Haskell. Its client code
has been developed in Java, primarily for Android. The choice of Haskell, specif-
ically the Glasgow Haskell Compiler (GHC), is due to: the conciseness, affinity
and support of functional programming for enterprise software [14] and declara-
tive DSL implementation; its expressive type system, which supports statically
typed solutions to the Expression Problem [3,2]; and competitive run-time per-
formance due to advanced compiler optimisations in GHC. The use of Java on
the client side (not further discussed in this paper) arises from POETS, conceived
to be cloud-based and mobile from the outset, targeting low-cost mobile devices
and a practical desire to reuse code as much as possible across smartphones,
tablets, portables and desktops.

The source code of this implementation is available from the repository at
https://bitbucket.org/jespera/poets/. In addition, the repository also includes the
full source code for the use case presented in Section 3.

2 Revised POETS Architecture

Our generalised and extended architecture is presented in Figure 2. Compared
to the original architecture in Figure 1, the revised architecture sees the addition
of three new components: a data model, an entity store, and a rule engine. The
rule engine is currently not implemented, and we will therefore not return to
this module until Section 4.2.

As in the original POETS architecture, the event log is at the heart of the
system. However, in the revised architecture the event log plays an even greater
role, as it is the only persistent state of the system. This means that the states of
all other modules are also persisted in the event log, hence the flow of information
from all other modules to the event log in Figure 2. For example, whenever a
contract is started or a new report is added to the system, then an event reflecting
this operation is persisted in the event log. This, in turn, means that the state
of each module can—in principle—be derived from the event log. However, for
performance reasons each module—including the event log—maintains its own
state in memory.

https://bitbucket.org/jespera/poets/

76 J. Andersen et al.

Contract Engine

- manage templates
- manage contracts
- retrieve contracts
- register transactions

Report Engine

- manage reports
- query reports

Entity Store

- manage entities

Rule Engine

- manage rules
- apply rules

Event
log

Data Model

- manage data definitions
- retrieve data definitions

information pushed information pulled

Fig. 2. Bird’s-eye view of the generalised and extended POETS architecture

Data Model

Function Input Output

addDataDefs ontology specification
getRecordDef record name type definition
getSubTypes record name list of record names

Fig. 3. Data model interface

We describe each module of the revised architecture in the following subsec-
tions. Since we will focus on the revised architecture in the remainder of the
text, we will refer to said architecture simply as POETS.

2.1 Data Model

The data model is a core component of the extended architecture, and the in-
terface it provides is summarised in Figure 3. The data model defines the types
of data that are used throughout the system, and it includes predefined types
such as events. Custom types such as invoices can be added to the data model
at run-time via addDataDefs. For simplicity we currently only allow addition of
types, not updates and deletions, which can be supported by suitable namespace
management.

Types define the structure of the data in a running POETS instance mani-
fested as values. A value—such as a concrete invoice—is an instance of the data
specified by a type. Values are not only communicated between the system and

Domain-Specific Languages for Enterprise Systems 77

its environment but they are also stored in the event log, which is simply a list
of values of a certain type.

Types. Structural data such as payments and invoices are represented as records,
that is, typed finite mappings from field labels to values. Record types define the
structure of such records by listing the constituent field labels and their associated
types. In order to form a hierarchical ontology of record types, we use a nominal
subtyping system [22]. That is, each record type has a unique name, and one type
is a subtype of another if and only if stated so explicitly or by transitivity. For
instance, a customer can be defined as a subtype of a person, which means that a
customer contains all the data of a person, similar to inheritance in object oriented
programming.

The choice of nominal types over structural types [22] is justified by the do-
main: the nominal type associated with a record may have a semantic impact.
For instance, the type of customers and premium customers may be structurally
equal, but a value of one type is considered different from the other, and clients
of the system may for example choose to render them differently. Moreover, the
purpose of the rule engine, which we return to in Section 4.2, is to define rules
for values of a particular semantic domain, such as invoices. Hence it is wrong
to apply these rules to data that happens to have the same structure as in-
voices. Although we use nominal types to classify data, the DSLs support full
record polymorphism [20] in order to minimise code duplication. That is, it is
possible for instance to use the same piece of code with customers and premium
customers, even if they are not related in the subtyping hierarchy.

The grammar for types is as follows:

T ::= Bool | Int | Real | String | Timestamp | Duration (type constants)
| RecordName (record type)
| [T] (list type)
| 〈RecordName〉 (entity type)

Type constants are standard types Booleans, integers, reals, and strings, and less
standard types timestamps (absolute time) and durations (relative time). Record
types are named types, and the record typing environment—which we will de-
scribe shortly—defines the structure of records. For record types we assume a
set RecordName = {Customer,Address, Invoice, . . . } of record names ranged over
by r. Concrete record types are typeset in sans-serif and begin with a capital
letter. Likewise, we assume a set FieldName of all field names ranged over by f .
Concrete field names are typeset in sans-serif beginning with a lower-case letter.

List types [τ] represent lists of values, where each element has type τ , and
it is the only collection type currently supported. Entity types 〈r〉 represent
entity values that have associated data of type r. For instance, if the record type
Customer describes the data of a customer, then a value of type 〈Customer〉 is a
(unique) customer entity, whose associated Customer data may evolve over time.
The type system ensures that a value of an entity type will have associated data
of the given type, similar to referential integrity in database systems [4]. We will
return to how entities are created and modified in Section 2.3.

78 J. Andersen et al.

All data are type checked before they enter the system, both in order to
check that record values conform with the record typing environment, but also
to check that entity values have valid associated data. In particular, events are
type checked before they are persisted in the event log. We will explain what
this means in detail in Section 2.2 and 2.3. The typing judgement has the form
R, E � v : τ , where R is a record typing environment, which contains record type
definitions, E is an entity typing environment, which maps each defined entity
to its declared type, v is a value, and τ is a type. Both R and E are given by the
data model and the entity store, respectively. The POETS system has a type
checker that checks whether a value v has type τ in the context of R and E .

Ontology Language. In order to specify record types, we use a variant of
Attempto Controlled English [5] due to Jønsson Thomsen [10], referred to as the
ontology language. The approach is to define data types in near-English text,
in order to minimise the gap between requirements and specification. A simple
example in the ontology language is given below:

Person is abstract.
Person has a String called name.

Customer is a Person.
Customer has an Address.

Address has a String called road.
Address has an Int called no.

Predefined Ontology. Unlike the original POETS architecture [6], our gener-
alised architecture is not fixed to an enterprise resource planning (ERP) domain.
However, we require a set of predefined record types.

The predefined ontology defines five root concepts in the data model, that is,
record types maximal with respect to the subtyping relation. Each of these five
root concepts Data, Event, Transaction, Report, and Contract are abstract and
only Event and Contract define record fields. Custom data definitions added via
addDataDefs are only permitted as subtypes of Data, Transaction, Report, and
Contract. In contrast to that, Event has a predefined and fixed hierarchy.

Data types represent elements in the domain of the system such as customers,
items, and resources.

Transaction types represent events that are associated with a contract, such as
payments, deliveries, and issuing of invoices.

Report types are result types of report functions, that is, the data of reports,
such as inventory status, income statement, and list of customers. The Report
structure does not define how reports are computed, only what kind of result
is computed. We will describe the report engine in Section 2.4.

Contract types represent the different kinds of contracts, such as sales, purchases,
and manufacturing procedures. Similar to Report, the structure does not
define what the contract dictates, only what is required to instantiate the
contract. The purpose of Contract is hence dual to the purpose of Report:
the former determines an input type, and the latter determines an output
type. We will return to contracts in Section 2.5.

Domain-Specific Languages for Enterprise Systems 79

Event types form a fixed hierarchy and represent events that are logged in the
system. Events are conceptually separated into internal events and external
events, which we describe further in the following section.

2.2 Event Log

The event log is the only persistent state of the system, and it describes the
complete state of a running POETS instance. The event log is an append-only
list of records of the type Event. Each event reflects an atomic interaction with
the running system. This approach is also applied at the “meta level” of POETS:
in order to allow agile evolution of a running POETS instance, changes to the
data model, reports, and contracts are reflected in the event log as well.

The monotonic nature of the event log—data is never overwritten or deleted
from the system—means that the state of the system can be reconstructed at
any previous point in time. In particular, transactions are never deleted, which
is a legal requirement for ERP systems. The only component of the architecture
that reads directly from the event log is the report engine (compare Figure 2),
hence the only way to access data in the log is via a report.

All events are equipped with an internal timestamp (internalTimeStamp), the
time at which the event is registered in the system. Therefore, the event log
is always monotonically decreasing with respect to internal timestamps, as the
newest event is at the head of the list. Conceptually, events are divided into
external and internal events.

External events are events that are associated with a contract, and only
the contract engine writes external events to the event log. The event type
TransactionEvent models external events, and it consists of three parts: (i) a
contract identifier (contractId), (ii) a timestamp (timeStamp), and (iii) a trans-
action (transaction). The identifier associates the external event with a contract,
and the timestamp represents the time at which the external event takes place.
Note that the timestamp need not coincide with the internal timestamp. For
instance, a payment in a sales contract may be registered in the system the day
after it takes place. There is hence no a priori guarantee that external events
have decreasing timestamps in the event log—only external events that per-
tain to the same contract are required to have decreasing timestamps. The last
component, transaction, represents the actual action that takes place, such as a
payment from one person or company to another. The transaction is a record of
type Transaction, for which the system makes no assumptions.

Internal events reflect changes in the state of the system at a meta level. This
is the case for example when a contract is instantiated or when a new record
definition is added. Internal events are represented by the remaining subtypes of
the Event record type. Figure 4 provides an overview of all non-abstract record
types that represent internal events.

A common pattern for internal events is to have three event types to represent
creation, update, and deletion of respective components. For instance, when a
report is added to the report engine, a CreateReport event is persisted to the
log, and when it is updated or deleted, UpdateReport and DeleteReport events

80 J. Andersen et al.

Event Description

AddDataDefs A set of data definitions is added to the system. The field defs
contains the ontology language specification.

CreateEntity An entity is created. The field data contains the data associated
with the entity, the field recordType contains the string represen-
tation of the declared type, and the field ent contains the newly
created entity value.

UpdateEntity The data associated with an entity is updated.
DeleteEntity An entity is deleted.

CreateReport A report is created. The field code contains the specification of the
report, and the fields description and tags are meta data.

UpdateReport A report is updated.
DeleteReport A report is deleted.

CreateContractDef A contract template is created. The field code contains the spec-
ification of the contract template, and the fields recordType and
description are meta data.

UpdateContractDef A contract template is updated.
DeleteContractDef A contract template is deleted.

CreateContract A contract is instantiated. The field contractId contains the newly
created identifier of the contract and the field contract contains
the name of the contract template to instantiate, as well as data
needed to instantiate the contract template.

UpdateContract A contract is updated.
ConcludeContract A contract is concluded.

Fig. 4. Internal events

are persisted accordingly. This means that previous versions of the report spec-
ification can be retrieved, and more generally that the system can be restarted
simply by replaying the events that are persisted in the log on an initially empty
system. Another benefit to the approach is that the report engine, for instance,
does not need to provide built-in functionality to retrieve, say, the list of all
reports added within the last month—such a list can instead be computed as a
report itself!

Since we allow the data model of the system to evolve over time, we must be
careful to ensure that the event log, and thus all data in it, remains well-typed at
any point in time. LetRt, Et, and lt denote the record typing environment, entity
typing environment, and event log, respectively at time t. Since an entity might
be deleted over time, and thus is removed from the entity typing environment,
the event log may not be well-typed with respect to the current entity typing
environment. To this end, we type the event log with respect to the accumulated
entity typing environment ̂Et =

⋃

t′≤t Et′ at time t. That is, ̂Et(e) = r iff there is
some time t′ ≤ t with Et′(e) = r. The stable type invariant, which we will discuss

in Section 2.3, guarantees that ̂Et is indeed well-defined.

Domain-Specific Languages for Enterprise Systems 81

Entity Store

Function Input Output

createEntity record name, record entity
updateEntity entity, record
deleteEntity entity

Fig. 5. Entity store interface

For changes to the record typing environment, we require the following invari-
ants for any points in time t, t′ and the event log lt at time t:

if t′ ≤ t then Rt′ ⊆ Rt, and (monotonicity)

Rt, ̂Et � lt : [Event] . (log typing)

Note that the log typing invariant follows from the monotonicity invariant and
the type checking Rt, Et � e : Event for each new incoming event, provided that
for each record name r occurring in the event log, no additional record fields
are added to r, and r is not made an abstract record type. We will refer to the
two invariants above collectively as record typing invariants. They will become
crucial in the following section.

2.3 Entity Store

The entity store provides very simple functionality, namely creation, deletion
and updating of entities, respectively. To this end, the entity store maintains
an entity environment εt that maps each defined entity e to its value εt(e). In
addition, the entity store also maintains a compact representation of the history
of entity environments ε0, . . . , εt. The interface of the entity store is summarised
in Figure 5.

In order to type check entities, the entity store also maintains an entity typing
environment Et, that is, a finite partial mapping from entities to record names.
Intuitively, an entity typing environment maps an entity to the record type that
it has been declared to have upon creation.

The entity store checks a number of invariants that ensure the integrity of
the system. Specifically, the entity store ensures the following invariants, where
we use the notation Et, Rt and εt, for the entity typing environment, the record
typing environment, and the entity environment, respectively at time t:

if Et(e) = r and Et′(e) = r′, then r = r′, (stable type)

if Et(e) is defined, then so is εt(e), and (well-definedness)

if εt(e) = v, then Et(e) = r and Rt′ , Et′ � v : r for some t′ ≤ t. (well-typing)

We refer to the three invariants above collectively as the entity integrity in-
variants. The stable type invariant states that each entity can have at most one

82 J. Andersen et al.

declared type throughout its lifetime. The well-definedness invariant guarantees
that every entity that is given a type also has an associated record value. Fi-
nally, the well-typing invariant guarantees that the record value associated with
an entity was well-typed at some earlier point in time t′.

The creation of a new entity via createEntity at time t+1 requires a declared
type r and an initial record value v, and it is checked that Rt, Et � v : r. If the
value type checks, a fresh entity value e �∈ ⋃

t′≤t dom(εt′) is created, and the
entity environment and the entity typing environment are updated accordingly:

εt+1(x) =

{

v if x = e,

εt(x) otherwise,
Et+1(x) =

{

r if x = e,

Et(x) otherwise.

Moreover, a CreateEntity event is persisted to the event log containing e, r, and
v for the relevant fields.

Similarly, if the data associated with an entity e is updated to the value v
at time t + 1, then it is checked that Rt, Et � v : Et(e), and the entity store is
updated like above. Note that the entity typing environment is unchanged, that
is, Et+1 = Et. A corresponding UpdateEntity event is persisted to the event log
containing e and v for the relevant fields.

Finally, if an entity e is deleted at time t + 1, then it is removed from both
the entity store and the entity typing environment:

εt+1(x) = εt(x) iff x ∈ dom(εt) \ {e}
Et+1(x) = Et(x) iff x ∈ dom(Et) \ {e} .

A corresponding DeleteEntity event is persisted to the event log containing e for
the relevant field.

Note that, by default, εt+1 = εt and Et+1 = Et, unless one of the situations
above apply. It is straightforward to show that the entity integrity invariants are
maintained by the operations described above (the proof follows by induction
on the timestamp t). Internally, that is, for the report engine compare Figure 2,
the entity store provides a lookup function lookupt : Ent × [0, t] ⇀fin Record ,
where lookupt(e, t

′) provides the latest value associated with the entity e at time
t′, where t is the current time. Note that this includes the case in which e has
been deleted at or before time t′. In that case, the value associated with e just
before the deletion is returned. Formally, lookupt is defined in terms of the entity
environments as follows:

lookupt(e, t1) = v iff ∃t2 ≤ t1 : εt2(e) = v and ∀t2 < t3 ≤ t1 : e �∈ dom(εt3).

In particular, we have that if e ∈ dom(εt1), then lookupt(e, t1) = εt1(e).
From this definition and the invariants of the system, we can derive the fol-

lowing fundamental safety property for the entity store:

Proposition 1. Given timestamps t ≤ t1 ≤ t2 and entity e, the following holds:

If Rt, ̂Et � e : 〈r〉 , then lookupt2(e, t1) = v for some v and Rt2 , ̂Et2 � v : r.

Domain-Specific Languages for Enterprise Systems 83

Report Engine

Function Input Output

addReport name, type, description, tags, report definition
updateReport name, type, description, tags, report definition
deleteReport name
queryReport name, list of values value

Fig. 6. Report engine interface

That is, if an entity value previously entered the system, and hence type
checked, then all future dereferencing will not get stuck, and the obtained value
will be well-typed with respect to the accumulated entity typing environment.

2.4 Report Engine

The purpose of the report engine is to provide user-definable views, called reports,
of the system’s event log.4 Conceptually, a report is compiled from the event log
by a report function, a function of type [Event] → Report. The report language
provides a means to specify such a report function in a declarative manner. The
interface of the report engine is summarised in Figure 6.

The Report Language. The report language is—much like the query fragment
of SQL—a functional language without side effects. It only provides operations
to non-destructively manipulate and combine values. Since the system’s storage
is based on a shallow event log, the report language must provide operations to
relate, filter, join, and aggregate pieces of information. Moreover, as the data
stored in the event log is inherently heterogeneous—containing data of different
kinds—the report language offers a comprehensive type system that allows us
to safely operate in this setting.

The report language is based on the simply typed lambda calculus extended
with polymorphic (non-recursive) let expressions as well as type case expressions.
The core language is given by the following grammar:

e ::= x | c | λx .e | e1 e2 | let x = e1 in e2 | type x = e of {r → e1; → e2} ,
where x ranges over variables, and c over constants which include integers,
Booleans, tuples and list constructors as well as operations on them like +,
if-then-else etc. In particular, we assume a fold operation fold of type (α →
β → β) → β → [α] → β. This is the only operation of the report language
that permits recursive computations on lists. However, the full language pro-
vides syntactic sugar to express operations on lists more intuitively in the form
of list comprehensions [26].

4 The term “report” often conflates the data computed and their visual rendering;
here “report” denotes only the computed data.

84 J. Andersen et al.

The extended list comprehensions of the report language also allows the pro-
grammer to filter according to run-time type information, which builds on type
case expressions of the form type x = e of {r → e1; → e2} in the core lan-
guage. In such a type case expression, an expression e of some record type re gets
evaluated to record value v which is then bound to a variable x. The record type
r that the record value v is matched against can be any subtype of re. Further
evaluation of the type case expression depends on the type rv of the record value
v. This type can be any subtype of re. If rv is a subtype of r, then the evaluation
proceeds with e1, otherwise with e2. Binding e to a variable x allows us to use
the stricter type r in the expression e1.

Another important component of the report language consists of the derefer-
encing operators ! and @, which give access to the lookup operator provided by
the entity store. Given an expression e of an entity type 〈r〉, both dereferencing
operators provide a value v of type r. That is, both ! and @ are unary operators
of type 〈r〉 → r for any record type r. In the case of the operator !, the resulting
record value v is the latest value associated with the entity to which e evaluates.
More concretely, given an entity value v, the expression v! evaluates to the record
value lookupt(v, t), where t is the current time (“now”).

On the other hand, the contextual dereference operator @ yields the value of
an entity at the time of the event it is extracted from. Concretely, every entity v
that enters the event log is annotated with the timestamp of the event it occurs
in. That is, each entity value embedded in an event e in the event log, occurs
in an annotated form (v, s), where s is the value of e’s internalTimeStamp field.
Given such an annotated entity value (v, s), the expression (v,s)@ evaluates to
lookupt(v, s) and given a bare entity value v the expression v@ evaluates to
lookupt(v, t).

Note that in each case for either of the two dereference operators, Proposi-
tion 1 guarantees that the lookup operation yields a record value of the right
type. That is, they are total functions of type 〈r〉 → r that never get stuck.

Lifecycle of Reports. Like entities, the set of reports registered in a running
POETS instance—and thus available for querying—can be changed via the ex-
ternal interface to the report engine. To this end, the report engine interface
provides the operations addReport, updateReport, and deleteReport. The former
two take a report specification that contains the name of the report, the defini-
tion of the report function that generates the report data and the type of the
report function. Optionally, it may also contain further meta information in the
form of a description text and a list of tags.

The remaining operation provided by the report engine—queryReport—con-
stitutes the core functionality of the reporting system. Given a name of a regis-
tered report and a list of arguments, this operation supplies the given arguments
to the corresponding report function and returns the result.

Domain-Specific Languages for Enterprise Systems 85

Contract Engine

Function Input Output

createTemplate name, type, description, specification
updateTemplate name, type, description, specification
deleteTemplate name

createContract meta data contract ID
updateContract contract ID, meta data
concludeContract contract ID
getContract contract ID contract state
registerTransaction contract ID, timestamp, transaction

Fig. 7. Contract engine interface

2.5 Contract Engine

The role of the contract engine is to determine which transactions—that is,
external events, compare Section 2.2—are expected by the system. Transactions
model events that take place according to an agreement, for instance a delivery
of goods in a sale, a payment in a lease agreement, or a movement of items from
one inventory to another in a production plan. Such agreements are referred to
as contracts, although they need not be legally binding contracts. The purpose
of a contract is to provide a detailed description of what is expected, by whom,
and when. A sales contract, for example, may stipulate that first the company
sends an invoice, then the customer pays within a certain deadline, and finally
the company delivers goods within another deadline.

The interface of the contract engine is shown in Figure 7.

Contract Templates. In order to specify contracts such as the aforementioned
sales contract, we use an extended variant of the contract specification language
(CSL) of Hvitved et al. [9], which we will refer to as the POETS contract spec-
ification language (PCSL) in the following. For reusability, contracts are always
specified as contract templates rather than as concrete contracts. A contract
template consists of four parts: (i) a template name, (ii) a template type, which
is a subtype of the Contract record type, (iii) a textual description, and (iv) a
PCSL specification. We describe PCSL in Section 2.5.

The template name is a unique identifier, and the template type determines
the parameters that are available in the contract template.

Example 1. We may define the following type for sales contracts in the ontology
language (assuming that the record types Customer, Company, and Goods have
been defined):

Sale is a Contract.
Sale has a Customer entity.
Sale has a Company entity.

86 J. Andersen et al.

Sale has a list of Goods.
Sale has an Int called amount.

With this definition, contract templates of type Sale are parametrised over the
fields customer, company, goods, and amount of types 〈Customer〉, 〈Company〉,
[Goods], and Int, respectively.

The contract engine provides an interface to add contract templates (cre-
ateTemplate), update contract templates (updateTemplate), and remove con-
tract templates (deleteTemplate) from the system at run-time. The structure
of contract templates is reflected in the external event types CreateContractDef,
UpdateContractDef, and DeleteContractDef, compare Section 2.2. A list of (non-
deleted) contract templates can hence be computed by an appropriate report.

Contract Instances. A contract template is instantiated via createContract
by supplying a record value v of a subtype of Contract. Besides custom fields,
which depend on the type at hand, such a record always contains the fields
templateName and startDate inherited from the Contract record type. The field
templateName contains the name of the template to instantiate, and the field
startDate determines the start date of the contract. The fields of v are substituted
into the contract template in order to obtain a contract instance, and the type
of v must therefore match the template type. For instance, if v has type Sale
then the field templateName must contain the name of a contract template that
has type Sale. We refer to the record v as contract meta data.

When a contract c is instantiated by supplying contract meta data v, a fresh
contract identifier i is created, and a CreateContract event is persisted in the
event log with with contract = v and contractId = i. Hereafter, transactions t
can be registered with the contract via registerTransaction, which will update

the contract to a residual contract c′, written c
t→ c′, and a TransactionEvent

with transaction = t and contractId = i is written to the event log. The state
of the contract can be acquired from the contract engine at any given point in
time via getContract, which enables run-time analyses of contracts, for instance
in order to generate a list of expected transactions.

Registration of a transaction c
t→ c′ is only permitted if the transaction is

expected in the current state c. That is, there need not be a residual state for

all transactions. After zero or more successful transactions, c
t1→ c1

t2→ · · · tn→ cn,
the contract may be concluded via concludeContract, provided that the resid-
ual contract cn does not contain any outstanding obligations. This results in a
ConcludeContract event to be persisted in the event log.

The lifecycle described above does not take into account that contracts may
have to be updated at run-time, for example if it is agreed to extend the payment
deadline in a sales contract. To this end, running contracts are allowed to be
updated, simply by supplying new contract meta data (updateContract). The
difference in the new meta data compared to the old meta data may not only
be a change of, say, items to be sold, but it may also be a change in the field
templateName. The latter makes it is possible to replace the old contract by a

Domain-Specific Languages for Enterprise Systems 87

qualitatively different contract, since the new contract template may describe
a different workflow. There is, however, an important restriction: a contract
can only be updated if any previous transactions registered with the contract
also conform with the new contract. That is, if the contract has evolved like

c
t1→ c1

t2→ · · · tn→ cn, and an update to a new contract c′ is requested, then only

if c′ t1→ c′1
t2→ · · · tn→ c′n, for some c′1, . . . , c

′
n, is the update permitted. A successful

update results in an UpdateContract event to be written to the event log with
the new meta data.

For simplicity, we only allow the updates described above. Another possibility
is to allow updates where the current contract c is replaced directly by a new
contract c′. This effect can be attained by prefixing c′ with [t1, . . . , tn] as contract
actions.

As for contract templates, a list of (non-concluded) contract instances can
be computed by a report that inspects CreateContract, UpdateContract, and
ConcludeContract events respectively.

The Contract Language. The fourth component of contract templates—
the PCSL specification—is the actual normative content of contract templates.
PCSL extends Hvitved’s CSL [9] mainly at the level of expressions E, by adding
support for the value types in POETS, as well as lambda abstractions and func-
tion applications. At the level of clauses C, PCSL is similar to CSL, albeit with
a slightly altered syntax. Typing of PCSL expressions is more challenging since
we have added (record) polymorphism as well as subtyping.

We do not present PCSL formally here; instead, it is illustrated in the use
case in Section 3 below.

3 Use Case: Legejunglen

We outline a use case that we implemented in a trial with a small business called
Legejunglen, an indoor playground for children.

The user interface to the POETS system is provided by a client application
for the Android operating system. The application is suitable for both phone
and tablet devices. Although, for this trial we focused on the tablet user experi-
ence. The client application communicates with the POETS system running on
a server via the APIs of individual subsystems as described in Section 2. The
client provides a generic user interface guided by the ontology. There is func-
tionality to visualise ontology elements as well as allowing user input of ontology
elements. Additionally, a simple mechanism for compile-time specialised visual-
isations is provided. The generic visualisations handle ontology changes without
any changes needed on the client. The central part of the user interface provides
an overview of the state of currently instantiated contract templates as well as
allowing users to interact with running contracts.

In the following, we present the final results of an iterative refinement process
on modelling the Legejunglen business. We conclude with some reflections on
using the DSLs for iterative model evolution.

88 J. Andersen et al.

The most important functionality for day-to-day use at Legejunglen is to (1)
register bookings for customers and (2) to get an overview of the scheduled
events for a single day. Apart from that, the system should provide standard
accounting functionality.

The main workflow that we needed to implement is the booking system, that
is, the system according to which a customer reserves a time at the playground.
This workflow is encoded in a contract template Appointment. The data associ-
ated with this contract are defined in the following ontology definition:

Appointment is a Contract.
Appointment is abstract.
Appointment has a DateTime called arrivalDate.
Appointment has Food.
Appointment has a Location called placement.
Appointment has a Participants.
Appointment has an Int called numberOfTableSettings.
Appointment has a String called comments.
Appointment has an Adult entity called contactPerson.

The full ontology also contains declarations that define the auxiliary concepts
Food, Location, Participants and Adult, which we have elided here. The fields that
are associated with the Appointment record type have to be provided in order to
instantiate the corresponding Appointment contract template. These fields are
then directly accessible in the definition of the contract template.

Figure 8 details the definition of the contract template that describes the
workflow for booking an appointment at Legejunglen. The full contract is de-
fined at the very bottom by referring to the confirm clause. Note that we di-
rectly reference the arrivalDate, numberOfTableSettings and contactPerson field
of the Appointment record. The three clauses of the contract template roughly
correspond to three states an active Appointment contract may be in: first, in
the confirm clause we wait for confirmation from the customer until one day
before the expected arrival. After that we wait for the arrival of the customer
at the expected time (plus a one hour delay). Finally, we expect the payment
within one day.

Next we turn to the reporting functionality of POETS. For daily planning
purposes, Legejunglen requires an overview of the booked appointments of any
given day. This functionality is easily implemented in the reporting language.
Firstly, we define the record type that contains the result of the desired report:

Schedule is a Report.
Schedule has a list of Appointment called appointments.

Secondly, we define the actual report function that searches the event log
for the creation of Appointment contracts with a given arrivalDate. The report
definition is given in Figure 9.

A more complex report specification is given in Figure 10. This report
compiles an overview of all appointments made during a month as well as the sum
of all payments that were registered by the system during that time. This report

Domain-Specific Languages for Enterprise Systems 89

name: appointment
type: Appointment
description: "Contract for handling a appointment."

// A reference to the designated entity that represents the company
val me = reports.me ()

clause confirm(expectedArrival : Duration, numberOfTableSettings : Int)
〈me : 〈Me〉, contact : 〈Adult〉〉 =

when ContactConfirms
due within expectedArrival 〈−〉 1D
remaining newDeadline

then
arrival(newDeadline)〈me, contact〉

else arrival(expectedArrival)〈me, contact〉

clause arrival(expectedArrival : Duration)〈me : 〈Me〉, contact : 〈Adult〉〉 =
〈me〉 GuestsArrive

due within expectedArrival 〈+〉 1H
then payment(me)〈contact〉

clause payment(me : 〈Me〉)〈contact : 〈Adult〉〉 =
〈contact〉 Payment(sender s, receiver r)

where r ≡ me ∧ s ≡ contact
due within 1D

contract = confirm(subtractDate arrivalDate contractStartDate,
numberOfTableSettings)〈me, contactPerson〉

Fig. 8. Contract template for booking an appointment

name: DailySchedule
description:

Returns a list of appointments for which the expected
arrival is the same as the given date.

tags: legejunglen

report : Date → Schedule
report expectedArrival =

Schedule { appointments = [arra |
putC : PutContract ← events,
arra : Appointment = putC.contract,
expectedArrival ≡ arra.arrivalDate.date] }

Fig. 9. Report definition for compiling a daily schedule

90 J. Andersen et al.

specification uses an explicit fold in order to accumulate the payment and appoint-
ment information that are spread throughout the event log.

Although Legejunglen is a relatively simple business, a significant amount
of the work done in the trial involved refining the workflows implicitly in use
and formalising what reports were needed. The ability to specify a workflow
using the contract language and then immediately try it out in the Android
client, helped the modelling process tremendously. A basic contract template
for keeping track of bookings was made quickly, which facilitated the process
of iterative evaluation and refinement to precisely capture the way Legejunglen
worked. Changes on the POETS side were quite easy to perform. Changes are
typically isolated. That is, support for new workflows or reports does not require
a change to the data model and only amounts to adding new contract templates
respectively report specifications. This can be performed while the system is
up and running, without any downtime. In addition, the subtyping discipline
employed in POETS’ data model is a key feature in enabling extending the
ontology of at run time without compromising the integrity of its state or the
semantics of its reports and contracts.

The effort for implementing changes in the data model and the workflow is
quite modest. Minor changes in the requirements tended to require little changes
in the ontology and contract specifications. Typically, this is also the case for
changes in the report specifications. However, changes in report specifications
turned out to be quite complicated in some instances. Reports have the ability
to produce highly structured information from the flat-structured event log.
Unfortunately, this ability is reflected in the complexity of the corresponding
report specifications. Nonetheless, from the report specifications we have written,
we can extract a small set of high-level patterns that cover most common use
cases. Integrating these high-level patterns into the reporting language should
greatly reduce the effort for writing reports and further increase readability.

Changes in the underlying modelling on the POETS side were rather easy to
propagate to the Android client software. As mentioned, the client application
provides a generic user interface to the POETS system that allows it to reflect
any changes made in the modelling in the POETS system. However, this generic
interface does not always provide the optimal user experience and therefore
needs manual refinement to reflect changes in the modelling. Additionally, there
have also been specific requirements to the client software, which had to be
implemented.

4 Conclusion

We have presented an extended and generalised version of the POETS architec-
ture [6], which we have fully implemented. It is based on declarative domain-
specific languages for specifying the data model, reports, and contracts of a
POETS instance, which offer enterprise domain concepts and encapsulate im-
portant invariants that facilitate safe run-time changes to data types, reports
and contracts; full recoverability and auditability of any previous system state;

Domain-Specific Languages for Enterprise Systems 91

MonthlyOverview is a Report.
MonthlyOverview has a Real called total.
MonthlyOverview has a list of AppointmentInfo called appointments.

name: MonthlyOverview
description:
Get information about payments received for given month.

tags: legejunglen

allContracts : [PutContract]
allContracts = [pc |
cc : CreateContract ← events,
pc = first cc [uc | uc : UpdateContract ← events, uc.contractId ≡ cc.contractId]]

allPayments : Date → [(Payment, PutContract)]
allPayments date =
[(pay, putC) |
putC ← allContracts,
arra : Appointment = putC.contract,
arra.arrivalDate.month ≡ date.month,
arra.arrivalDate.year ≡ date.year,
tr : TransactionEvent ← transactionEvents,
tr.contractId ≡ putC.contractId,
pay : Payment = tr.transaction]

initialOverview = MonthlyOverview { total = 0,
appointments = [] }

addAppointment : (Payment, Appointment) → [AppointmentInfo] → [AppointmentInfo]
addAppointment payArr arrs = insertProj
(λpa → pa.appointment.arrivalDate)
(AppointmentInfo {appointment = payArr.2, payment = payArr.1})
arrs

calc payPut overv =
type x = payPut.2.contract of
Appointment → overv {
total = overv.total + payPut.1.money.amount,
appointments = addAppointment (payPut.1, x) overv.appointments }
→ overv

report : Date → MonthlyOverview
report date = fold calc initialOverview (allPayments date)

Fig. 10. Report definition for compiling a monthly payment overview

92 J. Andersen et al.

and strict separation of logged raw data and efficiently computed user-specified
derived data. In particular, in contrast to its predecessor, any historical system
state is reestablishable for auditing since also master data, contract and report
changes are logged, not only transactional data.

The use case presented illustrates the conciseness of POETS DSLs and sup-
port for rapid exploratory process and report design since the “specification is
the implementation” approach made it easy to make an initial model of the busi-
ness as well as evolve it to new requirements. While no significant conclusions
for usability and fitness for use in complex commercial settings can be drawn
without a suitable experimental design, we believe the preliminary results jus-
tify hypothesising that domain specialists should be able to read, understand
and specify data models (types) and, with suitable training in formalisation,
eventually contract and report specifications without having to worry about
programming or system specifics.

4.1 Related work

This paper focuses on the radical use of declarative domain-specific languages
in POETS motivated by the Resources, Event, Agents accounting model [13,6].
The syntactic and semantic aspects of its domain modelling language [25], its
contract language [9] (evolved from [1]) and functional reporting5 [19,18] are
described elsewhere.

ERP systems relate broadly to and combine aspects of discrete event simula-
tion, workflow modelling, choreography and orchestration, run-time monitoring,
process specification languages (such as LTL), process models (such as Petri
nets), and report languages (such as the query sublanguage of SQL and reactive
functional programming frameworks), which makes a correspondingly extensive
review of related work from a general ERP systems point of view a difficult and
expansive task.

More narrowly, POETS can be considered an example of language-oriented
programming [27] applied to the business modelling domain. Its contract lan-
guage specifies detailed real-time and value constraints (e.g. having to pay the
cumulatively correct amount by some deadline, not just some amount at some
time) on contract partners, neither supporting nor fixing a particular business
process. See [8, Chapter 1] and [7] for a survey of contract models and languages.

A hallmark of POETS is its enforcement of static invariants that guarantee au-
ditability and type correctness even in the presence of run-time updates to data
types, processes and reports. Recently the jABC approach [23,12] has added
support for types, data-flow modelling and processes as first-class citizens. The
resulting DyWA (Dynamic Web Application) approach [15,17,16] offers support
for step-by-step run-time enhancement with data types and corresponding busi-
ness processes until an application is ready for execution and for its subsequent
evolution.

5 Automatic incrementalisation is not implemented in the present version.

Domain-Specific Languages for Enterprise Systems 93

Automatic incrementalisation of report functions in POETS can be thought
of as translating bulk-oriented queries that conceptually inspect the complete
event log every time they are run to continuous queries on streams [24], based
on formal differentiation techniques [21,11].

4.2 Future Work

Expressivity A possible extension of the data model is to introduce finite maps,
which will enable a modelling of resources that is closer in structure to that of
Henglein et al. [6]. Another possible extension is to allow types as values in the
report language. There are instances where we currently use a string representa-
tion of record types rather than the record types themselves. This representation
is, of course, suboptimal: we would like such runtime represenations of types ma-
chine checked and take subtyping into account.

Rules A rule engine is a part of our extended architecture (Figure 2), however it
remains to be implemented. The purpose of the rule engine is to provide rules—
written in a separate domain-specific language—that can constrain the values
that are accepted by the system. For instance, a rule might specify that the items
list of a Delivery transaction always be non-empty.

More interestingly, the rule engine will enable values to be inferred according
to the rules in the engine. For instance, a set of rules for calculating VAT will
enable the field vatPercentage of an OrderLine to be inferred automatically in
the context of a Sale record. That is, based on the information of a sale and the
items that are being sold, the VAT percentage can be calculated automatically
for each item type.

The interface to the rule engine will be very simple: a record value with zero
or more holes is sent to the engine, and the engine will return either (i) an
indication that the record cannot possibly fulfil the rules in the engine, or (ii) a
(partial) substitution that assigns inferred values to (some of) the holes of the
value as dictated by the rules. Hence when we, for example, instantiate the sale
of a bicycle. then we first let the rule engine infer the VAT percentage before
passing the contract meta data to the contract engine.

Forecasts A feature of the contract engine, or more specifically of the reduction
semantics of contract instances, is the possibility to retrieve the state of a running
contract at any given point in time. The state is essentially the AST of a contract
clause, and it describes what is currently expected in the contract, as well as
what is expected in the future.

Analysing the AST of a contract enables the possibility to do forecasts, for
instance to calculate the expected outcome of a contract or the items needed
for delivery within the next week. Forecasts are, in some sense, dual to reports.
Reports derive data from transactions, that is, facts about what has previously
happened. Forecasts, on the other hand, look into the future, in terms of calcu-
lations over running contracts. We have currently implemented a single forecast,
namely a forecast that lists the set of immediately expected transactions for a

94 J. Andersen et al.

given contract. A more ambitious approach is to devise (yet another) language
for writing forecasts, that is, functions that operate on contract ASTs.

Practicality In order to make POETS useful in practice, many features are still
missing. However, we see no inherent difficulties in adding them to POETS
compared to traditional ERP architectures. To mention a few: (i) security, that
is, authorisation, users, roles, etc.; (ii) module systems for the report language
and contract language, that is, better support for code reuse; and (iii) check-
pointing of a running system, that is, a dump of the memory of a running
system, so the event log does not have to be replayed from scratch when the
system is restarted.

Acknowledgements. Morten Ib Nielsen and Mikkel Jønsson Thomsen both
contributed to our implementation and design of POETS, for which we are
thankful. We thank the participants of the DIKU course “POETS Summer of
Code” and Lejejunglen for testing, use and valuable input to POETS. This work
has been made possible by a grant by the Danish National Advanced Technology
Foundation (Højteknologifonden) for Project 3gERP.

References

1. Andersen, J., Elsborg, E., Henglein, F., Simonsen, J.G., Stefansen, C.: Compo-
sitional specification of commercial contracts. International Journal on Software
Tools for Technology Transfer (STTT) 8(6), 485–516 (2006)

2. Bahr, P., Hvitved, T.: Compositional data types. In: Proc. 7th ACM SIGPLAN
Workshop on Generic Programming (WGP), pp. 83–94. ACM (2011)

3. Bahr, P., Hvitved, T.: Parametric compositional data types. In: Proc. Mathemat-
ically Structured Functional Programming, MSFP (2012)

4. Bernstein, A.J., Kifer, M.: Databases and Transaction Processing: An Application-
Oriented Approach, 1st edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2001)

5. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

6. Henglein, F., Larsen, K.F., Simonsen, J.G., Stefansen, C.: POETS: Process-
oriented event-driven transaction systems. Journal of Logic and Algebraic Pro-
gramming 78(5), 381–401 (2009)

7. Hvitved, T.: A survey of formal languages for contracts. In: Fourth Workshop on
Formal Languages and Analysis of Contract–Oriented Software (FLACOS 2010),
pp. 29–32 (2010)

8. Hvitved, T.: Contract Formalisation and Modular Implementation of Domain-
Specific Languages. PhD thesis, Department of Computer Science, University of
Copenhagen (DIKU) (November 2011)

9. Hvitved, T., Klaedtke, F., Zălinescu, E.: A trace-based model for multiparty con-
tracts. The Journal of Logic and Algebraic Programming 81(2), 72–98 (2012); Pre-
liminary version presented at 4th Workshop on Formal Languages and Analysis of
Contract-Oriented Software (FLACOS 2010) (2010)

Domain-Specific Languages for Enterprise Systems 95

10. Thomsen, M.J.: Using Controlled Natural Language for specifying ERP Require-
ments. Master’s thesis, University of Copenhagen, Department of Computer Sci-
ence (2010)

11. Liu, Y.A.: Efficiency by incrementalization: An introduction. Higher-Order and
Symbolic Computation 13(4) (2000)

12. Margaria, T., Steffen, B.: Business process modelling in the jabc: the one-thing-
approach. In: Handbook of Research on Business Process Modeling, pp. 1–26. IGI
Global (2009)

13. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for Ac-
counting Systems in a Shared Data Environment. The Accounting Review LVII(3),
554–578 (1982)

14. Murthy, C.: Advanced programming language design in enterprise software: A
lambda-calculus theorist wanders into a datacenter. In: Proc. ACM Symp. on Prin-
ciples of Programming Languages (POPL), ACM SIGPLAN Notices, vol. 42(1),
pp. 263–264. ACM (2007)

15. Neubauer, J., Steffen, B.: Plug-and-play higher-order process integration. Com-
puter 46(11), 56–62 (2013)

16. Neubauer, J., Steffen, B., Frohme, M., Margaria, T.: Prototype-driven development
of web applications with dywa. In: These Proceedings (2014)

17. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: Product-
lining, variability modeling and beyond. Electronic Proceedings in Theoretical
Computer Science (EPTCS) 129, 259–283 (2013)

18. Nissen, M.: Reporting technologies. In: 2nd 3gERP Workshop, Frederiksberg, Den-
mark (2008)

19. Nissen, M., Larsen, K.F.: FunSETL — Functional Reporting for ERP Systems. In:
Chitil, O. (ed.) 19th International Symposium on Implementation and Application
of Functional Languages, IFL 2007, pp. 268–289 (2007)

20. Ohori, A.: A Polymorphic Record Calculus and Its Compilation. ACM Trans. Pro-
gram. Lang. Syst. 17, 844–895 (1995)

21. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM
TOPLAS 4(3), 402–454 (1982)

22. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)
23. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven de-

velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

24. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only
databases. In: Proc. SIGMOD Conference, vol. 21(2). ACM (1992)

25. Thomsen, M.J.: Using controlled natural language for specifying ERP require-
ments. Master’s thesis, Department of Computer Science (DIKU), University of
Copenhagen (July 2010)

26. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Sci-
ence 2(04), 461–493 (1992)

27. Ward, M.P.: Language-oriented programming. Software-Concepts and Tools 15(4),
147–161 (1994)

28. Weygandt, J.J., Kieso, D.E., Kimmel, P.D.: Financial Accounting, with Annual
Report. Wiley (2004)

	Domain-Specific Languages
for Enterprise Systems

	1 Introduction
	1.1 Outline and Contributions

	2 Revised POETS Architecture
	2.1 Data Model
	2.2 Event Log
	2.3 Entity Store
	2.4 Report Engine
	2.5 Contract Engine

	3 Use Case: Legejunglen
	4 Conclusion
	4.1 Related work
	4.2 Future Work

	References

